
Received 16 August 2022, accepted 23 August 2022, date of publication 29 August 2022, date of current version 6 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3202532

CFFS: A Persistent Memory File System
for Contiguous File Allocation With
Fine-Grained Metadata
JEN-KUANG LIU AND SHENG-DE WANG , (Life Member, IEEE)
Department of Electrical Engineering, National Taiwan University, Taipei 106319, Taiwan

Corresponding author: Sheng-De Wang (sdwang@ntu.edu.tw)

This work was supported in part by the Taiwan Ministry of Science and Technology under Grant 109-2221-E-002-145-MY2.

ABSTRACT Extensive research on persistent memory (PM)-aware file systems has led to the development
of numerousmethods for improving read/write throughput. In particular, accessing ormodifying file contents
in a similar manner to the memory operations through mmap is a common approach. We designed a file
system, CFFS (Contiguous File Allocation with Fine-GrainedMetadata File System), to rapidly allocate PM
pages to upper layer applications formmap and to alleviate page fault overheads due tommap. We optimized
the physical contiguity of files in PM to reduce file fragmentation and increase fragment alignment with the
goal of reducing software overhead. To achieve this goal, we implemented greedy-based buddy systems and
implicit preallocation with a not-most-recently-used (NMRU) policy based on our overall page allocation
strategy of considering not only the spatial but also the temporal locality of file access patterns. Furthermore,
for efficient and atomic metadata operations, we fully leveraged the byte-addressable property of PM
to design fine-grained metadata. CFFS adopts persistent doubly linked lists for directory operations to
identify and recover from inconsistencies caused by system failures, doing so without using traditional log
mechanisms. In experiments, CFFS showed superior page allocation performance to EXT4-DAX and NOVA
did under different PM fragmentation levels. Our allocation algorithm also reduced the cost of page faults for
frequently appended files. Finally, CFFS’s lightweight directory operations performed excellently in creating
and deleting files of various quantities. In summary, the main contribution of the paper is proposing an
efficient page allocation algorithm to improve the performance of subsequent mmaps, based on the strategy
of considering not only the spatial but also the temporal locality of file access patterns in PM file systems.
Another contribution was the fine-grained and log-free method for atomic directory operations.

INDEX TERMS Non-volatile memory (NVM), persistent memory, operating system, file system, memory
management.

I. INTRODUCTION
Non-volatile main memory (NVMM) technologies such as
3D XPoint [1] are widely applied in rapid persistent storage.
For example, Intel has launched its OptaneTM DC Persis-
tent Memory [2] based on 3D XPoint (In Q2 2022, Intel
announced the ceased development of Optane products [55].).
Following this trend, researchers have aimed to use persistent

The associate editor coordinating the review of this manuscript and

approving it for publication was Norbert Herencsar .

memory (PM) appropriately and efficiently at the software
level, particularly for file systems and databases.

Data in PM can be directly accessed by CPU store and load
instructions through thememory bus, different from hard disk
drives (HDDs) and solid state drives (SSDs) depending on
page caches in dynamic random access memory (DRAM)
for software access. This feature of PM is called direct
access (DAX). Additionally, byte-addressability is a signif-
icant feature of PM, enabling storage to be accessed with
single-byte granularity. That is, software treats PM identi-
cally to the main memory. However, the performance of PM

91678 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8856-7850
https://orcid.org/0000-0002-9504-2275


J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

remains inadequate despite outperforming HDDs and SSDs.
Compared with DRAM, PM has 2–3.7× higher latency and
one-third bandwidth in load performance and similar latency
but one-sixth bandwidth in store performance [3]. There-
fore, determining which persistent data should be cached in
DRAM is a key to improving file system performance.

Typically, file systems [4], [5], [6], [7] initially designed
to make greater use of PM fully incorporate PM characteris-
tics such as byte-addressability and DAX. Apart from those
specifically designed for PM, some file systems originally
designed for HDDs added the DAX feature to compatibly
support PM as storage [8]; DAX allows the reading or writing
of file data in PM to bypass the DRAM page cache. However,
these file systems still remain metadata operations and data
structures designed for HDDs and thus lack fine-grained
mechanisms.

To enable database applications of PM, new databases with
atomic PM key-value store [9], [10] have been proposed,
and existing databases have been converted from HDDs or
SSDs to PM [11]. By studying these cases, we observed that
most databases implement their own atomic data modifica-
tion mechanisms instead of using the low-layer file system’s
atomic read/write mechanism [12], in order to avoid kernel
traps and kernel buffer copies. Database applications often
map PM to the application address space through mmap and
then access PM through memory operations. Even though
some databases abandon atomic read/write mechanisms pro-
vided by file systems, file systems are still necessary to
allocate PM space as files for management and security.

In addition to databases, some PM libraries are designed
to atomically modify data in files [13], [14]. These libraries
have their own implementations ofmmap andmsync based on
low-layer file systems. The mmap implementation enables a
user to directly load or store data in PM; however, written
data does not act on target files until msync is called. The
msync implementation atomically synchronizes written data
to a corresponding position in the target file. For example,
in SplitFS [13], when mmap is called it maps to a staging
file, suffering the written data for the target file, and then
msync modifies some metadata in the target file such that the
written data in staging files is atomically linked to the target
file. Consequently, SplitFS can write data to files atomically
with low copy overhead.

Based on the fact that PM databases or libraries implement
their own efficient API for data operations to guarantee atom-
icity, traditional POSIX read /write system calls executed by
the PM file systems aren’t the integral parts for databases
or libraries. Nevertheless, the implementation of their data
operationsmakes heavy use of themmap system call provided
by file systems. Therefore, themmap performance is a critical
issue in file systems for PM.

In this study, we observe that page faults caused by mmap
[53], degrading the entire system’s performance, are related
to the page allocation for mmaped files in PM. To solve
this problem, we designed a PM file system named CFFS
(Contiguous File Allocation with Fine-Grained Metadata

File System), whose page allocation policy is to reduce the
overheads of page faults due to mmap. In addition to page
allocation, CFFS also pays attention to metadata operations
such as file creation and deletion.

In regard to contiguity, traditional HDD file systems
attempt to preserve data contiguity because HDDs access
data sequentially; initially, contiguity may seem irrelevant to
PM because PM supports random data access like DRAM.
Consequently, most previous PMfile systems focused on how
to lower the amount of data written into PM. For example,
NOVA is a log-structured file system treatingwrite operations
as log entries with an append-only method [7], getting rid of
doublewrite overhead caused by redo/undo logging.

Another issue is related to metadata operations. One piece
of metadata is a tiny object in file systems, so operations
for metadata should be fine-grained. Unfortunately, tradi-
tional HDD file systems only have coarse-grained opera-
tions due to hardware properties. Previous PM file systems
designed fine-grained metadata operations, but they required
redo/undo logging, causing doublewrite overhead. We dis-
cuss these problems of contiguity and metadata solved by
CFFS in the following paragraphs.

First, because PM has lower access latency than HDDs or
SDDs, software overhead accounts for a significant propor-
tion of total latency. Moreover, the use of mmap is critical in
PM applications, and the cost of page faults after mapping
PM to a file is correlated with the number of file fragments
and the fragment alignment. The number of fragments and
the degree of alignment are dependent on the algorithms for
allocating PMpages to a file. Intuitively, a file with physically
contiguous PM pages has fewer file fragments and better
alignment, increasing the performance of page allocation and
the page fault handler. We analyze how page fault overhead is
affected by these two factors in Section VI. Therefore, CFFS
optimizes the physical contiguity of files when allocating PM
pages to files.

Second, CFFS not only focuses on the physical contiguity
of files, but also provides a high-speed page allocation mech-
anism [54]. To fit spatial and temporal locality in file access
patterns, our allocation strategy involves overall storage dis-
tribution in PM and appropriate page candidates for different
allocation requirements. We thus designed implicit prealloca-
tion and two types of greedy-based buddy allocators, with a
not-most-recently-used (NMRU) policy.

Third, although many applications access and modify
data by their own functions, they still use file systems to
manage PM space in the form of files to achieve access
restrictions, user isolation, and attribute management. To pro-
vide these functions for applications, CFFS is designed
with fine-grained data structures to leverage PM’s byte-
addressable feature for atomic updates of metadata without
a coarse-grained journal mechanism.

Finally, directory operations are keys in data-intensive
applications [15]; thus, CFFS used the properties of PM to
improve the performance of these operations. We managed
directory entries as doubly linked lists, enabling operations

VOLUME 10, 2022 91679



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

TABLE 1. Page allocation in EXT4: fallocate(software layer) v.s.
fsync(storage layer) overhead.

to guarantee data consistency without a log mechanism even
after crashing. Moreover, we could reuse the fragments in
directory pages with a straightforward method.

II. BACKGROUND AND MOTIVATION
In this section, we present an analysis of software over-
head in file systems running on PM and discuss some
EXT4-DAXdesigns that are unsuitable for PM in this section.
In Section IV, we propose a file system called CFFS based on
this analysis.

A. SIGNIFICANT SOFTWARE OVERHEAD
Previously, file system latency bottlenecks were primarily
physical access to storage; thus, the contribution of software
latency to total access time was negligible. However, the
latency and bandwidth of PM are similar to those of DRAM,
and access to PM is faster than access to HDDs or SSDs.
Therefore, software overhead accounts for a substantial por-
tion of overall latency.

Table 1 presents the proportions of software and storage
layer overhead for page allocation in EXT4 on PM and on
an SSD. The system call fallocate provided by file systems
is used to obtain more pages from storage, and fsync is used
to synchronize page caches in DRAM to storage. In EXT4,
fallocate first organizes and updates metadata for page allo-
cation; we set it to not synchronize metadata to storage. Thus,
the modification buffered in DRAM is purely at the software
layer. Then, fsync is called to persist the metadata updated
by the preceding fallocate; almost all of the time required
was used for flushing the modification from buffer to storage.
The time required by each operation was used to estimate the
ratio of software and the storage layer overheads. On SSD,
the software layer overhead accounts for 10% of total latency
(on HDD, the software contribution is much smaller). On PM
(emulated with DRAM), the software layer accounts for 53%
of total latency.

B. FILE FRAGMENTATION OVERHEAD
For HDDs, file systems prefer to keep a file physically
contiguous to reduce seek time and rotational latency. Tech-
nologies such as preallocation and defragmentation [16] have
been developed to achieve physical contiguity. PM has good
random-access properties; thus, contiguity seems unneces-
sary. However, contiguity tends to reduce software overhead.

A file fragment is a region of physically and logically
contiguous data blocks of a file; a file may comprise multiple
fragments. File systems must manage fragments for each file.
For example, EXT4 uses ‘‘extent’’s to record information
about a fragment, including the logical block offset in a file,

FIGURE 1. EXT4-DAX overhead of prefaulted mmap for 1-GB files with
different numbers of fragments. ‘‘Ideal’’ indicates that no other files are
in storage, enabling EXT4-DAX to use the fewest possible extents to
represent the file. ‘‘x frag (y MB/frag)’’ indicates that the 1-GB file has x
file fragments of approximately y MB each. All time results are
normalized to the ideal case.

the physical block address of the fragment, and the length
of the fragment. EXT4 stores those extents as an ‘‘extent
tree’’ and records the tree information in each file’s metadata.
(We use the word ‘‘extent’’ to describe metadata usage in our
paper.)

Data blocks with less contiguity have more file frag-
ments and less alignment. Thus, software overhead increases
because file systems must spend additional time searching
for the corresponding fragment information in trees with
nodes representing a fragment. To add insult to injury, the file
system cannot adopt the best page table entry or translation
lookaside buffer (TLB) strategy. We describe a case in which
mmap performance is affected by contiguity.
If a user calls EXT4-DAX’s mmap to map a file into

the application address space and accesses the correspond-
ing address for the first time, page faults occur and trigger
EXT4-DAX to translate the logical offset of the accessed
file into corresponding PM pages. This process necessitates
a search of an extent tree for the correspondence between
logical and physical pages; It must traverse the entire tree
whose size is correlated with the number of file fragments
if the entire file is mapped and all page faults are triggered.

Fragment alignment can cause the page fault handling
mechanism to adopt large pages for aligned large fragments to
reduce the number of constructed page table entries. Further-
more, a file stored contiguously in PM may have increased
TLB performance because multiple TLB entries with virtual
and physical address contiguity can be coalesced into a single
entry [17], [18].

Fig. 1 presents the measured overhead of EXT4-DAX’s
mmap obtained by mapping then prefaulting a 1GB file with
different numbers of extents. Generally, files with higher
fragmentation have higher overhead caused by the mmap.

C. EXT4-DAX OVERHEAD
To support PM, EXT4 incorporated the DAX feature to
become EXT4-DAX. Although EXT4-DAX bypasses page
cache in DRAM when a user reads or writes a file and
supports DAX mmap, its metadata management proceeds
with no awareness of PM features. Despite the lack of any
PM-specific operation on metadata, EXT4-DAX is worth

91680 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

exploring because EXT4 has a large user base and has had
complete functionality for a long time. Therefore, we ana-
lyze EXT4-DAX’s software overhead and check whether its
operations are suitable for PM.

1) METADATA PERSISTENCE
EXT4 tends to accumulate a certain amount of written data
in page cache before flushing a batch of modifications to
storage simultaneously to reduce write frequency because
frequently writing to a high-latencyHDD reduces system per-
formance.Metadata is relatively small, and flushing it on each
modification is too expensive. Therefore, when metadata is
modified, EXT4 calls JBD2 to perform a transaction rather
than immediately making the modification persistent. Until
users actively call fsync or a periodic system timer passively
wakes to trigger JBD2, data in the page cache, including the
log entries in journals, is not written back to storage [19].

For example, suppose an application calls fallocate to
obtain more space for a file. If this application wants to
guarantee that the new space is permanent before writing data
there, it should call fsync after calling fallocate. Otherwise,
system failure may cause the loss of the allocated space and
the data written to that space. Therefore, the application must
make an additional system call to ensure data integrity.

This behavior occurs because EXT4-DAX does not lever-
age PM’s ‘‘direct-accessed’’ feature. If file systems have a
proper atomic update mechanism, metadata can be modified
directly without using the page cache or batched writes. That
is, it is unnecessary to call fsync to ensure that the modified
metadata is permanent.

Moreover, EXT4-DAX guarantees the atomicity of meta-
data through journaling [47]. However, the coarse log mecha-
nism is unsuitable for PM. PM’s ‘‘byte-addressable’’ feature
can prevent the overwriting of entire sectors and can enable
precise updates to the modified section. In many cases, only
a tiny part of metadata is modified; however, EXT4-DAX
overwrites all metadata, such as the inode.

2) PAGE ALLOCATION
When fallocate is called, EXT4-DAX attempts to allocate the
specified number of PM pages. We present the steps of page
allocation and analyze the bottlenecks.
• Step 1: EXT4-DAX’s fallocate must check whether
the indicated offset of the file is within the range repre-
sented by existing extents. The most recently accessed
extent is checked first. If a mismatch is identified,
searching the extent tree is necessary; a large tree
increases search overhead. However, applications often
append new pages to the current file tail contiguously
(For example, LMDB’s B+ tree is an append-only tree
[20]). In this case, the indicated logical offset has not yet
been mapped to any physical fragments, and the extent
search returns no results.

• Step 2:EXT4-DAX’s fallocatemust find a free phys-
ical space for allocation; the algorithm is strongly depen-
dent on spatial locality, which is only beneficial for

HDDs. EXT4-DAX divides the whole space into numer-
ous groups, and each group uses a bitmap and buddy
system to record free pages in the group.
In Step 1, if the search finds no corresponding extents,
the fragment with a logical file offset closest to the
indicated offset is found instead. The group in which
the physical fragment is located is the first choice for
a new allocation because EXT4 attempts to store a file’s
logically adjacent fragments physically close to each
other.
EXT4-DAX checks whether sufficient pages are preal-
located in this group [41] first. If not, the group’s bitmap
and buddy system are read from storage and written
into the page cache. Then, the cached bitmap or buddy
system is searched for free pages. If the group does not
own enough free pages, the next group is searched in a
recursive manner. Thus, the search overhead is variable;
in the worst case, it is proportional to the total number
of groups.

• step 3: After finding available space for a new frag-
ment, EXT4-DAX constructs an extent to record the
mapping between the logical file offset and the allocated
physical space. The extent must be inserted into the
extent tree of the file. If the new fragment is logically and
physically contiguous with an existing fragment, the two
extents recording their respective information should be
merged.

• step 4:The aforementioned steps involve themodifi-
cation of the file and group metadata. This modification
only acts on DRAM page cache and is sent to JBD2
for a transaction that provides an atomic update at the
checkpoint (fsync or periodic system timer) to flush the
buffer into storage.

We present the overhead of EXT4-DAX’s fallocate in
Fig. 2. As illustrated in Fig. 2(a), EXT4-DAX allocates a
4-KB page in unused PM to an empty file without any
fragments. It first chooses a group and searches for free pages,
but the group’s bitmap and buddy system have not yet been
buffered in page cache and must be loaded from storage.
This step makes up over 60% of the total time. As indicated
in Fig. 2(b), EXT4-DAX allocates a 4-KB page for a file
comprising approximately 20,000 fragments. Searching the
file’s extent tree requires over half of the total time due to
the large number of fragments. Metadata modification is the
second-largest contributor to total latency; it requires approx-
imately 20% of the time even though data is not flushed to PM
and is only applied to JBD2 for transaction.

D. CFFS CONTRIBUTION
Inspired by the analysis of EXT4-DAXoverhead, we designed
CFFS with the following techniques.
• CFFS’s fallocate doesn’t need extra fsync to persist
the allocation, reducing the system call frequency and
enhancing the promptness of effective allocation.

• We don’t adopt any coarse log mechanism for the
atomicity of metadata operations such as fallocate,

VOLUME 10, 2022 91681



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 2. Analysis of EXT4-DAX’s fallocate overhead under different conditions. EXT4-DAX’s fallocate modifies the metadata for the file, the
group, and even the entire file system. It has different execution paths under different conditions. We measured time spent on each subfunction for
two cases. In (a), loading group metadata from storage required the most time; searching the extent tree required the most time in case (b).

create and unlink. Instead, the tailor-made data
structures are designed for metadata management.
Specifically, CFFS provides log-free directory opera-
tions without compromising atomicity and consistency
achieved by tailor-made dentry lists.

• When calling fallocate, applications can give CFFS a
hint about whether the current page allocation would
be intensively appended with logically-contiguous allo-
cation later. Based on the hint, CFFS adopts a suitable
allocation algorithm, either growing-size or fixed-size
greedy allocator, to optimize file contiguity.

• CFFS maintains the buddy structure with a global view
of free space in PM rather than local bitmaps managing
a portion of free space. Thus, CFFS’s allocation algo-
rithms could select appropriate free pages immediately.

The above analysis demonstrates that fragmentation affects
the performance of page faults after mmap in EXT4-DAX.
In our evaluation, we’ll show how the number of file
fragments and the degree of fragment alignment affect the
performance, and explain why CFFS’s contiguity-optimized
allocation algorithm results in great performance of page
faults.

In this work, we have implemented CFFS running in Linux
kernel space.We referenced the codes of some NVM-specific
file systems, such as PMFS [6] and NOVA [7], and built up
CFFS from scratch. Our design emphasized page allocation
and metadata operations, while the write operation for files
is non-atomic in a similar way to EXT4-DAX. We plan to
design a user-space file library to implement the atomic data
access for PM files in the future.

III. RELATED WORK
A. FILE CONTIGUITY
Many methods to improve file contiguity have been devel-
oped for HDD or SSD file systems, and we surveyed some
works for designing suitable methods for PM file sys-
tems. First, defragmentation is the most common method.
Park et al. proposed a file defragmentation scheme on

log-structured file systems [50], addressing the severe frag-
mentation caused by log-structured methods to enhance
sequential read performance on SSD. The scheme determines
the fragmentation degree of every segments, and migrates the
data in the highly fragmented segment to a new segment.
Second, writing data to storage in batches is also utilized
extensively in file systems. BTRFS is a file system developed
by Oracle [51], accumulating data in page cache until the
next checkpoint and then writing data to as few fragments
as possible on disk. Third, great allocation policy would
determine the contiguity of files. Kesavan et al. proposed
the write allocator in the WAFL file system [52], considering
information of allocation areawhen allocating blocks to a file.

These works enhancing file contiguity were for fitting the
hardware characteristic beneficial to sequential access. That
is, absolute contiguity is unnecessary. Thus, the contiguity
here means that the data in a file is stored around the nearby
location. In contrast, CFFS’s contiguity improvement is for
reduction in the software overhead, because sequential access
has a relatively slight impact on PM. CFFS focuses on strict
contiguity for great fragment alignment and the low number
of fragments, so we have to figure out amethod different from
previous works for HDDs and SSDs.

B. PM DIRECTORY OPERATION
Directory operations—create, mkdir, unlink, rename, and
others—may modify multiple inodes. For example, create
allocates a new inode and inserts a directory entry (con-
taining at least the name of the created file and its inode
number) into a directory page at the same time. Hence, atomic
directory operations are necessary. Suppose we successfully
add a directory entry but fail to include the correct value
in the metadata of the new inode due to a system failure.
In that case, a directory entry pointing to an inode is nonex-
istent or incomplete. Conversely, an intact inode with no
directory entry pointing to it could exist. Both cases cause
inconsistency [23].

91682 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 3. Allocation overview.

To guarantee atomicity, ext4-DAX uses a coarse journal
mechanism to log modifications of inodes [24]. NOVA used
the log-structured property to implement directory opera-
tions [26]. However, an additional logging mechanism is still
required to ensure that it can both modify multiple inodes and
recover from inconsistency caused by a failure.

Logging causes double write overhead. Moreover, NOVA’s
directory operations have some performance bottlenecks.
For example, NOVA records the tail directory entry in the
directory inode, contributing to modification not only on the
directory page but also on the directory inode’s metadata in
PM. NOVA’s log structure also generates a great number of
log entries, resulting in frequent garbage collection and PM
page allocation.

Other important issues are out-of-order execution and con-
sistency between cachelines and PM [49]. The first problem
is that instructions may be executed in an order optimized
by CPU rather than the original order of the program. It is
possible to reorder load /store instructions for PM access,
causing inconsistency. The instructions to execute metadata
operations should follow their fixed sequences, so memory
barriers (sfence in x86) [27] are essential for metadata oper-
ations. The second problem is that the CPU accesses PM
through cachelines because there is no difference between
PM and DRAM from the perspectives of CPU. The data kept
in cachelines without persisting in PM also causes incon-
sistency. To solve this problem, developers should use the
instructions to flush the data out of cacheline for persistence
guarantee (clflush in x86).

IV. CFFS PAGE ALLOCATION
Our goal is to allocate pages quickly and increase the conti-
guity of growing files. We design two types of greedy-based
buddy allocation systems and an implicit preallocation mech-
anism to reduce the potential software overhead. To allocate

pages, CFFS first attempts to use preallocated pages to pre-
vent the creation of new fragments. If preallocated pages are
insufficient, the buddy allocation system is used for alloca-
tion. CFFS supports 4-KB or 2-MB page sizes. The allocation
algorithms are similar, so we only describe for the 2-MB case
in the following section for brevity.

We illustrate an overall architecture for the CFFS alloca-
tion algorithm in Fig. 3. PM is divided into multiple groups,
and Buddy Structure is a set of free lists to manage these
groups. Each list is in charge of some groups according
to the size of free chunks in the group. Once the system
call fallocate is invoked by applications to request for page
allocation, CFFS identifies this allocation as one with the
appending or non-appending hint.

If the allocation is with an appending hint, the growing-size
allocator selects the group managed by the highest order
buddy list and allocates pages from the largest free chunk in
this group. So far, the new file fragment has been created,
and the adjacent free chunk on its right has been implicitly
preallocated for the appending-typed allocation next time.
If the allocation is with a non-appending hint, the fixed-size
allocator selects the group managed by the lowest-order
buddy list for allocation and no implicit preallocation.

A. SPACE MANAGEMENT
1) FILE LAYOUT
Each file maintains an ‘‘CFFS_inode’’ in PM. Some meta-
data in the inode representing the mapping between the log-
ical file offset and the physical PM address is essential to
enable applications to access data by providing logical file
offsets to the file API.

We present the use of this metadata for constructing the
mapping through an example in Fig. 4. From the applica-
tion’s perspective, fragment {k1 {k2 {k3 constitutes a contigu-
ous space in the logical file. However, this space is not

VOLUME 10, 2022 91683



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 4. File Layout. Each CFFS_extent records a file fragment’s
physical information. All CFFS_extents belonging to the file are
connected as a list to represent the file’s logical layout, and the first
CFFS_extent of the file is embedded inside its CFFS_inode.

physically contiguous in PM and comprises three fragments
at different PM addresses.

CFFS uses an ‘‘CFFS_extent’’ in PM to record file
fragment information, including the physical PM address
and length, and the three CFFS_extents indicated in the
figure are linked as a list in the sequence of their logical
offsets. CFFS also caches extent information in DRAM and
constructs an extent tree of the cached extents for each file to
expedite the translation of a logical offset to a PM address.

All CFFS_extents of a file are connected as a persistent
singly linked list. This linked list guarantees consistency
easily due to its structure, but it is unsuitable for searching.
Because PM latency is longer than DRAM latency, CFFS
constructs cached extent trees in DRAM to expedite searches
at the cost of acceptable construction overhead. By contrast,
EXT4-DAX maintains extent trees in storage, and the B+-
tree structure requires greater overhead to guarantee consis-
tency. Adopting the B+-tree in storage is suitable for HDDs
because multiple extents can be stored in the same sector
to reduce hardware overhead. PM has better random access
performance; thus, the list structure is a feasible option for
organizing extents.

2) PHYSICAL LAYOUT
As presented in Fig. 5, each part of the 1-GB-aligned PM
space is a group comprising 512 huge pages (2 MB in size).
A group is the management unit for selecting proper free
space with the NMRU policy; this policy is described in a
Section IV-C.

The remaining space that cannot be aligned to the 1 GB
boundary is used to store inode tables, extent tables, directory
pages, and small file fragments. The unit of this space has a
4-KB page size. When this space is exhausted, some huge
pages are extracted from groups to supplement it; we name
these pages support pages.

3) GROUP
Fig. 6 presents the group structure management and the free
pages in a group. CFFS uses a ‘‘cached_extent’’, the
DRAM abstraction of a file fragment (including its address

FIGURE 5. PM Layout. The first 1 GB is the superblock and is not part of a
group.

and length). Using cached_extents, an extent list links
all file fragments in the group in accordance with the order
of the physical fragment offsets. Contiguous unused pages
constitute a free space fragment, and we call it a free chunk.
CFFS uses ‘‘free_chunk’’ as the DRAM abstraction of a
free chunk. A free list links all free chunks in the group in size
order. Generally, nodes closer to the head of a free list have
larger chunk sizes.

One file fragment is always adjacent to one free chunk on
its right side with a higher offset in the group (e.g., {k1 {k1 and{k2 {k2 in Fig. 6); these fragments always exist in pairs. Thus,
we bind free_chunk to the cached_extent structure.
This process is the key idea in implicit preallocation.

4) FREE CHUNK MERGING
If an application deletes all or part of a file, the corresponding
file fragments must be released. In the example illustrated
in Fig. 6, if fragment {k1 is released, this space should be
merged with free chunk {k0 and {k1 as a larger free chunk;
thus, merged chunk_len becomes a+b+c. Note that the
order of the free list would be adjusted if a+b+c is larger
than e.

5) SP FILE
CFFS_inode and CFFS_extent are both structures in
PM. We use inode tables and extent tables to manage these
structures. The tables comprise multiple 4-KB pages that are
allocated from the space not affiliated to any groups unless
this space is exhausted. If the space is exhausted, support
pages allocated from groups could resolve deficiencies of
pages for inode tables, extent tables, directory pages, or small
files. A special file, the support page file (SP file), is used to
manage all support pages and for the timely release of unused
support pages. Unlike general files, the SP file does not
require contiguity; thus, we prefer to allocate small chunks
in groups as support pages.

B. IMPLICIT PREALLOCATION
Because new data is appended to files in most data-intensive
applications, file systems require efficient mechanisms to
allocate pages for growing files. In one method for preal-
location, applications request sufficient space at each call
to reduce the number of system calls required to allocate
pages from file systems; however, applications may not pre-
cisely predict space demands. In another method, file systems
explicitly preserve pages physically close to existing file
fragments; this method is most useful for HDDs.

91684 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 6. Group Structure. Group α contains free chunks (their order in the free list is ) and file fragments (their order

in the extent list is ). and are two pairs. Yet, at the head position of group α has no partner fragment; thus, it is bound to

the head_extent, which does not represent any fragment but contains the list head of the extent list. at the tail position has no partner chunk; thus,
it is bound to a free_chunk with length 0.

Preallocation in CFFS has two goals. The first is to provide
a fast allocation path that requires no search for the global
buddy allocation system and only makes minor modifications
to metadata in PM. The second is to implicitly reserve pages
for file fragments that are likely to extend to reduce the
number of fragments and potential software overhead.

1) FRAGMENT EXTENSION
When an application requests for CFFS to allocate new PM
pages to an indicated logical file offset, CFFS searches the
cached extent tree to identify the fragment with a logical
offset smaller than but closest to the required offset and
then checks whether the found fragment’s offset is logically
contiguous to the required offset. If so, CFFS tends to allocate
the free PM pages to be physically contiguous to the found
fragment, preventing the creation of new file fragments.

File fragments and free chunks exist in pairs, and we
can access a free_chunk through the cached_extent
returned from the prior tree search due to the design of
the bound structure; thus, we obtain the information of the
free chunk on the right side of the identified fragment.
Suppose the size of this free chunk is sufficiently large.
In that case, page allocation is performed by fragment exten-
sion, which is easily completed by modifying a few fields
in cached_extent and free_chunk (in DRAM) and
atomically persisting the fragment’s length and timestamp by
recording in PM. Otherwise, allocation is performed from the
buddy system detailed in Section IV-C.

2) EXTENSION TREND
A free chunk is implicitly preallocated to the closest file
fragment on its left side. A free chunk preallocated for a
growing file fragment should not be selected by the buddy

system for allocation to another fragment; therefore, CFFS
must learn fragment extension trends.

If a fragment extends its size, jointly, a corresponding
free chunk implicitly preallocated for it must decrease in
size. CFFS maintains a free list for each group and links all
free chunks in the group according to their size. Therefore,
if a free chunk decreases its size due to fragment exten-
sion, the free list to which this chunk is linked might adjust
its sequence. If such an adjustment occurs, the decreased
chunk has a lower allocation priority in the group (the buddy
system allocates the largest chunk in the selected group).
If the decreased chunk is still the largest chunk in the group,
this adjustment does not occur. However, the entire group
is linked to an extension least-recently-used (LRU) list; the
buddy system does not allocate free chunks that belong to
groups linked to this list.

C. GREEDY-BASED BUDDY SYSTEM
1) VOLATILITY
CFFS does not maintain scanning-inefficient bitmaps but
instead maintains a buddy structure in DRAM. It writes
back to PM only during the unmounting procedure for rapid
remounting. If the buddy structure is lost due to a crash,
it can be recovered by scanning inode tables to identify valid
CFFS_inodes that record the pages occupied by the files,
including the SP file. Thus, the buddy structure does not risk
storage inconsistency.

2) BUDDY STRUCTURE
CFFS’s buddy structure is used to manage free chunks
according to their sizes (the number of 2-MB pages), and the
management unit is a group. Fig. 7 illustrates a buddy struc-
ture. It has 11 buddy lists, and each list contains chunks in a

VOLUME 10, 2022 91685



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 7. Buddy Structure. The structure has 11 buddy lists and an
extension LRU list; these manage all groups in PM. list0 to list10 manage
groups ordered by the largest chunk size in each group. For example, the
groups linked to list9 own at least one free chunk consisting of 257 to
511 huge pages but fewer than 512 huge pages.

specific size range. Due to our greedy strategy, determining
which buddy list a group belongs to is based on the size of
the largest free chunk in the group. Besides, the extension
LRU list prevents free chunks reserved for recently extended
file fragments from being selected by the buddy allocator for
allocation. If the number of groups linked to the LRU list
exceeds a threshold, evict the group in which the fragment
least-recently extended the size.

3) GROWING-SIZE GREEDY ALLOCATOR
The growing-size greedy allocator is used to allocate new
fragments for extension. It is designed to both allocate new
fragments and implicitly reserve free pages for the future
extension of the newly allocated fragment; thus, it must allo-
cate a position with substantial reserved space. This greedy
allocator selects a nonempty buddy list with the current
highest order in the buddy structure and rapidly identifies the
first group connected to this buddy list. Then, it selects the
largest free chunk in the group. This free chunk is larger than
chunks in other groups linked to lower-order buddy lists and is
thus the target for allocation. To determine which part of this
chunk should be allocated, we consider the three situations as
follows.

First, suppose that the requested page number is greater
than or equal to the size of the selected chunk. In this case,
the whole chunk is allocated. Second, if the selected chunk is
at the head of the group, no fragment in the same group exists
on its left. In this case, left-aligned pages in the free chunk
are allocated, and the remaining free pages are implicitly
reserved as in preallocation.

In the third situation, an existing fragment is contiguous
to the selected free chunk’s left side (the selected chunk
and the existing fragment are bound as a pair). In this case,
we consider whether this existing fragment is a fixed-sized
fragment with no chance of extending its size. If the existing

fragment has a fixed size, left-aligned pages in the free chunk
are allocated, resulting in no reserved pages for the existing
fragment. Otherwise, we implicitly reserve free pages for
both the new fragment and the existing fragment by allocating
central pages in the free chunk, resulting in the same number
of free pages implicitly reserved for both the new fragment
and existing fragment. However, if the new fragment does
not extend its size substantially, allocating pages from the
middle of the free chunk prevents the existing fragment from
attaining maximal contiguity. To resolve this problem, CFFS
uses application hints and defragmentation.

In all of these situations, new fragments or split free chunks
are generated. Thus, the selected group’s extent list and free
list are adjusted. The buddy system also must be adjusted
in accordance with the group’s latest largest chunk and the
NMRU policy.

An example is presented in Fig. 8(a). In this example,
an application requests one huge page as a new fragment.
This fragment is expected to extend; thus, CFFS adopts the
growing-sized allocator and selects list9’s first group whose
largest free chunk owns 511 huge pages. The allocator then
determines whether the fragment on the chunk’s left side is
a fixed-sized fragment. If not, centrally aligned allocation is
performed on this chunk and the group is migrated to list8’s
tail. Otherwise, left-aligned allocation is performed and the
group is moved to list9’s tail.

4) FIXED-SIZE GREEDY ALLOCATOR
By contrast with the grow- ing-size allocator, the fixed-sized
greedy allocator reserves no preallocated pages for new
fragments; instead, it preserves continuity for other existing
fragments. For some allocation cases, continuity is irrelevant
because the allocated fragments will not increase in size. For
these fragments, applications give hints to fallocate indicating
that the size of the required fragment is fixed. Moreover, frag-
mentation does not affect certain types of files. For example,
the SP file, comprising support pages and only used by CFFS
itself, links all the pages as a list. Most operations on this file,
except for linear traversal for crash recovery, take constant
time regardless of the number of fragments.

In these cases, CFFS uses the fixed-sized greedy allocator.
It selects a nonempty buddy list with the current lowest order
and rapidly identifies the first group connected to the list.
The low-order list is chosen to preserve large free chunks for
the growing-size greedy allocator; moreover, the selected free
chunks are relatively small; thus, the existing fragment bound
to that chunk has little preallocated pages to gain. That is,
if a free chunk owns x pages and an existing fragment uses
them as preallocated pages, then the number of file fragments
due to extensions can be reduced by at most x; a smaller
x results in fewer potential gains. CFFS thus selects a free
chunk in the selected group and allocates right-aligned pages
in the chunk. No page is reserved for the new fragment; the
remaining pages are reserved for the existing fragment.

An example is presented in Fig. 8(b). An application asks
for one huge page as a new fragment. Due to a non-appending

91686 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 8. Allocation Example. We present the allocation steps using the growing-size greedy allocator, fixed-size greedy allocator, and fragment
extension. The examples use the same buddy structure as in Fig. 7.

hint, CFFS adopts the fixed-size allocator and selects list1’s
first group. The allocator executes right-aligned allocation on
this chunk and migrates this group to list0’s tail.

5) FIXED-SIZED FRAGMENT
Fragment extension may generate fixed-sized fragments
under certain conditions other than through the fixed-size
allocator. Fig. 8(c) illustrates fragment extension for a single
file; 518 huge pages are appended after an existing fragment.
First, CFFS searches the cached extent tree to identify the
fragment receiving an extension; however, its implicitly pre-
allocated eight huge pages is insufficient. Thus, in addition to
fragment extension, the growing-sized greedy allocator also
allocates an additional 510 huge pages from the first group
connected to list9. The free chunk with 511 huge pages in
this group is reduced to 1 huge page, and the group then
migrates to list0’s tail. In this case, one logical-contiguous
allocation is split into two physical file fragments, and the
existing fragment extended by eight huge pages becomes a
fixed-sized fragment.

6) NMRU
Typically, file system access has strong temporal and spatial
locality [21], [22]. If a file fragment has recently extended
its size or been newly allocated, extension is likely to happen
repeatedly in the short run. Therefore, the free chunk implic-
itly reserved for this fragment should not be allocated for new
fragments by the buddy system. To achieve this goal, three
levels of NMRU are included in CFFS’s buddy system.

The first level is inside the buddy structure. Note that
the buddy list with the current highest order is used by the
growing-size greedy allocator to pick a group. After centrally
aligned allocation, the original largest chunk is cut in halves,
and the selected group would be migrated to a buddy list with
a lower order according to the size of its new largest chunk.
Consequently, if a group is picked by the growing-sized
greedy allocator, migration to a lower buddy list reduces its
precedence for growing-sized greedy allocation. Moreover,
if fragment extension causes a group to be isolated in the
extension LRU list, the group will not be selected by the
allocator until it is removed from the LRU list. Thus, fragment
extension also satisfies the first level of NMRU.

The second level is inside the buddy list and the extension
LRU list. In the first level, we see that a group migrates to
the extension LRU list or a lower buddy list, and a migrated
group is always added to the target list’s tail. If a group does
not need to migrate to another list, it is still moved to the tail

FIGURE 9. Dentry format.

of the original list. For buddy lists, the allocator always picks
the first group connected to the selected buddy list. For the
extension LRU list, the first group is returned to the buddy
list when the extension LRU list is full. That is, the group at
the tail position is the last choice for the allocator in the same
buddy list or extension LRU list.

The third level is inside a group. If a group is selected
by the buddy system for allocation, the largest free chunk in
the group is selected. That is, allocating a new fragment or
extending an existing fragment decreases the size of a free
chunk and thus decreases its allocation priority within the
group.

V. CFFS DIRECTORY
CFFS leverages PM’s byte-addressable property and consid-
ers PM’s access granularity [48] to design suitable directory
structures. Moreover, we implemented some simple oper-
ations, such as create, mkdir, and unlink, with a log-free
method with memory barriers (sfence in x86) to ensure oper-
ation sequences and the 64-bit memory atomic store [27]
(guaranteed by x86) to avoid logging. Even after a crash,
CFFS can recover from inconsistencies without additional
recovery processes. Finally, CFFS reuses fragments in direc-
tory pages generated by unlink or rmdir.

A. CFFS DIRECTORY STRUCTURE IN PM
1) DIRECTORY PAGE
A directory contains multiple pages linked as a list, and
the address of the first page (4 KB per page) is recorded
in its CFFS_inode. (CFFS_inodes for directories and
files may have discrepancies because directory pages do not
require continuity). The beginning of each directory page
includes a page header that records the address of the next
directory page, the offset of the first directory entry in this
page, and other information. The remaining space is used for
directory entries; we allow a fragment to exist between two
consecutive entries.

2) DIRECTORY ENTRY
Fig. 9 presents the information stored in a directory entry
(dentry). Fields storing an inode number and name are
required; moreover, a field is used to record an entry type
(e.g., file, directory, or symbolic link) and some bits are

VOLUME 10, 2022 91687



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

reserved as flags for atomic unlink. Unlike other methods, our
method also records the distance from an entry to its previous
and next entry (i.e., the entry on its left or right, respectively)
in the prev_entry_dis and next_entry_dis fields;
it is meaningful to place these two fields on the far left and
far right, respectively, of an entry.

To reduce the length variations, each dentry is padded to
8-bytes aligned to facilitate fragment management and
increase directory compactness. The minimum length is
24 bytes, and the maximum is 280 bytes, primarily depending
on the length of the file name.

3) DENTRY LIST
Because a dentry records the distance to its previous and next
entry, all entries in one directory page form a dentry list whose
head is the first dentry in the page. Moreover, one directory
may own multiple directory pages, forming multiple dentry
lists. Therefore, we must have a method of connecting dentry
lists established in different directory pages to traverse all
entries.

To achieve this connection, the last entry in a directory
page is marked as CROSS PAGE or END. The last entry
does not have a next entry in the same page; thus, we use its
next_entry_dis field to mark the final page with END.
Otherwise, the page is marked with CROSS PAGE, indicat-
ing that the directory traversal procedure should continue to
the next page.

A dentry list is similar to a doubly linked list, except for
the last entry of the list using the next_entry_dis field
for a special mark. Doubly linked lists in PM have consis-
tency problems [28], [29]. We use the problems in reverse
to determine which entries stay in inconsistent states due to
crashes. Suppose that two entries in the same page link to each
other; the previous entry’s next_entry_dis value should
be equal to the next entry’s prev_entry_dis value in a
consistent state. If these fields are unequal, an inconsistency
exists, and the operations broken by crashes can be recovered
via the information in these two entries.

4) FRAGMENTS IN DIRECTORY PAGES
A dentry may be invalidated by operations such as unlink and
rmdir ; invalidated entries in directory pages become frag-
ments. If two connected entries have no fragments between
them, the previous entry’s next_entry_dis and the next
entry’s prev_entry_dis value should be 0. Otherwise,
these values should be equal to the length of the fragment.
Reusing fragments to store new directory entries is an impor-
tant feature of CFFS that can reduce page consumption and
the frequency of directory compaction.

B. CFFS DIRECTORY STRUCTURE IN DRAM
1) DENTRY CACHED TREE
Although a dentry is stored in PM, we cache its name,
inode number, and address as a node in DRAM, and then
build a dentry cached tree consisting of these nodes for each

directory to transfer a file/directory name to an inode number
without searching dentry lists in PM.

2) FRAGMENT BUCKET
Knowing that a fragment might exist between two linked
dentry, we manage fragment information to reuse them.
Because we can extract all information about fragments from
dentry lists, information regarding a fragment is only stored
in DRAM as a fragment node.

We maintain a set of fragment buckets for each direc-
tory, and we put each fragment node into a corresponding
bucket according to its length, which is also aligned by
8 bytes because a fragment stems from invalidated dentry.
Then, we have to determine the number of buckets in a
set. Of course, the use of more buckets allows fragments to
be classified in greater detail, but this comes at the cost of
more DRAM consumption. Currently, we maintain only four
buckets in a set to manage fragments with lengths of 24, 32,
40, and >40 bytes, respectively, because most file/directory
names in common workloads are not too long.

3) TAIL ENTRY
If no suitable fragment is present for a new dentry to
be filled, we must add it behind the tail entry, whose
next_entry_dis value is END; then, the new dentry
becomes the tail entry. Therefore, recording the address of
a tail entry is necessary. We record it in DRAM rather than
PM, unlike NOVA, because we can locate a tail entry whose
next_entry_dis value is a recognizable special mark in
a dentry list.

C. CFFS DIRECTORY TIMESTAMP PROBLEM
The timestamp plays a vital role in databases and servers [33],
[34]. Most file systems persist atime, ctime, and mtime for
files or directories in storage as metadata inside inode. Some
directory operations would update timestamps. Take create
as example, file systems not only complete a newly created
file’s inode and add a new dentry into a directory page but
also update the parent directory’s mtime. Thus, consistency
among these three modified regions should be guaranteed.
In CFFS, the timestamp could be released from this consis-
tency by attaching the mtime field in the directory entry and
timestamp properties, which are discussed as follows.

1) MONOTONICALLY INCREASING
OS usually adopts Network Time Protocol(NTP) for clock
synchronization between different machines [35], which
might adjust system time backward. It is fatal to servers and
databases because transaction timestamps are disorganized
and may break the consistency models of client’s requests.
Consequently, most databases and servers do not allow one to
turn back system clocks. Instead, they slew the clock-that is,
time is still increased but the rate of increase is slowed down
[36]. In addition, timestamps generated by different cores can
achieve global ordering by ORDO [44].

91688 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

If system administrators obey the aforementioned rules,
timestamps with file operations are naturally monotonically
increasing. We consider this property to design CFFS’s meta-
data updates related to timestamps more efficiently. If admin-
istrators do not care about backward steps in time, we must
use stricter methods to update timestamps.

2) MOST RECENT TIMESTAMP
As mentioned, because CFFS attaches a timestamp to each
dentry for directory operation, we do not have to modify
CFFS_inode’s i_mtime field frequently and simply syn-
chronize directory mtime at sparsely distributed checkpoints.
NOVA also uses this technique to maintain directory times-
tamps. Because the tail entry in each NOVA directory page is
most recently appended, it makes sense to use the tail entry
to recover directory timestamps after crashing.

However, because CFFS reuses fragments in directory
pages, the tail entry does not represent themost recent entry in
a directory. Nevertheless, based on monotonically increasing
timestamps, the most recent entry could be identified by the
largest timestamp. If this supposition is not valid, we can add
an epoch field in dentry. Among all timestamps attached
to entries in a directory, the largest one is the valid mtime.
In case of crashing, CFFS traverses all entries in a directory
to build a dentry cached tree and drop by to find out the largest
timestamp or epoch.

D. CFFS DIRECTORY OPERATION
1) CREATE/MKDIR
These operations insert a new dentry into a dentry list
in a directory page and allocate a new CFFS_inode
filled with intact metadata. We combine these two items
as one atomic operation. If the operation fails, CFFS can
recover from an incomplete state. As the aforementioned
explanation for dentry list, each directory page contains a
dentry list composed of every page-affiliated dentry. The
prev/next_entry_dis fields of a dentry record the dis-
tance to its previous and next entry inside the same directory
page. Such 16-bits field is analogous to the pointer pointing
to its previous or next entry so that a dentry serves for a node
in a list.

As we all know, inserting a new node into a list neces-
sitates updating some nodes already existing. We leverage
this fact ingeniously to manipulate some fields of associated
entries in the well-designed specific order whereby these
existing entries carry the information of a new entry. Thus,
even if the insertion fails incurred by system-crashes, the
recovery procedure can detect the inconsistency, and refine
the necessary information from existing entries to undo all
modification caused by failed insertion, without inefficient
logging mechanisms.

We divide one atomic create or mkdir operation into three
main parts as follows: (i) finding space and filling a new
dentry, (ii) allocating a new CFFS_inode and initializing it,
and (iii) inserting a new entry into the dentry list. Because the

detailed steps and execution order inside one operation subtly
differ according to the new entry’s position in the directory
pages, looking for space in the directory pages for a new entry
is the first step.

CFFS prefers to reuse fragments as new entries; thus we
first look up fragment buckets to identify a fragment whose
length is equal to or greater than what the new entry requires.
If no suitable fragment is identified, we attempt to use the
space following the tail entry in the last directory page.
If that space is inadequate, we allocate a new directory page.
In summary, the three new entry positions are type a, in a
fragment; type b, in a new page; and type c, behind the tail
entry in the last page. Fig. 10 presents an example to illustrate
the different create procedures for these three situations.

For type a, a new entry needs inserting between two entries
in a dentry list. These two entries in the same directory page
are on the left and right of the selected fragment, called
the previous and next entry, respectively. Step1 initializes
a new entry with metadata (inode number, file name, etc.),
and its prev/next_entry_dis fields unilaterally point
to its previous and next entry. Then, Step2 makes the next
entry’s prev_entry_dis field point to the new entry via
the 64-bit atomic store, starting the dentry list insertion.
The insertion completes once Step4 is finished, making the
previous entry’s next_entry_dis field atomically point
to the new entry. Before Step4, Step3 should enable a new
CFFS_inode with intact metadata of the new file for the
current create.
We elaborate on the inconsistency induced by system-

crashes happening in different steps for type a. Step2 and
Step4 are both one atomic instruction, so we use them to
demarcate the boundaries (before Step2, after Step2 but
before Step4, and after Step4).

First, if a failure happens before Step2, inconsistency
does not exist, because Step1 only constructs a new entry
without modifying other entries and metadata. Inside this
boundary, the previous entry’s next_entry_dis and next
entry’s prev_entry_dis values still point towards each
other. Second, if happening after Step2 but before Step4,
the dentry list is inconsistent, which means the next entry’s
prev_entry_dis value points to the new entry but the
previous entry’s next_entry_dis value points to the next
entry. Inside this boundary, the new dentry is still invisible
to file system, whereas Step3 is possible to begin (or not)
enabling a new CFFS_inode, incurring the inconsistency
between inode and dentry. Last, if Step4 succeeds, the new
entry is inserted, restoring all consistency and committing one
create or mkdir operation.

According to above consistency analysis, we design the
recovery procedure for type a. It traverses each dentry list to
identify the partially-inserted entry (inside the second bound-
ary). Such partial insertion entails the inconsistency of dentry
list and inconsistency between inode and dentry. In order to
dismiss inconsistency, the recovery procedure retrieves the
inode number from the ino field of the partially-inserted
entry to disable the inconsistent inode, and relies on the

VOLUME 10, 2022 91689



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 10. Three situations for Create. There are three types of positions for new entries, and each type is associated with different procedures for
create. The sequence among the steps is ensured via the memory barrier (x86’s sfence).
(a) fragment
Step1: select a fragment and construct a new entry in this fragment.
Step2: update entry R’s prev_entry_dis field from dist{entry L ↔ entry R} to dist{the new entry ↔ entry R}.
Step3: enable CFFS_inode with correct metadata.
Step4: update entry L’s next_entry_dis field from dist{entry L ↔ entry R} to dist{entry L ↔ the new entry}.
(b) new page (it is not necessary to force the execution order among Step1A, Step1B, Step1C , and Step1D)
Step1A: allocate a new page.
Step1B: initiate the new page header.
Step1C : append a new entry immediately after the new header.
Step1D: record the new page address in the header of the previous page.
Step2: update entry T’s next_entry_dis field, from END to CROSS PAGE.
Step3: enable CFFS_inode with correct metadata.
(c) behind the tail entry
Step1: append a new entry after entry T.
Step2: update entry T’s next_entry_dis field, from END to dist{entry T ↔ the new entry}.
Step3: enable CFFS_inode with correct metadata.

prev/next_entry_dis field of the partially-inserted
entry recording the location of its previous and next entry to
restore the dentry list to the state before incomplete insertion.

For type b, a new directory page is allocated, establishing a
new dentry list. This page is the last page of the directory, and
the former last page where the former tail dentry is located

records its address. Besides, the new dentry inserted into
the new dentry list acts as the tail entry of the directory,
so the state of the former tail dentry should be updated.
Step1 initializes a new entry whose next_entry_dis
value is END in a new directory page. The END value marks
this new entry as the tail entry. In Step 2, the former tail

91690 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 11. Unlink. Removal of entry A from a dentry list and the clearing of its mapped inode. Even after a crash, the operation can be undone if all
steps of have been completed.

entry’s next_entry_dis value is updated from END to
CROSS PAGE, which means this entry is the last entry of its
dentry list but not the tail entry of the directory. If a traversal
procedure for a directory reads the CROSS PAGE value from
an entry’s next_entry_dis fields, it switches to the next
dentry list for continuing traversal. Thus, Step2 guarantees
the consistency between dentry lists. However, until Step3
finishes, the dentry and inode are inconsistent.

For type c, a new entry is the tail dentry appended
immediately behind the former tail entry. That is, the new
entry is inserted after the former tail entry inside the same
dentry list. Its procedure is similar to but simpler than
type b. The same inconsistency problem as that of type b
occurs. Fortunately, the recovery procedure can tackle both
types with the same approach. When the recovery procedure
finds a dentry whose next_entry_dis value is END,
check whether the CFFS_inode corresponding to this den-
try is intact and enabled. If not enabled, undo this failed
operation.

The preceding explanation reveals that the next/prev_
entry_dis fields of some existing entries are updated for
inserting a new entry into a dentry list or are marked with
CROSS PAGE. For types a and c, if the new entry and the
associated updates are close, such locality is beneficial to
both the cacheline size and the PM access granularity. This is
why the prev/next_entry_dis fields are included on
the leftmost and rightmost sides.

The entire procedure is unnecessary for synchronizing
the CFFS_inode of the parent directory in PM with the
latest metadata because directory size can be calculated from
the number of directory pages and because modified time
can be extracted from timestamps recorded in entries. Thus,
vfs_inode (defined by Linux virtual file system) [32] is
only updated in DRAM and CFFS_inode is not updated
in PM, which has higher overhead. After the procedure is
completed, the newly created file or directory information can
be added to a dentry cached tree for quick lookup.

As stated above, the recovery procedure for a directory
needs to traverse all entries in the directory. Fortunately,
upon restarting CFFS from system-crashes, rebuilding the
dentry cached tree is executed for efficient lookup, and its
procedure also traverses directory entries, dropping by to do
the inconsistency recovery.

2) UNLINK/RMDIR
These operations are inverse operations for create and mkdir,
used to remove a dentry from a dentry list in a directory page.
However, the operations are distinct from create/mkdir. First,
unlink might only remove a hard link without clearing the
CFFS_inode mapped by the link. Second, unlike create
or mkdir, which record a timestamp in a new entry, unlink
and rmdir generate no new entry; the timestamp should be
recorded elsewhere. An example illustrated in Fig. 11 reveals
how these problems can be solved.

Entry B, between two entries in the same page, is the
removal target. First, the dentry list is made inconsistent
by first changing the pev_entry_dis field of Entry C;
the field initially points to Entry B and points to Entry A
after Step 1. This inconsistency exists until Step 3 is com-
mitted. Because the prev_entry_dis, entry_type,
and mtime fields have an 8-byte alignment, they can be
updated simultaneously with a single 64-bit atomic memory
store. Thus, in a single atomic instruction, Step 1 causes
Entry C’s prev_entry_dis field to point to Entry A,
the mtime field is updated to the current time, and a flag
for failure recovery is inserted in the entry_type field to
indicate whether the inode pointed to by Entry B should be
cleared (because unlink does not necessarily delete an inode).
If Step 1 is completed, even if the inode has not been cleared
by Step 2 or the next_entry_dis field of Entry A has
not been pointed to Entry C by Step 3, inconsistencies in the
dentry list can be detected and unlink or rmdir can be redone
using the information in Entry C.

3) RENAME
rename may involve two parent directories and two inodes;
thus, some informationmust be logged to guarantee an atomic
update. Each directory page header has some space reserved
for logging to avoid competing for access to system-level log
space and unnecessary locking overhead.

VI. EVALUATION
A. EXPERIMENTAL ENVIRONMENT
We evaluated CFFS on a system with Linux (kernel 5.4) and
that was powered by a 4-core Intel Core i7-7700 CPU at
3.60 GHz. PM was emulated using 32 GB of DRAM [37].

VOLUME 10, 2022 91691



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

TABLE 2. File Creation Throughput.

CFFS supports multi-grained page management [42].
A huge page’s size is 2 MB, and huge pages can be allocated
using the SP file, which manages its space with 4-KB units.
If a file requires a fragment smaller than 2-MB, the pages are
allocated from the SPfile. Thus, pages for small allocation are
managed with a small group of 512 4-KB pages (i.e., 2 MB);
the pages for huge allocation is managed with a group whose
size is 512 2-MB pages (i.e., 1 GB). The algorithm for small
allocation is similar to the algorithm for huge allocation but
based on different management units of the buddy structure
(2 MB and 1 GB, respectively).

CFFS could dynamically allocate or reclaim huge pages for
or from the SP file based on the SP file’s space consumption.
Administrators could also statically assign huge pages for the
SP file during mounting. In our experiment, the SP file was
located in a 1-GB space statically split from the PM for small
fragment allocation; some leftover space that could not be
designated as a 1-GB-aligned group was also subordinated
to the SP file (see Fig. 5), preferentially for metadata or
directory page allocation.

B. EVALUATION OVERVIEW
For CFFS and other PM file systems, we quantify the capa-
bility of directory operations, the performance of page alloca-
tion, and the influence of contiguity on page faults resulting
from mmap.

In terms of directory operations, we measure the file cre-
ation throughput. Besides, we design workloads mixing file
creation and deletion, and alter themagnitude of the workload
size to observe whether the performance degradation exists
when the workload size is large.

The performance of page allocation would vary with the
degree of free space fragmentation. Therefore, before mea-
suring the latency of fallocates, we tune the fragmentation
level in the PM volume. We design workloads for small size
allocation (4-KB) and large size allocation (2-MB) respec-
tively, and observe the variation of fallocate latency with the
severer fragmentation.

We want to verify that CFFS could maintain great file
contiguity in disadvantaged situations, and the contiguity
would reflect in the performance of page faults caused
by mmap. Therefore, our workloads would not generate
spatial-occupied files by allocating sufficient pages at once
for each file. Instead, each allocation only asks for few pages
to present the behavior of file growth, and if a file undergoes
consecutive allocation, another file would preempt the right
to next allocation, simulating the condition that multiple
applications interleavedly request allocation from one PM
storage for their own files.

C. DIRECTORY OPERATIONS
The results regarding the throughput for create are presented
in Table 2. CFFS created 436,156 files/second; this figure for
NOVA was 82.9% smaller at 361,668 files/second. CFFS’s
advantage was due to its spatial locality enabling the full
use of PM’s access granularity and cacheline size. For each
new added dentry, NOVA must persist the offset of the tail
entry as metadata in an inode. This inode is not physically
near the new dentry located in a directory page; thus, differ-
ent cachelines are separately occupied, and more cacheline
flushing is necessary. In addition, NOVA uses journaling to
guarantee the consistency of directory operations between a
new inode and its parent inode; this method not only writes
more data to PM but also aggravates the aforementioned
bottleneck.

By contrast, CFFS’s dentry insertion is an opera-
tion that adds a new entry and modifies the previous
entry’s next_entry_dis’ field or the next entry’s
prev_entry_dis field, which is typically physically
close to the new entry. Due to CFFS’s dentry for-
mat, the leftmost prev_entry_dis and rightmost
next_entry_dis fields, filling a new entry and mod-
ifying the corresponding fields of its neighbors can be
included in the same cacheline. That is, these operations
can be flushed together to leverage the access granularity
of PM (the granularity of Optane DC Persistent Memory
is 256 bytes) [48].

We then measured the latency of workloads with mixed
create and unlink tasks. First, x files were created and, x
files were then deleted. The order of deletion was random,
so NOVA’s garbage collection was easily triggered. We used
Table 2’s throughput information to inversely estimate the
latency and compare it with measurements (Table 3). The
actual latencies of these file systems were lower than their
estimates, indicating that unlink is a lighter operation than
create because unlink requires lower I/O amount.

CFFS’s latency is lower than that of other file systems
for all x values (Table 3). When x is multiplied by two,
CFFS’s latency doubles. The latency gradient between xi
and xi+1 was calculated as (latencyxi+1 − latencyxi )/(xi+1 −
xi); the results are presented in Fig. 12(b). For CFFS and
NOVA, the slope of the gradient was small, indicating that
the latency increased approximately linearly with x; by con-
trast, the gradient for EXT4-DAX’s increased gradually with
intervals of x. Thus, creation/deletion scalability affects the
performance of EXT4-DAX, explaining the decline of the
curve for EXT4-DAX in Fig. 12(a). Fig. 12(a) presents
the performance results with CFFS as the benchmark; the
performance metrics were calculated as latencyCFFS/latency
or throughput/throughputCFFS . The relative performance
of EXT4-DAX for file creation was 0.294 (Table 2) for
128,188 files/second. We compared the EXT4-DAX-mix and
EXT4-DAX-create curves and observed that EXT4-DAX’s
performance was close to that of CFFS for mixed workloads
(the gain is about 0.45) but that EXT4-DAX decreased at x6
and x7 (the gain is about 0.4).

91692 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

TABLE 3. Latency of mixed directory workloads (create and unlink).

FIGURE 12. Performance analysis for mixed directory workloads.

FIGURE 13. Average latency of one fallocate. Before measurement, we determined the free space fragmentation level of PM. The sum of all free chunks
(free space fragments) is 512 MB for (a) and 1 GB for (b). ‘‘x frag (y MB/frag)’’ indicates the fragmentation level that x free space fragments of y MB each
exist in the storage volume. Our workloads allocated file fragments from free space fragments, and we compared the performance under different free
space fragmentation levels.

In our workloads, NOVA directory operations did not
have the scalability problem in Fig. 12(b). However,
according to the NOVA-mix curve in Fig. 12(a) for x6
and x7, the gain of NOVA-mix is lower than the gain
of NOVA-create (0.829), identified in Table 2. That is,
the performance gap was greater for workloads involv-
ing unlink; this difference was mainly caused by NOVA’s
garbage collection, which rearranges directory pages con-
taining excessive invalidated entries generated by unlink.
Furthermore, NOVA invalidates entries by appending a
new entry representing deletion; this method increases
space consumption, resulting in more frequent allocation
for directory pages. By contrast, CFFS reuses fragments
in directory pages that reduce the frequency of immediate
directory compaction.

D. PAGE ALLOCATION
We substitutedNOVAwithNOVA-Fortis [38] becauseNOVA
does not support fallocate. Code that clears the content of
the allocated pages was commented out because we aimed
to analyze pure software overhead.

We measured sequential allocations for various free space
fragmentation levels. Each fallocate allocates a file frag-
ment logically contiguous to the previous file fragment.
Fig. 13(a) presents workloads that allocate 512 MB of data
from 512 MB of total free chunk by calling fallocate 131,072
(131,072 = 512 MB/4 KB) times. Fig. 13(b) presents work-
loads that allocate 1 GB of data from 1 GB of total free chunk
by calling fallocate 512 (512 = 1 GB/2 MB) times. Both in
(a) and (b), we set up various free space fragmentation levels
to generate different numbers of free chunks.

VOLUME 10, 2022 91693



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

1) CFFS LATENCY
CFFS had the lowest latency of all file systems for all frag-
mentation levels; this high performance was due to its global
view of free space, which facilitated the quick acquisition of
suitable pages. However, its latency increased with fragmen-
tation and gradually converged to the latency of NOVA-Fortis
in Fig. 13(a). In these workloads, the number of file fragments
generated by CFFS was approximately equal to the number
of free chunks; thus, workloads at high fragmentation levels
result in overly numerous file fragments. CFFS caches file
fragment information in cached extent trees, and it adopts
red-black trees to avoid the excessive index sorting of B+
trees’ internal nodes due to random allocation; however, the
height of red-black trees increases with the number of file
fragments.

2) NOVA-FORTIS LATENCY
NOVA-Fortis’s average fallocate latency in Fig. 13(b) is
over ten times greater than its latency in Fig. 13(a). This
result is primarily due to its incomplete implementation of
multi-grained page management. NOVA-Fortis achieves fast
translation from logical to physical pages by using each file’s
radix tree in DRAM. Each leaf node represents a logical
4-KB page, and a fragment consisting of multiple 4-KB
pages requires representation by the same number of leaf
nodes. Therefore, multiple leaf nodes could be mapped to
one file fragment; this differs from CFFS and EXT4-DAX’s
cached extent tree in which each node represents an entire file
fragment.

For the workloads in Fig. 13(b), each 2-MB allocation
comprises 512 contiguous small pages; thus, NOVA-Fortis
fills up 512 leaf nodes of a file radix tree. The software over-
head was even higher than that of EXT4-DAX, which uses
an extent to represent contiguous pages. Adopting methods
[39], [46] for leaf node compaction might reduce the over-
head of its file radix trees.

3) EXT4-DAX LATENCY
We also observed the growth of EXT4-DAX latency as
fragmentation increased (Fig. 13). The average EXT4-DAX
latency in Fig. 13(b) was slightly higher than that of
Fig. 13(a). This phenomenon is similar to the aforemen-
tioned phenomenon for NOVA-Fortis. We did not adjust the
EXT4-DAX block size to 2 MB (we only used ‘‘-stride’’ to
enable 2 MB alignment); thus, a 2-MB allocation modifies
512 bits in block allocation bitmaps.

E. MMAP
Applications can directly access files through mmap, and
file systems must handle page faults generated by the first
reference to mapped pages. Some systems [43] prefaults with
mmap to construct page table entries for all mapped pages in
advance, preventing the page fault handler with high overhead
from interrupting application execution. We observed that the
latency of page faults was affected by the physical contiguity

of files. Thus, we measured the latency of page faults under
different workloads to determine which factors affect perfor-
mance.

1) WORKLOAD
We designed workloads to simulate the behavior of multiple
applications requesting for new pages to gradually grow files
and measured the latency of mmap on those files. Typically,
allocation is requested for each file multiple times, and the
size of files could grow in the long term. Allocation requests
for other files may occur during a sequence of allocation
requests for a specific file. Our workloads simulated this
behavior by allocating for other files if the consecutive num-
ber of allocation requests for a specific file exceeded the
set number, reflecting the temporal locality of allocation
patterns.

After the workloads in in Fig. 14 were run, files with
different sizes were generated. These were broadly divided
into two types: huge files and small files. Small files were
files smaller than 2 MB; huge files were those greater than
or equal to 2 MB. The total files generated by the workloads
occupied 1 GB, and different workloads had different ratios
of small files to huge files in terms of total size. Then, the
number of huge and small files were separately determined,
and their total sizes were randomly distributed to each file.

Each file required a 4-KB page on each request, and alloca-
tion was rotated to another file after two consecutive requests
for the original target. Under CFFS, small file allocations
first use the static 1-GB space for the SP file set up during
mounting. No such setting was used for EXT4-DAX.

2) MEASUREMENT
Fig. 14(a) reveals that CFFS’s latency for prefaulted mmap
and number of dTLB misses for accessing the mapped PM
pages was approximately one-quarter of that of EXT4-DAX.
Because CFFS’s page allocation assumes that a fragment is
likely to grow successively and attempts to maintain spatial
locality, huge files could maintain better physical continuity,
as reflected in the performance of mmap. The performance
can be dramatically enhanced if we include application hints
when calling fallocate for the small files in our workload.
By using these hints, applications can inform CFFS that the
allocated fragments will remain small. In this case, CFFS uses
the fixed-sized greedy allocator instead of the growing-size
greedy allocator.

We presented the results for a greater number of small files
in Fig. 14(b). CFFS still has approximately half of the mmap
latency and dTLB misses as compared to EXT4-DAX, but
CFFS’s advantage of performance decreased with respect to
the case in Fig. 14(a). In Fig. 14(c), the capacity and number
of small files increased further. If CFFS’s allocation for small
files was restricted to using the 1-GB capacity in the SP
file we set during mounting, its performance was only better
than EXT4-DAX’s performance slightly. However, if hints
for small files were applied, CFFS always had a noticeable
performance advantage.

91694 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

FIGURE 14. mmap(prefault) performance. mmaps are done for all huge files, not for any small files. We measure the latency of all mmaps
with prefaults and the sum of data-TLB misses triggered by accessing the mapped PM region.

TABLE 4. Results for single-size workloads. Each column presents the result of a workload generating a given number of identically sized files with a
total volume of 1 GB. Each file space allocation was a 4-KB page. After four consecutive allocations for a file, a different file was chosen for allocation
with the round-robin method. After performing one of the workloads, we measure the average number of file fragments in each file, the mmap latency
for all allocated pages, and data-TLB misses for accessing all mapped pages.

We observed the degradation of CFFS’s performance as
the small file ratio increased, especially in trials without
hints for small files. This result is unsurprising because the
growing-size greedy allocator is primarily beneficial in sit-
uations with files that tend to increase in size. For numer-
ous small files, application hints substantially improve the
performance.

3) ANALYSIS
We used various experiments to analyze the preceding
results and demonstrate how the height of the extent trees
and the construction of page table entries affects page
faults.

First, we ran the workloads described in Table 4. Each
column of the table denotes the workload generating a cer-
tain number of single-size files totally occupying 1 GB.
From (4x 256-MB files) to (1024x 1-MB files) column, the
mmap-prefault latency gradually decreased for EXT4-DAX.
We attributed this phenomenon to the decreased number of
fragments per file. Compared to EXT4-DAX, CFFS had
remarkably small mmap-prefault latency from (4x 256-MB
files) to (512x 2-MB files) column. However, the overhead
exploded in (1024x 1-MB files) column whose latency was
similar to that of EXT4-DAX. This performance degradation
was induced by the lack of 2-MB alignment. We explained
how these two factors, the number of file fragments and

fragment alignment, were related to the results in Table 4
below.

For EXT4-DAX, Table 4 reveals that the number of
fragments per file and the latency of mmap with prefaults
decreased with the number of files, but the total number of
fragments and dTLB misses did not change substantially.
Although the total number of fragments was almost constant
under different workloads, they were distributed across a
different number of files. Files with fewer fragments have
smaller extent trees. We thus infer that the decrease in pre-
faulted mmap latency was primarily due to the reduction
of the size of the extent trees. To handle a page fault on a
file page, EXT4-DAX searches the file’s extent tree for that
page. If the tree size is small, the path sum for searching
is also small. The DAX page fault handler in Linux uses a
radix tree to record each file’s mapped offset, amplifying the
effects of reduced tree size. We excluded the construction of
page table entries because little difference was observed in
dTLB misses across trials, indicating that the number of page
table entries and construction overhead were similar in all
trials.

For CFFS, Table 4 reveals that prefaulted mmap also
had decreased latency due to the reduction in the height of
each extent tree. The last column presents the result of a
workload of generating 1024 files with a size of 1 MB; the
mmap latency was substantially higher than those in other
columns, even if there are no such significant differences

VOLUME 10, 2022 91695



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

TABLE 5. Results for workloads generating huge files accompanied by numerous small dummy files. Each column presents the results of a workload
generating a given number of identically sized huge files with an total volume of 512 MB. Along with huge files, each workload generated small dummy
files with total volume of 512 MB. Each allocation for a file was a 4-KB page. After two consecutive allocations for a huge file, two new 4-KB small dummy
files were created, and then a different huge file was chosen for allocation with the round-robin method. The measurement items are similar to the items
in Table 4, but we only measure them for huge files, excluding the measurement for small files.

between the number of file segments in each column. Other
columns present the results of workloads generating files
whose size were multiples of 2 MB; running these workloads
with CFFS’s allocation algorithm could generate intact 2-MB
fragments, and the construction of page table entries could
adopt the page middle directory (PMD) with huge page
entries. However, PMD could not be used for 1-MB files, and
page fault thus constructed more entries for normal pages,
resulting in higher overhead. The sharp increase of data-TLB
misses in the last column indirectly verifies this conclusion.
Thus, we attribute that skyrocketing latency in the last column
for CFFS to the lack of highly aligned file fragments.

Second, we ran the workloads described in Table 5. Each
column of the table denotes the workload generating 128,000
small dummy files with 4-KB size and a certain number of
single-size huge files totally occupying 512 MB. In fact, if a
file extends its size to 2 MB, CFFS no longer treats it as
a small file, and its subsequent allocations are performed
using the 2-MB-unit buddy system instead of the SP file. For
meaningful analysis, note that we disabled this policy so that
huge files always use the 4-KB-unit buddy system and all
allocation gets free pages only from the 1-GB space statically
split for small fragment allocation.

In Table 5, from (1x 512-MB files) to (64x 8-MB files)
column, EXT4-DAX and CFFS had similar mmap-prefault
latency. Excluding the above-mentioned factor of disabling
the policy for huge file allocation from our discussion, the
reason why CFFS performance in those workloads wasn’t
superior was that we treated every small 4-KB dummy file
as if a new fragment would be further appended to extend
its size. Thus, the growing-size greedy allocator was adopted
for the small fixed-size files so that implicit preallocation
applied to them hindered the potential contiguity for the huge
files in those workloads. Those huge files could only own
2-MB alignment in the first or second 2 MB inside each
file, incurring the severe latency for page faults. However,
in (256x 2-MB files) column, the overhead for CFFS was
prominently improved, and its mmap-prefault latency was
substantially lower than that of EXT4-DAX, because the size
of each huge file in this case was exactly 2 MB, satisfying
2-MB alignment for the whole file.

The results of CFFS(hint) in Table 5 showed outstanding
performance, whosemmap-prefault latency was less than one
tenth of EXT4-DAX’s latency from (1x 512-MB files) to
(256x 2-MB files) column. Such an astonishing advantage
was achieved by the realization of 2-MB alignment for all
file fragments in the huge files. Recall that applications could
give CFFS’s fallocate a hint to indicate whether the current
allocation would be fixed-size or growing-size. For the work-
loads of CFFS(hint), the pages of 4-KB small dummy files
were allocated with a fixed-size hint, and the pages of huge
files were allocated with a growing-size hint. Therefore, the
allocation for those small dummy files would avoid destroy-
ing the contiguity of intact free chunks, and the allocation
for those growing-size huge files would implicitly preallocate
sufficient pages for the extension of file fragments. As a
result, the huge files in CFFS(hint) could maintain fine con-
tiguity, resulting in a high degree of fragment alignment and
few fragments per file, and the fine contiguity reflected in the
great performance of page faults.

VII. CONCLUSION
Physically contiguous allocation was used to reduce software
overhead formmap-based operations on PMfile systems. File
with high contiguity have few fragments, and each fragment
is highly aligned. Reducing the number of fragments alle-
viates the cost of managing PM pages for files. Fragment
alignment affects the page size adopted for constructing page
table entries for the pages inside the fragment. We tested the
scheme on numerous workloads to reveal how these two fac-
tors affect the performance of page faults on the performance
of mmap for a file in PM.

CFFS’s allocation strategy optimizes the two aforemen-
tioned factors by considering both spatial and temporal
locality of file access patterns. An application frequently
requests contiguous pages in a short period for growing
files. We thus designed greedy-based buddy systems and
implemented implicit preallocation with an NMRU policy,
increasing file contiguity by avoiding blockage due to alloca-
tion of space for other files. Besides, the allocation provides
sufficient pages for applications with a high speed algorithm.

91696 VOLUME 10, 2022



J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

We also propose a fine-grained scheme for managing and
persisting various metadata. By fully using the cacheline
size and access granularity of PM, the fine-grained metadata
updates resulted in improved performance. CFFS’s directory
operations had better performance for PM than other common
logging mechanisms.

Our next project plans to design a user-space library for file
operations, cooperating with kernel-space CFFS. The library
will leverage fallocate andmmap provided by CFFS to imple-
ment APIs. The library can obtain file pages by calling fallo-
cate with an appending or non-appending hint determined by
the calling history and the current size of a file. Then, the
pages can be mapped to user-space address by calling mmap
so that applications can access PM without system call over-
head. Thus, atomic write operations for files can be designed
in user space. We believe that such memory-style file oper-
ation can facilitate flexibility and encompasses performant
APIs, compared to traditional system calls of kernel-space
file systems.

REFERENCES
[1] J. Handy. (2015). Understanding the Intel/Micron 3D XPoint Mem-

ory. [Online]. Available: https://www.snia.org/sites/default/files/SDC15_
presentations/persistant_mem/JimHandy_ Understanding_the-Intel.pdf

[2] Intel OptaneT Persistent Memory (PMem) 200 Series, Intel, Santa Clara,
CA, USA, 2020.

[3] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh,
Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, ‘‘Basic perfor-
mance measurements of the Intel optane DC persistent memory module,’’
2019, arXiv:1903.05714.

[4] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, ‘‘Better I/O through byte-addressable, persistent mem-
ory,’’ in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ., 2009,
pp. 133–146.

[5] X. Wu, S. Qiu, and A. L. N. Reddy, ‘‘SCMFS: A file system for storage
class memory and its extensions,’’ ACM Trans. Storage, vol. 9, no. 3,
pp. 1–23, Aug. 2013.

[6] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, ‘‘System software for persistent memory,’’
in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 1–15.

[7] J. Xu and S. Swanson, ‘‘NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,’’ in Proc. 14th USENIX Conf. File
Storage Technol., Feb. 2016, pp. 323–338.

[8] (2019). Direct Access for Files. [Online]. Available: https://www.kernel.
org/doc/Documentation/filesystems/dax.txt

[9] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, ‘‘Failure-atomic slot-
ted paging for persistent memory,’’ in Proc. 22nd Int. Conf. Architectural
Support Program. Lang. Operating Syst., Apr. 2017, pp. 91–104.

[10] Y. Chen, Y. Lu, F. Yang, Q.Wang, Y.Wang, and J. Shu, ‘‘FlatStore: An effi-
cient log-structured key-value storage engine for persistent memory,’’ in
Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating
Syst., Mar. 2020, pp. 1077–1091.

[11] J. Xu, J. Kim, A. Memaripour, and S. Swanson, ‘‘Finding and fixing
performance pathologies in persistent memory software stacks,’’ in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2019, pp. 427–439.

[12] K. Shen, S. Park, and M. Zhu, ‘‘Journaling of journal is (almost) free,’’ in
Proc. 12th USENIX Conf. File Storage Technol., Feb. 2014, pp. 287–293.

[13] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and
V. Chidambaram, ‘‘SplitFS: Reducing software overhead in file systems
for persistent memory,’’ in Proc. 27th ACM Symp. Operating Syst. Princ.,
Oct. 2019, pp. 494–508.

[14] J. Choi, J. Hong, Y. Kwon, and H. Han, ‘‘Libnvmmio: Reconstructing
software IO path with failure-atomic memory-mapped interface,’’ in Proc.
USENIX Annu. Tech. Conf., 2020, pp. 1–16.

[15] S. Patil and G. Gibson, ‘‘Scale and concurrency of GIGA+: File system
directories with millions of files,’’ in Proc. 9th USENIX Conf. File Storage
Technol., Feb. 2011, pp. 177–190.

[16] T. Sato, ‘‘EXT4 online defragmentation,’’ in Proc. Ottawa Linux Symp.,
2007, pp. 179–186.

[17] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, ‘‘CoLT: Coa-
lesced large-reach TLBs,’’ in Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2012, pp. 258–269.

[18] G. Cox and A. Bhattacharjee, ‘‘Efficient address translation for architec-
tures with multiple page sizes,’’ in Proc. 22nd Int. Conf. Architectural
Support Program. Lang. Operating Syst., Apr. 2017, pp. 435–448.

[19] S. Son, J. Yoo, and Y. Won, ‘‘Guaranteeing the metadata update atomicity
in EXT4 file system,’’ in Proc. 8th Asia–PacificWorkshop Syst., Sep. 2017,
pp. 1–8.

[20] (2021). LMDB. [Online]. Available: https://github.com/LMDB/lmdb
[21] D. Roselli, J. R. Lorch, and T. E. Anderson, ‘‘A comparison of file system

workloads,’’ in Proc. USENIX Annu. Tech. Conf., 2000, pp. 41–54.
[22] A. Moulton and S. E. Madnick, ‘‘A temporal and spatial locality theory

for characterizing very large data bases,’’ in Proc. 22nd Int. Conf. Intell.
Transp. Syst. (HICSS), vol. 2, Jan. 1989, pp. 612–620.

[23] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, ‘‘Crash consistency:
FSCK and journaling,’’ in Operating Systems: Three Easy Pieces. Scotts
Valley, CA, USA: CreateSpace Independent, 2018, ch. 42. [Online]. Avail-
able: https://pages.cs.wisc.edu/~remzi/OSTEP/

[24] Y. Son, S. Kim, H. Y. Yeom, and H. Han, ‘‘High-performance transaction
processing in journaling file systems,’’ in Proc. 16th USENIX Conf. File
Storage Technol., Feb. 2018, pp. 227–240.

[25] V. Prabhakaran, A. C. Arpaci-Dusseau, andR.H.Arpaci-Dusseau, ‘‘Analy-
sis and evolution of journaling file systems,’’ in Proc. USENIX Annu. Tech.
Conf., 2005, pp. 105–120.

[26] M. Rosenblum and J. K. Ousterhout, ‘‘The design and implementation of
a log-structured file system,’’ ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 26–52, Feb. 1992.

[27] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel,
Santa Clara, CA, USA, 2021.

[28] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster, ‘‘NVthreads:
Practical persistence for multi-threaded applications,’’ in Proc. 12th Eur.
Conf. Comput. Syst., Apr. 2017, pp. 468–482.

[29] T. David, A. Dragojević, R. Guerraoui, and I. Zablotchi, ‘‘Log-free
concurrent data structures,’’ in Proc. USENIX Annu. Tech. Conf., 2018,
pp. 373–386.

[30] J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Gua, and H. Chen,
‘‘Pisces: A scalable and efficient persistent transactionalmemory,’’ inProc.
USENIX Annu. Tech. Conf., 2019, pp. 913–928.

[31] K. Wu, J. Ren, I. Peng, and D. Li, ‘‘ArchTM: Architecture-aware, high
performance transaction for persistent memory,’’ in Proc. 19th USENIX
Conf. File Storage Technol., Feb. 2021, pp. 141–153.

[32] Overview of the Linux Virtual File System. Accessed: Oct. 5, 2021.
[Online]. Available: https://www.kernel.org/doc/html/latest/filesystems/
vfs.html

[33] K. Torp, C. S. Jensen, and R. T. Snodgrass, ‘‘Effective timestamping in
databases,’’ VLDB J. Int. J. Very Large Data Bases, vol. 8, nos. 3–4,
pp. 267–288, Feb. 2000, doi: 10.1007/s007780050008.

[34] K. Torp, C. S. Jensen, and R. T. Snodgrass, ‘‘Stratum approaches to tem-
poral DBMS implementation,’’ in Proc. Int. Database Eng. Appl. Symp.,
1998, pp. 4–13, doi: 10.1109/IDEAS.1998.694346.

[35] Wikipedia. Network Time Protocol. Accessed: Feb. 24, 2022. [Online].
Available: https://en.wikipedia.org/wiki/Network_Time_Protocol

[36] (2021). How to Configure NTP in Your Enviornment and Common Issues.
IBM. [Online]. Available: https://www.ibm.com/support/pages/how-
configure-ntp-your-enviornment-and-common-issues

[37] (2017). How to Emulate Persistent Memory Using Dynamic
Random-access Memory (DRAM). Intel. [Online]. Available: https://
software.intel.com/content/www/us/en/develop/articles/how-to-emulate-
persistent-memory-on-an-intel-architecture-server.html

[38] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase,
T. B. Da Silva, S. Swanson, and A. Rudoff, ‘‘NOVA-Fortis: A fault-
tolerant non-volatile main memory file system,’’ in Proc. 26th Symp.
Operating Syst. Princ., Oct. 2017, pp. 478–496.

[39] S. Ma, K. Chen, S. Chen, M. Liu, J. Zhu, H. Kang, and Y. Wu, ‘‘ROART:
Range-query optimized persistent ART,’’ in Proc. 19th USENIX Conf. File
Storage Technol., Feb. 2021, pp. 1–16.

[40] M. Cao, S. Bhattacharya, and T. Ts’o, ‘‘Ext4: The next generation of Ext2/3
filesystem,’’ in Proc. Linux Storage Filesystem Workshop, 2007.

VOLUME 10, 2022 91697

http://dx.doi.org/10.1007/s007780050008
http://dx.doi.org/10.1109/IDEAS.1998.694346


J.-K. Liu, S.-D. Wang: CFFS: A PM File System for Contiguous File Allocation With Fine-Grained Metadata

[41] A. Kumar, M. Cao, J. Santos, and A. Dilger, ‘‘Ext4 block and inode allo-
cator improvements,’’ in Proc. Ottawa Linux Symp., 2008, pp. 263–274.

[42] T.-Y. Chen, Y.-H. Chang, M.-C. Yang, Y.-J. Chen, H.-W. Wei, and
W.-K. Shih, ‘‘Multi-grained block management to enhance the space uti-
lization of file systems on PCM storages,’’ IEEE Trans. Comput., vol. 65,
no. 6, pp. 1831–1845, Jun. 2016.

[43] J. Choi, J. Kim, and H. Han, ‘‘Efficient memory mapped file I/O for in-
memory file systems,’’ in Proc. 9th USENIX Conf. Hot Topics Storage File
Syst., 2017.

[44] S. Kashyap, C. Min, K. Kim, and T. Kim, ‘‘A scalable ordering primitive
for multicoremachines,’’ inProc. 13th EuroSys Conf., Apr. 2018, pp. 1–15.

[45] C. Wang, Q. Wei, L. Wu, S. Wang, C. Chen, X. Xiao, J. Yang, M. Xue,
and Y. Yang, ‘‘Persisting RB-tree into NVM in a consistency perspective,’’
ACM Trans. Storage, vol. 14, no. 1, pp. 1–27, Feb. 2018.

[46] V. Leis, A. Kemper, and T. Neumann, ‘‘The adaptive radix tree: ARTful
indexing for main-memory databases,’’ in Proc. IEEE 29th Int. Conf. Data
Eng. (ICDE), Apr. 2013, pp. 38–49, doi: 10.1109/ICDE.2013.6544812.

[47] C. Chen, J. Yang, Q. Wei, C. Wang, and M. Xue, ‘‘Fine-grained metadata
journaling on NVM,’’ in Proc. 32nd Symp. Mass Storage Syst. Technol.
(MSST), 2016, pp. 1–13, doi: 10.1109/MSST.2016.7897077.

[48] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
‘‘An empirical guide to the behavior and use of scalable persistent mem-
ory,’’ in Proc. 18th USENIX Conf. File Storage Technol., Feb. 2020,
pp. 169–182.

[49] C. Wang, Q. Wei, J. Yang, C. Chen, and M. Xue, ‘‘How to be consistent
with persistentmemory?An evaluation approach,’’ inProc. IEEE Int. Conf.
Netw., Archit. Storage (NAS), Aug. 2015, pp. 186–194.

[50] J. Park, D. H. Kang, andY. I. Eom, ‘‘File defragmentation scheme for a log-
structured file system,’’ in Proc. 7th Asia–Pacific Workshop Syst., 2016,
pp. 1–7.

[51] O. Rodeh, J. Bacik, andC.Mason, ‘‘BTRFS: The LinuxB-tree filesystem,’’
ACM Trans. Storage, vol. 9, no. 3, pp. 1–32, Aug. 2013.

[52] R. Kesavan, M. Curtis-Maury, and M. K. Bhattacharjee, ‘‘Efficient search
for free blocks in the WAFL file system,’’ in Proc. 47th Int. Conf. Parallel
Process., Aug. 2018, pp. 1–10.

[53] R. Kadekodi, S. Kadekodi, S. Ponnapalli, H. Shirwadkar, G. R. Ganger,
A. Kolli, and V. Chidambaram, ‘‘WineFS: A hugepage-aware file system
for persistent memory that ages gracefully,’’ in Proc. ACM SIGOPS 28th
Symp. Operating Syst. Princ. (CD-ROM), Oct. 2021, pp. 804–818.

[54] I. Neal, G. Zuo, E. Shiple, T. A. Khan, Y. Kwon, S. Peter, and B. Kasikci,
‘‘Rethinking file mapping for persistent memory,’’ in Proc. 19th USENIX
Conf. File Storage Technol., Feb. 2021, pp. 97–111.

[55] Intel. Intel Optane Business Update: What Does This Mean for
Warranty and Support. Accessed: Aug. 2, 2022. [Online]. Available:
https://www.intel.ca/content/www/ca/en/support/articles/000091826/
memory-and-storage.html

JEN-KUANG LIU received the bachelor’s degree
from the Department of Electrical Engineer-
ing, National Taiwan University, Taipei, Taiwan,
in 2019, where he is currently pursuing the mas-
ter’s degree with the Department of Electrical
Engineering. His research interests include storage
systems and operating systems.

SHENG-DE WANG (Life Member, IEEE)
received the B.S. degree from the National Tsing
Hua University, Hsinchu, Taiwan, in 1980, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from the National Taiwan University, Taipei,
Taiwan, in 1982 and 1986, respectively. Since
1986, he has been as a Faculty Member of the
Department of Electrical Engineering, National
Taiwan University, where he is currently a Profes-
sor. From 1995 to 2001, he worked as the Director

of the Computer and Information Network Center, Computer Operating
Group, National Taiwan University. He was a Visiting Scholar with the
Department of Electrical Engineering, University of Washington, Seattle,
from 1998 to 1999. From 2001 to 2003, he worked as the Department Chair
of the Department of Electrical Engineering, National Chi Nan University,
Puli, Taiwan. His research interests include embedded systems, internet
computing and security, and intelligent systems.

91698 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICDE.2013.6544812
http://dx.doi.org/10.1109/MSST.2016.7897077

