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ABSTRACT The high penetration of Distributed Energy Resources (DERs) into the demand side has led to
an increase in the number of consumers becoming prosumers. Recently, Peer-to-Peer (P2P) energy trading
has gained increased popularity as it is considered an effective approach for managing DERs and offering
local market solutions. This paper presents a P2P Energy Management System (EMS) that aims to reduce
the absolute net energy exchange with the utility by exploiting two days-ahead energy forecast and allowing
the exchange of the surplus energy among prosumers. Mixed-Integer Linear Programming (MILP) is used
to schedule the day-ahead household battery energy exchange with the utility and other prosumers. The
proposed system is tested using the measured data for a community of six houses located in London, UK. The
proposed P2P EMS enhanced the energy independency of the community by reducing the exchanged energy
with the utility. The results show that the proposed P2P EMS reduced the household operating costs by up
to 18.8% when it is operated as part of the community over four months compared to operating individually.
In addition, it reduced the community’s total absolute net energy exchange with the utility by nearly 25.4%
compared to a previous state-of-the-art energy management method.
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INDEX TERMS Energymanagement system, energy independence, local consumption,mixed-integer linear
programming, peer-to-peer energy trading, PV-battery systems.

NOMENCLATURE16

Nhouses Number of houses in the community
Pairno. Number of available pair
PB(t) Battery discharge/charge power (kW)
PB-rating Maximum battery discharge/charge

power (kW)
PdischB (t) Battery discharge power (kW)
PchargB (t) Battery charge power (kW)
I (t) Battery charge/discharge current (Amp)
PPV -1(t) Forecasted PV generation for day1 (kW)
PL-1(t) Forecasted load demand for day1 (kW)
PPV -2(t) Forecasted PV generation for day2 (kW)17
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PL-2(t) Forecasted load demand for day2 (kW)
SOC(t) Battery state of charge (%)
EDay-f Day-2 mid-peak and peak times energy

forecast (kWh)
SOCmax Maximum limit of the state of charge (%)
SOCmin Minimum limit of the state of charge (%)
E(t) Energy stored in the battery at time t (kWh)
E(t-1) Energy stored in the battery at time

t-1 (kWh)
PG(t) Power exchange with the utility grid (kW)

Pmax-exportG Maximum limit exported power to the util-
ity grid (kW)

Pmax-importG Maximum limit imported power from the
utility grid (kW) 18
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PexportG (t) Exported power to the utility
grid (kW)

PimportG (t) Imported power from the utility
grid (kW)

8export (t) Binary variable to indicate the
house is exporting power to the
utility grid

8import (t) Binary variable to indicate the
house is importing power from
the utility grid

8B-disch(t) Binary variable to indicate the
battery is discharging

8B-charg(t) Binary variable to indicate the
battery is charging

Bcapacity(t) Estimated battery capacity
(kWh)

Ncycle Battery cycle life
CCB Capital cost of the battery (£)
CBSS Battery degradation cost (£)
Cbuy Price of imported energy from

the utility grid (£/kWh)
Csell Price of exported energy to the

utility grid (£/kWh)
fsell(t) Tariff for selling energy to the

utility grid (£/kWh)
fbuy(t) Tariff for buying energy from the

utility grid (£/kWh)
Cbill Bill cost (£)
Chouse Optimization cost function for

the individual house (£)
Csum-P2P Optimization cost function for

the paired houses (£)
CP2P Cost of energy exchanged

between the paired houses (£)
fP2P-exp(t) Export exchange tariff between

the paired houses (£/kWh)
fP2P-imp(t) Import exchange tariff between

the paired houses (£/kWh)
Px↔y
P2P (t) Power exchanged between the

paired houses (kW)
PP2P,max(t) Maximum power exchanged

between the houses (kW)
∂xpos(t) Energy flows from house (x) to

house (y)
∂xneg(t) Energy flows from house (y) to

house (x)
C individual(n)
house-cost Operational cost per day when a

house is operating
individually (£)

CP2P(n)
house-cost Operational cost per day when a

house is operating as paired (£)
1T Sample time (hr)
t0 The time of the day starts at 12

AM (hr)
T The time of the day ends after

24 hours (hr)19

t Current time (hr)
ηconv Battery DC/DC converter efficiency (%)
ηc Battery charging efficiency (%)
ηd Battery discharging efficiency (%)
Eimport Imported energy from the utility grid (kWh)
Eexport Exported energy to the utility grid (kWh) 20

I. INTRODUCTION 21

The high penetration of Renewable Energy Sources (RESs) 22

is changing electrical distribution networks from central- 23

ized, unidirectional markets to more decentralized, bidirec- 24

tional markets which allows customers to become prosumers 25

(producer + consumer) [1]. However, this shift in the energy 26

systems structure/market creates new trends in the control of 27

Distributed Energy Resources (DERs) which necessitate new 28

local Energy Management Systems (EMSs) [2]. The main 29

concerns with DERs are that they are intermittent and require 30

a robust electrical network system [3]. High penetrations 31

of DERs can cause numerous technical [4], [5] and oper- 32

ational challenges for the network operators. For example, 33

it is reported that California over several days had to pay 34

Arizona to take its excess solar power to avoid overloading 35

its own power lines [6]. Germany had to introduce a ‘‘neg- 36

ative electricity price’’ rule to ‘‘ensure there is no incentive 37

to generate electricity when supply exceeds demand’’ [7]. 38

This is partially because there is not enough transmission 39

capacity to transfer the generated wind energy from Northern 40

Germany to its South [8]. It is reported that ‘‘Germany’s 41

negative electricity price rules have caused an estimated e50 42

million in losses for offshore wind projects in February 2020 43

alone’’ [7]. Therefore, to avoid the requirement for more 44

transmission and distribution capacities, self-consumption, 45

as a new trend, is encouraged by several countries such as 46

the UK and Germany. This approach reduces the prosumers’ 47

dependency on the electricity network by reducing their 48

exchanged energy with the grid. As the technology installa- 49

tion costs has being reducing, the generation tariff in the UK 50

has been reduced from 54.17 p/kWh in 2010 to 3.79 p/kWh 51

in 2019 [9], [10]. Moreover, the export tariff is reduced to 52

one-third of the peak time electricity price and half of the off- 53

peak electricity price [11]. This means that for new installs 54

the most economically advantageous action is to maximize 55

self-consumption of local renewable generation. 56

To manage the surplus generation in a prosumer situation 57

one or more of the following actions can be taken: 58

a) Installing a Battery Storage System (BSS) to store the 59

surplus energy and use it later when needed. The cost 60

of the battery, its efficiency, and the battery manage- 61

ment system must all be considered before adoption 62

[12], [13], [14], [15]. 63

b) Adopting a demand-side management approach where 64

some loads are turned on during high generation and 65

are turned off during low generation. An example of 66

this is water heating immersion elements. This is not 67

possible for all consumers/loads as it is a function of 68

their daily behavior and responsibilities. 69
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c) Trading energy with a local community of prosumers70

rather than with the utility grid.71

Peer-to-Peer (P2P) energy trading has gained popularity at72

the community level as it is considered an effective approach73

for managing DERs and offering local market solutions.74

There are several initiatives worldwide that support P2P75

energy trading between prosumers. These include Piclo in the76

UK, Mosaic in the US, SonnenCommunity in Germany, and77

Vandebron in the Netherland [16], [17], [18].78

Based on recent studies, P2P energy trading schemes are79

categorized into four main techniques [19]:80

a) Game theory: a set of techniques and models that are81

used to examine interactions between different partici-82

pants in the P2P energy market [20], [21].83

b) Auction theory: a method that allows buyers and sellers84

to interact with each other and trade their electricity85

[22], [23].86

c) Blockchain technology: a distributed database that can87

securely host critical information/transactions that can88

be shared securely among members. Blockchain as a89

data storage system enables decentralized and secure90

energy trading in a P2P network [24], [25], [26].91

d) Constrained optimization algorithms: a mathematical92

formulation of the problem based on certain constraints93

that must be met during optimization.94

This study focuses on the constrained optimization95

approach. There are several works related to themathematical96

formulation of the P2P problem. For example, the authors97

in [1] proposed a hierarchical EMS using the Mixed Integer-98

Linear Programming (MILP) for P2P energy trading. The99

main objective of [1] is to reduce the operating costs of the100

four houses in the community. However, the import/export101

tariff for the energy exchanged between the paired houses is102

set to zero, which is not acceptable by prosumers as it means103

they sell their energy without gaining a profit. The authors104

in [16] proposed P2P energy sharing and a three-stage eval-105

uation methodology to reduce operating costs. Their work,106

however, didn’t consider the health of the batteries in cost107

evaluation. In [27] the MILP is used to formulate the P2P108

problem for a community consisting of four houses, while109

the decision-making is performed by feeding all necessary110

information about the relevant houses into a central controller.111

The main objective of [27] is to minimize the operating cost.112

In [28] a two-stage aggregated control is proposed to control113

the battery settings. The main objective of [28] is to minimize114

the energy bill of the community and reduce the electricity115

export to the utility grid. A simple rule-based P2P trading is116

proposed in [29] to choose the best pairs of houses. Similarly,117

the authors in [30] used MILP-based EMS to choose the118

best house pairs according to their consumption profiles and119

the distance between houses. The main target of [30] is to120

minimize the peak load demand and reduce the electricity121

bills. Authors in [31] proposed a P2P energy trading between122

industrial, commercial, and residential energy hubs in the123

distribution system. Themain objective of [31] is to minimize124

the energy cost; however, their system didn’t consider the125

health of the batteries in the optimization process. Authors 126

in [32] proposed a P2P EMS for a community consisting of 127

5 prosumers, which aims to reduce the bill cost. However, 128

their system does not consider battery degradation cost and 129

the cost evaluation has been done for one day only. Authors 130

in [33] proposed a P2P EMS for energy exchange between 131

5 buildings aims to reduce the energy costs. However, their 132

system does not considered BSSs, where BSS allows building 133

to store its surplus energy and use it in high price tariff. 134

One of the advantages of a centralized EMS is that since 135

optimal control settings are determined at the decision- 136

making level, conflicts during system operation are mini- 137

mized. In addition, centralized EMSs can be considered as a 138

global optimization since the cost function is minimized con- 139

sidering all constraints of the system. In contrast, a local opti- 140

mization in a decentralized EMS cannot provide a solution 141

to minimize the overall cost function of the whole system. 142

The decentralized part used in the local optimization serves 143

the overall target of the centralized system optimization. 144

Therefore, this study proposed a hybrid P2P EMS, where the 145

decentralized part of the algorithm provide the local data to 146

the centralized system, which is tasked to minimize the total 147

energy transactions of the community with the grid. 148

Based on published literature most of the optimization 149

mechanisms focus on maximizing the economic benefits of 150

peers while simultaneously maximizing the usage of RESs. 151

However, there is a limited number of published works 152

focused on minimizing the net energy exchange with the 153

utility as the main target. As the penetration of prosumers 154

increases, minimizing the net exchange energy, which rep- 155

resents energy independence, becomes more crucial [34]. 156

The more independent prosumer (or a community of pro- 157

sumers) implies less requirement for central generation, stor- 158

age, transmission, and distribution capacities [12]. However, 159

enhancing a self/local-consumption approach necessitates 160

more usage of the battery system, which may deteriorate 161

battery health and increase the total operating cost of each 162

home (due to the current price of batteries) compared to 163

the works that maximize the economic benefits. On other 164

hand reducing operating costs increases the exchange energy 165

with the grid and necessitates more distribution/transmission 166

and storage capacity at the network side, which increases 167

the whole network operating costs. Therefore, if net- 168

work operators aim to enhance the self/local-consumption 169

approach, the energy tariff and/or storage price must change 170

accordingly. 171

This study focuses on P2P transactions at the commu- 172

nity level. The proposed P2P EMS maximizes the local/self- 173

consumption by coordinating the distributed BSSs. In addi- 174

tion, the net energy exchanged with the grid is minimized by 175

exchanging the excess energy within the community while 176

two days-ahead forecast is utilized in the optimization pro- 177

cess. Moreover, considering day-2 energy forecast reduces 178

the house energy costs as it charges the BSS from the PV 179

surplus power, neighbors, or grid at the low tariff periods and 180

use that energy when required. 181
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The main contributions of this work can be summarised as:182

a) Proposing a P2P EMS that utilizes the two days-ahead183

forecasts for each house. This system improves the184

trading by limiting the energy flow not only based on185

short forecast, but also on the next day forecast, which186

suits optimising the energy storage mechanism.187

b) Proposing a MILP-based P2P energy management188

algorithm that maximizes the energy independence of189

the community by minimizing the exchanged energy190

with the utility, which in turn:191

i. Reduces the required central generation, storage,192

transmission, and distribution capacities.193

ii. Reduces the distribution/transmission losses.194

This paper is organized as follows. Section II illustrates the195

community configuration. Section III presents the proposed196

EMS structure. Section IV presents the individual Home197

Energy Management System (HEMS). The central control198

that includes the P2P EMS is presented in section V and199

section VI presents the simulation results and discussions.200

Finally, section VII presents the conclusions of this work.201

II. COMMUNITY CONFIGURATION202

This study uses the measured data from six houses located in203

London, UK as a case study [35]. The community consists204

of six residential prosumers equipped with solar panels and205

batteries of 4 kWh each, connected to the main electricity206

grid as shown in Fig. 1. The rated charge/discharge power207

(PB-rating) of the BSS is 2.7 kW [36]. The capital cost of each208

BSS is assumed to be £3,000 [37], while the battery prices209

are expected to reduce further up to 50% in 2025 [38]. The210

number of the battery’s life cycle is 5000 [36]. The maximum211

SOC (SOCmax) and the minimum SOC (SOCmin) limits are212

set to 98% and 20%, respectively [12]. Table 1 presents the213

location of each house, PV rated power, and the total load214

energy for four months (June to September 2014).215

III. ENERGY MANAGEMENT SYSTEM STRUCTURE216

The main objective of the proposed EMS in this paper is217

to minimize the absolute net energy exchanged between the218

community and the utility to enhance the local-consumption219

while reducing the operating costs of each house. The pro-220

posed method consists of two layers as shown in Fig. 1:221

(1) Home energy management system: A HEMS is222

installed in each house, enabling the user(s) to monitor223

their energy production and consumption. In this stage, the224

daily energy exchanged with the utility is minimized for225

each household without exchanging the excess energy within226

the community (i.e., each house operates individually). The227

results for the HEMS are uploaded to the central controller as228

shown in Fig. 1.229

(2) Central controller: In the central controller a P2P energy230

trading is used for optimizing the sequential functioning of231

each pair of houses using data accessible to the central con-232

troller. In this stage, the house pairs are formed and selected,233

aimed to minimize the energy exchange with the utility and234

FIGURE 1. Community structure.

TABLE 1. Locations and parameters of the six houses [35].

the operational costs. The number of available pairs combi- 235

nations (Pairno.) is: 236

Pairno. =
Nhouses (Nhouses − 1)

2
(1) 237

where Nhouses is the number of houses in the community, here 238

Nhouses = 6, resulting on 15 different combination pairs. The 239

optimization process is executed for each pair of houses to 240

establish: (1) the lowest cost of the energy consumed by a 241

given pair, and (2) a daily profile with a sample time (1T ) 242

of 10 min to provide reference values for energy exchanged 243

between the pairs and power drawn from the utility. The 244

selection of pairs is made in the central controller. After the 245

optimal settings are obtained from the selected house pairs, 246

the signals are sent to each house. 247

IV. HOME ENERGY MANAGEMENT SYSTEM 248

In the HEMS, each house is optimized as a single system to 249

determine its own minimum energy exchange with the utility. 250

The problem is formulated usingMILP. The proposed HEMS 251

follows the steps detailed below: 252

• First, the initial SOC of the BSS and two days-ahead 253

forecasted data are input: day-1 PV generation (PPV-1), 254

day-1 load demand (PL-1), day-2 PV generation (PPV-2), 255

and day-2 load demand (PL-2). 256
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• Then, the HEMS calculates the day-2 energy forecast257

(EDay-f ) by summing the high tariff intervals i.e., mid-258

peak (from 6 AM – 4 PM and 7 PM – 11 PM) and peak259

times (from 4 PM-7 PM), from forecasted data using (2):260

EDay-f =
∫ t=11 PM

t=6AM
(PPV-2(t)− PL-2(t)) dt (2)261

where PPV-2(t) and PL-2(t) are, respectively, the fore-262

casted PV power and the load demand for day-2.263

• Next, the HEMS performs the MILP optimization for264

one day-ahead (i.e., day-1) to obtain the BSS setting.265

• Finally, the HEMS obtains the decision variables and266

sends the result to the central controller to proceed with267

P2P optimization.268

A. PROBLEM FORMULATION OF HEMS269

The HEMS in this study is reported in [39] and is summarized270

in this subsection for clarity:271

The objective function focuses on minimizing the cost272

function (Chouse), which includes the cost of the energy273

purchased from the utility (Cbuy), the cost of the energy274

transferred to the utility (Csell), and the BSS degradation275

cost (CBSS ).276

Chouse = |Cbuy| + |Csell | + CBSS (3)277

Chouse considers Cbuy and Csell as absolute values to reduce278

the net energy exchange with the utility (i.e., reducing total279

energy transactions). CBSS is included in the expression for280

Chouse to take into account the battery lifetime. The respective281

costs of selling and purchasing the energy are:282

Cbuy =
∑T

t0
1T × fbuy (t)× PG (t) , PG (t) > 0 (4)283

Csell =
∑T

t0
1T × fsell (t)× PG (t), PG (t) < 0 (5)284

where the t0 is the time of day commencing at 12 AM, T is285

the duration of 24 hours,1T (hr) is the sampling time, fbuy(t)286

is the cost of the energy purchased from the utility (£/kWh),287

fsell(t) is the tariff (£/kWh) for energy fed into the utility,288

and PG(t) is power exchange with the utility grid (kW). The289

balance of power in the system is represented as in (6):290

PL-1 (t)− PPV-1 (t) = PG (t)+ PB (t) (6)291

where PB (t) is the battery power.292

B. HEMS BATTERY CONSTRAINTS293

The following equations represent the BSSmodel. The degra-294

dation cost of each charging/discharging cycle is represented295

by (7) [39]:296

CBSS =
∑T

t0

CCB × ηConv × ηc ×1T ×
∣∣∣PchargB (t)

∣∣∣
2× Ncycle

297

+
CCB ×1T × PdischB (t)
ηConv × ηd × 2× Ncycle

(7)298

where the CCB represents the initial cost of the battery (£) 299

(without considering power converters), Ncycle is the number 300

of battery’s life cycles, ηconv represents battery DC/DC con- 301

verter efficiency (%), PdischB is the battery discharge power 302

(kW), PchargB is the battery charge power (kW), ηd is the 303

efficiency of the battery when discharging (%), and ηc is the 304

charging efficiency of the battery (%). Note that PchargB has a 305

negative value and PdischB has a positive value. The estimated 306

stored energy in the BSS, SOC of the battery [39], and the 307

current battery capacity are [40]: 308

E (t) = E (t − 1)−
1T × PdischB (t)

ηd
309

−1T × ηc × P
charg
B (t) (8) 310

SOC (t) =
E(t)

Bcapacity(t)
× 100 (9) 311

Bcapacity(t) =
1

SOC(tα)− SOC(tβ )

∫ tβ

tα
I (t) dt (10) 312

where E(t) is battery energy at time t , E(t-1) is battery energy 313

at time t-1, Bcapacity is the estimated battery capacity, and I (t) 314

is the battery charge/discharge current, SOC(tα) is the battery 315

SOC at time tα , SOC(tβ ) is the battery SOC at time tβ . The 316

new capacity is updated after each charge/discharge cycles 317

and is fed back into (9) to estimate the SOC accordingly. 318

During mid-peak and peak times, the battery is discharged 319

to its minimum limit (i.e., SOCmin) to reduce the energy 320

purchased from the utility at a high price. The permissible 321

limits for the SOC during mid-peak and peak times are given 322

by (11): 323

SOCmin ≤ SOC (t) ≤ SOCmax (11) 324

During the off-peak times, the proposed algorithm uses the 325

day-2 required energy forecast for mid-peak and peak times 326

(i.e., EDay-f). To ensure that the forecast energy required is 327

stored in the BSS during the off-peak times, (12) is used [39]: 328

SOCmin + (100×
EDay-f
Bcapacity

) ≤ SOC (t) ≤ SOCmax (12) 329

The power exchange with the battery is computed 330

using (13) [39]: 331

PB (t) = PdischB (t)× ηConv +
PchargB (t)
ηConv

(13) 332

The maximum allowable charge/discharge power of the 333

battery is limited using (14) and (15) [39]: 334

0 ≤ PdischB (t) ≤ PB-rating (14) 335

−PB-rating ≤ PchargB (t) ≤ 0 (15) 336

C. SYSTEM CONSTRAINTS FOR HEMS 337

The battery and utility power constraints for each household 338

are described in this section. Four binary variables 8B-disch, 339

8B-charg,8import and8export are used as state flags to indicate 340

the transitions of the battery and utility.8B-disch and8B-charg 341

are used for battery discharge and chargemodes, respectively. 342
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8import and8export are used for import from and export to the343

utility.344

Constraints (16) to (18) are used to ensure that the battery345

can’t be charging and discharging at the same instant [39].346

8B-disch (t)+8B-charg (t) ≤ 1 (16)347

8B-disch (t) =

{
1, PB (t) > 0
0, PB (t) < 0

(17)348

8B-charg (t) =

{
1, PB (t) < 0
0, PB (t) > 0

(18)349

The battery is discharging when 8B-disch(t) is equal to one,350

and when 8B-charg(t) is equal to one the battery is charging.351

It is worth noting that when the8B-disch(t) and8B-charg(t) are352

equal to zero the BSS is neither in charging or discharging353

modes (hence PB = 0).354

Constraints (19) and (20) link binary variables and battery355

power [39]:356

PdischB (t) ≤ 8B-disch (t)× (PB-rating) (19)357

PchargB (t) ≤ 8B-charg (t)× (−PB-rating) (20)358

Constraints (21)-(23) are used to ensure that the system359

only imports or exports power at one time [39].360

8import (t)+8export (t) ≤ 1 (21)361

8import (t) =

{
1, PG (t) > 0
0, PG (t) < 0

(22)362

8export (t) =

{
1, PG (t) < 0
0, PG (t) > 0

(23)363

When the system takes power from the grid, 8import (t) is364

equal to one, otherwise, 8import (t) equals zero. Similarly, if365

the system is transferring power to the grid,8export (t) is equal366

to one, otherwise, 8export (t) equals zero.367

Constraints (24) and (26) link binary variables and grid368

power [39]:369

PimportG (t) ≤ 8import (t)× P
max−import
G (24)370

PexportG (t) ≤ 8export (t)× P
max−export
G (25)371

PG (t) = PimportG (t)− PexportG (t) (26)372

wherePimportG (t) andPexportG (t) are power transferred from and373

power transferred to the utility, respectively. Pmax-exportG and374

Pmax-importG are the limits of power transferred to and imported375

from the grid, respectively (in this study the limit is set to376

infinity).377

To avoid discharging the battery when the PV system is378

transferring surplus power to the grid, constraint (27) is used.379

8B-disch (t)+8export (t) ≤ 1 (27)380

where8B-disch(t) is equal to one when the battery is discharg-381

ing and otherwise equals zero.8export (t) is equal to one when382

the house transfers power to the utility and otherwise is equal383

to zero. Fig. 2. illustrates the above steps and constraints for384

HEMS.385

FIGURE 2. Flowchart of the HEMS [39].

V. CENTRAL CONTROLLER 386

The central controller is responsible for the P2P EMS and the 387

selection of the pairing of the houses. 388

In the P2P optimization, the selected pair of houses export 389

the excess energy from the PV to the grid after satisfying 390

the demands of the given pair of houses and charging the 391

batteries based on the day-2 forecast (i.e., EDay-f ). The energy 392

consumption priorities are listed below from high to low: 393

1. Each house consumption. 394

2. Each house required SOC limit at the end of the day 395

based on EDay-f . 396

3. Paired house consumption. 397

4. Paired house required SOC limit at the end of the day 398

based on EDay-f . 399

5. Export to the gird. 400

The P2P problem is also formulated using MILP. The 401

proposed P2P EMS follows the steps detailed below: 402

• First, input the initial SOC of the BSS for a given pair of 403

houses (x) and (y). 404

• Obtain the forecast data for the next two days for houses 405

(x) and (y) and calculate EDay-f for those houses using 406

equation (2). 407

• Next perform the MILP optimization for one day-head 408

(i.e., day-1) to obtain the BSS setting for houses (x) 409

and (y). 410
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• Finally, the decision variables are sent to the selection411

level to choose the best pairs.412

A. P2P EMS PROBLEM FORMULATION413

For the paired houses (i.e., house (x) and house (y)) the cost414

function that needs to be minimized is presented as (28):415

Csum-P2P =
∑

n=x,y
|Cn

buy| + |C
n
sell | + C

n
BSS − |C

n
P2P|416

(28)417

CP2P =


1T ×

∑T

to
fP2P-exp(t)× P

x↔y
P2P (t) ,

Px↔y
P2P (t) > 0

1T ×
∑T

to
fP2P-imp (t)× P

x↔y
P2P (t) ,

Px↔y
P2P (t) < 0

(29)418

where n is referring to the house (x) and (y), CP2P is the419

cost per day of the energy exchanged between the paired420

houses (x) and (y). fP2P-exp(t) is the export exchange tariff421

between the paired houses (£/kWh). fP2P-imp(t) is the import422

exchange tariff between the paired houses (£/kWh). Px↔y
P2P (t)423

is the power exchanged between houses (x) and (y) (kW), this424

value is positive when the power is flowing from house (x) to425

(y) and is negative if it is flowing in the opposite direction.426

The P2P energy balance equations for each house and for the427

pair are:428

For house (x):429

PxL-1 (t)− P
x
PV-1 (t)430

= PxG (t)+ P
x
B (t)− P

x↔y
P2P (t) (30)431

For house (y):432

PyL-1 (t)− P
y
PV-1 (t)433

= PyG (t)+ P
y
B (t)− P

y↔x
P2P (t) (31)434

For houses (x) and (y):435 ∑
n=x,y

PnG (t)+ P
n
B (t)436

=

∑
n=x,y

PnL-1 (t)− P
n
PV-1 (t) (32)437

B. P2P EMS BATTERY CONSTRAINTS438

As mentioned above, (8) and (9) are used to estimate energy439

stored and SOC of each BSS in houses (x) and (y). During440

mid-peak and peak times, the battery is discharged down to441

its SOCmin according to (11). Off-peak times in Day-1, (12)442

is used for each BSS to store only the energy required for the443

next mid-peak and peak times.444

C. SYSTEM CONSTRAINTS FOR P2P EMS445

To ensure that the flow of power between houses (x) and (y) is446

always in one direction, constraints (33-35) are used for house447

(x) and similar constraints are applied for house (y) [1].448

∂xPos (t)+ ∂
x
neg (t) ≤ 1 (33)449

∂xpos (t) =

{
1, Px↔y

P2P (t) > 0
0, Px↔y

P2P (t) ≤ 0
(34)450

∂xneg (t) =

{
1, Px↔y

P2P (t) < 0
0, Px↔y

P2P (t) ≥ 0
(35) 451

where ∂xpos(t) equals one if, during the time interval (t), the 452

energy flows from the house (x) to the house (y) and equals 453

zero otherwise. The binary variable ∂xneg(t) is equal to one if, 454

during the time interval (t), the energy flows from the house 455

(y) to the house (x) and equals zero otherwise. 456

Constraints (36) and (37) link binary variables and 457

exchanged power (in this study there is no limit for power 458

exchange between paired houses) [1]: 459

Px↔y
P2P (t) ≤ ∂

x
pos (t)× PP2P,max (t) (36) 460

Px↔y
P2P (t) ≤ ∂

x
neg (t)× PP2P,max (t) (37) 461

where PP2P,max(t) is the maximum permissible value for 462

power exchanged between the houses (x) and (y) and this 463

value is set to infinity unless specified. 464

To ensure that batteries are not used to export energy to the 465

grid, the following constraint (38) is introduced [1]: 466

∂xB-disch (t)+8
x
export (t) ≤ 1 (38) 467

where ∂xB-disch(t) equals zero if the battery in the house (x) 468

is not discharging, otherwise, it equals one. The binary 469

8x
export (t) equals zero if the battery (x) is not transferring 470

power to the grid, otherwise, it equals one. To avoid the 471

condition where one house in a pair receives power from 472

the grid whilst simultaneously exporting power to the other 473

house, constraint (39) is applied [1]. 474

∂xpos (t)+8
x
import (t) ≤ 1 (39) 475

where8x
import (t) is equal to one if the house (x) is importing 476

power from the main grid otherwise it is equal to zero. 477

To avoid the condition where one house in a pair transmits 478

power to the grid whilst simultaneously receiving power from 479

the other house, constraint (40) is applied [1]. 480

∂xneg (t)+8
x
export (t) ≤ 1 (40) 481

To be worthwhile, any solution provided by P2P optimiza- 482

tion for houses (x) and (y) must be more beneficial in terms 483

of energy costs than when the house operates individually. 484

Such a condition is met when the following constraint is 485

satisfied (41): 486

CP2P(n)
house-cost ≤ C

individual(n)
house-cost (41) 487

where n is referring to the house, here (x) and (y),C individual(n)
house-cost 488

is the operational cost per day of energy consumed when 489

a house is operating individually (i.e., HEMS) and calcu- 490

lated as: 491

C individual(n)
house-cost = Cn

buy + C
n
sell + C

n
BSS (42) 492

Note that Cn
sell is a negative value. For the nth house in 493

the P2P optimization, the operational cost per day of energy 494

consumed is CP2P(n)
house-cost and calculated as: 495

CP2P(n)
house-cost = Cn

buy+C
n
sell + C

n
BSS − C

n
P2P (43) 496

Fig. 3. Illustrates the above steps and constraints for 497

P2P EMS. 498
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FIGURE 3. Flowchart of the P2P EMS.

D. MIXED-INTEGER LINEAR PROGRAMMING499

The main target of the proposed P2P EMS is to minimize the500

total energy exchanged between the houses in the community501

and the grid. The decentralized sub-system as a first step502

simplifies the centralized optimization problem and supports503

quick convergence of the global solution. The proposed sys-504

tem is formulated using MILP optimization and the Gurobir505

Optimizer tool in the MATLAB software. MILP deals with506

optimisation problems in which some of the variables are507

constrained to be integers, while other variables are non-508

integers. Zero-one linear programming is used in MILP to509

control the conflicting constraints involved in the problem510

solving, where these variables will be restricted to be either511

0 or 1.There are three different approaches to solve a MILP512

problem, namely: Branch and Bound, Cutting Plane, and513

Feasibility Pump [41], [42]. The Branch andBound algorithm514

(or Tree Search) is used in this study to find the optimal day-515

ahead setting for the BSS for each house based on EDay-f,516

while the cost function in (27) is optimized by three steps.517

First, the solution of the problem is obtained without any518

limitations, this stage is called relaxation of the original519

Linear Programming (LP) problem. Second, the limitations520

FIGURE 4. Flowchart of the selection level.

are applied over the obtained results to remove the infeasible 521

solutions. And finally, the optimal solution is obtained using 522

the produced feasible solutions, while tightening the variables 523

constrains further for conducting another search iterations 524

within the obtained variables values to solve the problem 525

again, until the optimal solution is achieved. 526

E. SELECTION LEVEL 527

Figure. 4 shows the steps taken to identify the chosen pairs of 528

houses from the P2P results, which are detailed in the below 529

steps: 530

1. Obtain operating costs for all possible house pairs from 531

P2P EMS and costs for each house operating individu- 532

ally from HEMS. 533

2. Calculate the reduction percentage for all possible pairs 534

using (44): 535∑
n=x,y C

individual(n)
house-cost −

∑
n=x,y C

P2P(n)
house-cost∑

n=x,y C
individual(n)
house-cost

× 100% 536

(44) 537

3. Sort all reduction percentages descending and select the 538

house pairs which has the highest reduction percentage. 539

4. Eliminate all other reduction percentages related to 540

the selected houses to prevent the same house being a 541

member of multiple pairs and repeat the previous step 542

(step 3) until all P2P are determined. 543

5. Send optimal battery setting for all houses. 544

VOLUME 10, 2022 93767



A. Al-Sorour et al.: Enhancing PV Self-Consumption Within an Energy Community Using MILP-Based P2P Trading

VI. RESULTS AND DISCUSSIONS545

The proposedmethod has been implemented in theMATLAB546

software environment and compared with the proposed sys-547

tem in [1]. Work proposed in [1] is chosen for compari-548

son because it has similar system configuration (i.e., P2P549

EMS at consumption level) and aims to reduce the energy550

costs. The data used in this work is for four months (June551

to September 2014) and with 1T of 10 min. The Time552

of Use (TOU) tariff scheme obtained from [1] is used as553

shown in Table 2. The export tariff from RES to the utility554

is 3.79 p/kWh [11]. The import/export tariff for the energy555

exchanged between the coupled houses is chosen as 4 p/kWh.556

Several methods already exist in the literature to predict PV557

generation and load consumption. For example, Artificial558

Neural Network [43], Differential Evolution, and Particle559

Swarm Optimization [44] are all used for day-ahead fore-560

casts. In addition, the authors in [45] have proposed two561

days-ahead forecasts for a wind turbine. This study imposes562

normally distributed random numbers on the historical data563

to represent forecast data [12], [46]. The Mean Absolute564

Percentage Error (MAPE) of forecasted energy is assumed565

to be 30% over the four months.566

TABLE 2. Tariff rates [1].

A. PERFORMANCE COMPARISON567

This section shows the performance of the proposed P2P568

EMS on four houses chosen from the six houses (houses no.569

1, 2, 3 and 4) for two days. Figs. 5 (a-1), (b-1), and (c-1) rep-570

resent the PPV and PL for houses no. 1, 2, and 3, respectively,571

for the two test days (17th and 18th June 2014). The solid572

orange line represents PL and the solid blue line represents573

PPV . Figs. 5 (a-2), (b-2), and (c-2) represent the optimal574

BSS settings for each house and the exchanged power in the575

community (i.e., PP2P) for house no. 1, 2, and 3, respectively,576

for the two days (17th and 18th of June 2014). The solid red577

and dashed blue lines represent SOC and PP2P, respectively.578

Figs. 5 (a-1), (b-1) show that energy consumption for house579

no. 1 and 2 are higher than their generation most of the time580

during day 1 and 2. However, house no. 3 generation is more581

than its consumption as shown in Fig. 5 (c-1). Figs. 5 (a-2),582

(b-2), and (c-2), show that house no. 1 exchanges power with583

house no. 2 during day-1 and with house no. 3 during day-2.584

As shown from Fig. 5 (b-2), during day 2 house no.2 does585

not exchange energy with neighbors (PP2P = 0). Instead586

during off-peak the BSS is charged to just above 40% and587

maintains the charge from 5AM to 8AM, when it is charged588

up again (in accordance to the next day forecast) from the589

TABLE 3. Proposed method.

PV surplus power (red solid line). Similarly, house no. 3 does 590

not exchange energy with neighbors in day 1 as shown in 591

Fig. 5 (c-2). 592

Fig. 6 shows the performance of house no. 4 for the 593

same two test days. The solid red, solid black, and dashed 594

blue lines represent SOC, PPV -PL , and PP2P, respectively. 595

As shown inFig. 6, during day-1, the generation is higher 596

than demand (PPV > PL), the BSS is charged by the sur- 597

plus energy. In addition, it maintains a SOC of 45% during 598

off-peak time as it has prior knowledge of day-2 forecast 599

(i.e., EDay-f ). Therefore, during day-1 and day-2 house no.4 600

did not share the excess energy with the neighbors. This pro- 601

cess maximizes self-consumption and reduces the absolute 602

net energy exchanged with the utility. In addition, storing 603

the energy required for day-2 avoids purchasing unnecessary 604

energy from the utility or from neighbors. Table 3 com- 605

pares the total operating costs for four months (June to 606

September 2014) of each household when they are operating 607

as part of the community, compared to operating individ- 608

ually. Results show that the proposed method reduces the 609

operating costs of all houses by up to 18.8%. As shown in 610

Table 3, the total operational cost of the community is reduced 611

by 7.6% when compared to the six houses being operated 612

individually. 613

Table 4 compares the total operating costs of the proposed 614

method in [1] for four months (June to September 2014) 615

of each household when they are operating as part of the 616

community, with that when the house operates individually. 617

Results show that the proposed method in [1] reduces the 618

operating costs of all houses by up to 45%. As shown in 619

Table 4, the total operational cost of the community is reduced 620

by 11.8% when compared to the six houses being operated 621

individually. As it can be seen from Tables 3 and 4, the 622

operating costs of [1] is less than that of the method proposed 623

in this paper. This is simply because this paper is aimed to 624

reduce the exchanged energy with the grid, not the operating 625

costs. Since this paper enhances a self/local-consumption 626

approach, it will use the BSSs more frequently compared 627

with [1], which increases the operating cost for each home. 628

However, since [1] exchanges more energy with the grid 629

(see Table 5), it necessitates more distribution/transmission 630
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FIGURE 5. Power and SOC plots for the proposed P2P EMS systems applied to houses no. 1, 2, and 3 for the 17th and 18th of June 2014.
Figs (a-1), (b-1), and (c-1) represent the PPV and PL for house no.1, 2, and 3, respectively. The solid orange line represents PL and the solid blue line
represents PPV . Figs (a-2), (b-2), and (c-2) represent the SOC and PP2P for houses no. 1, 2 and 3, respectively. The solid red and dashed blue lines
represent SOC and Pp2p, respectively.

FIGURE 6. The proposed P2P EMS for house no. 4 for the two test days
17th and 18th of June 2014. The solid red, solid black, and dashed blue
lines represent SOC, PPV - PL, and PP2P, respectively.

and storage capacity at the network side, which increases631

the whole network operating costs. Therefore, if the net-632

work operators want to encourage the self/local-consumption633

approach, the energy tariff and/or storage price must change634

accordingly.635

TABLE 4. Proposed method in [1].

B. COMPARING ENERGY EXCHANGED WITH PREVIOUS 636

STATE-OF-THE-ART STRATEGY 637

Table 5 compares the total absolute energy exchange of the 638

proposed P2P EMS with the P2P EMS adopted in [1] for 639

the four months from June to September 2014. The proposed 640

method reduces the total absolute energy exchange for the 641

six houses by nearly 25.4 % compared to the P2P EMS 642

proposed in [1]. 643
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TABLE 5. Absolute energy exchange with the utility for four months.

FIGURE 7. Total imported energy during peak and mid-peak times for
four months period (June to September 2014). The blue and green bars
represent proposed P2P EMS and P2P EMS reported in [1] for the six
houses.

Fig. 7 shows the total imported energy during peak and644

mid-peak times for the four months period. The blue and645

green bars represent the proposed P2P EMS and the P2P646

EMS in [1], respectively. As illustrated in Fig. 7, the proposed647

P2P EMS reduces the overall imported energy from the grid648

during peak and mid-peak times.649

VII. CONCLUSION650

The proposed EMS based on energy trading between pro-651

sumers enhances a local-consumption approach, which:652

(1) reduces unnecessary energy exchanges with the util-653

ity, (2) reduces the operating costs of every house in the654

community compared to operating individually, (3) reduces655

distribution/transmission losses and the required central656

transmission, storage and generation facilities. The proposed657

P2P EMS can supply the demand during the next day by dis-658

charging the battery or purchasing from neighbors rather than659

importing from the utility. In addition, by including the next660

day-ahead forecast (i.e., day-2) the self-consumption of each661

house in the community is maximized. However, enhancing662

a self/local-consumption approach may not be economical663

for individual home (with today energy tariff and storage 664

costs). Therefore, if the network operators aim to enhance 665

the self/local-consumption, the energy tariff and/or storage 666

price must change accordingly. It worth mentioning that P2P 667

trading could occur with multiple peers, which is subjected 668

to the system individual peer capacity. 669

Research gaps need to be addressed in the future work 670

are (a) investigating the impacts of the integration of plug- 671

in Electric Vehicles in the system, (b) investigating the eco- 672

nomic analysis of the system considering the overall system 673

component costs and the profit from the EMS. 674
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