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ABSTRACT The reconfiguration problem is considered a key challenge in distributed systems, especially
in dynamic asynchronous message-passing systems. To keep the data reliability and availability in long-
lived systems, any protocols should support reconfigurations, to dynamically add resources, or remove old
and slow machines with newer faster ones. Previous results in reconfigurations either rely on consensus,
or study the problem restricted to crash failures only. However, it is difficult to argue that real-world
systems experience crash failures only. In this paper, we study the dynamic reconfiguration problem in
fully asynchronous message-passing systems with Byzantine faults. We first specify dynamic Byzantine
broadcast, and then specify a clean and explicit liveness condition. We show that dynamic Byzantine
broadcast is solvable by presenting a dynamic Byzantine consistent broadcast algorithm and a dynamic
Byzantine reliable broadcast algorithm.

INDEX TERMS Byzantine network, dynamic system, broadcast, reconfiguration.

I. INTRODUCTION
Replicating service state is a common technique to design a
reliable distributed system. However, in long-lived systems,
a typical fault-tolerant protocol may be inadequate, because
the possibility of losing more than a minority of participants
unavoidably grows with time. In addition, the need to react
to changes in application workloads requires the system to
dynamically add resources or replace old and slow machines
with newer and faster ones. Real-world distributed systems
need to be dynamic, i.e., they need to update the active
members of a system over time. Such a churn support can
be realized by providing interfaces to reconfiguration opera-
tions, i.e., add or remove participants.
It is already a challenge to design fault-tolerant distributed

services that provide strong availability and consistency.
Further requirements on supporting updating participants
dynamically complicate any system design.

The first challenge in reconfiguration problems is safety
when concurrent reconfiguration requests are submitted to
the system. Consider an example from [1] where we build
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FIGURE 1. Concurrent reconfigurations in systems may lead to
inconsistency.

a fault-tolerant solution using four nodes p1, p2, p3, and p4.
As shown in Figure 1, a user adds a new node p5 to the system
through p1 (i.e. by issuing a adding command at node p1).
The up-to-date system configuration is stored at a majority of
nodes of the current configuration, e.g., at nodes p1, p4 and
p5. At the same time, the removal of p4 is initiated by a
reconfiguration operation at p3. If p2 and p3 do not know
that node p5 should be added to the system, they consider
themselves the majority of the latest configuration in the sys-
tem. When these two concurrent reconfigurations occur, the
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system diverges to two different configurations. Early work
on system dynamics could violate safety in such cases [2], [3],
[4]. This problem has been solved in many subsequent works
by establishing a certain update order [5], [6], [7]. This is
equivalent to achieving an agreement in the system or assum-
ing an external, replicated configuration manager [8], [9].

Second, the system’s liveness is in danger if arbitrary
reconfigurations are allowed. Consider an example from [10]:
Three nodes, p1, p2, and p3 are in a fault-tolerant system.
The latest system state is stored with a majority of nodes of
the current configuration, e.g. p1 and p2. If a user removes
node p1, node p2 becomes absolutely vital, and cannot crash
anymore. Otherwise, the remaining nodes cannot keep the
correct system state. This problemwill be even more severe if
we introduce Byzantine failures to the system. Therefore, it is
necessary to regularize a general characterization of tolerable
failures for protecting a system’s liveness.

As we know, it has been proved that achieving agreement
is impossible in a fully asynchronous message-passing dis-
tributed system in the existence of even one faulty node [11].
Recent works [10], [12], [13], [14], [15] focus on dynamic
distributed systems without consensus. Most of previous
reconfiguration results in asynchronous systems without con-
sensus assume that nodes always behave correctly. However,
in reality, malicious nodes may arbitrarily attack the system.
Thus, the system must be robust against Byzantine nodes.

In this paper, we study the dynamic problem in asyn-
chronous systems with Byzantine faults. We are given an
asynchronous message-passing distributed system composed
of a set

∏
= {p, q, . . . } of interconnected nodes. We want

to design protocols that provide interfaces to reconfiguration
operations with existence of Byzantine nodes.

In summary, this paper features in following contributions.

• We define a dynamic Byzantine broadcast problem
including an explicit liveness condition, which is inde-
pendent of a particular solution to the problem.

• We solve the dynamic Byzantine problem by designing
a dynamic Byzantine consistent broadcast protocol and
a dynamic Byzantine reliable broadcast protocol in a
completely asynchronous message-passing system.

We follow the framework of dynamic reconfigurationwith-
out consensus in the crash-prone model and adjust it to
Byzantine failures. Our algorithms realize consensus-less
reconfiguration operations with Byzantine failures.

Compared to other dynamic broadcast protocols [16], [17],
[18], [19], [20], our results do not require a completely
ordered sequence of configurations, or equivalent agreement
among nodes. Moreover, our design can be implemented in
fully asynchronous systems. Also, our protocols are highly
modular, and not restricted to any specific broadcast primi-
tives. In this paper, we present two different broadcast pro-
tocols and discuss how to extend our protocols to further
models.

The rest of this paper is organized as follows: In
the next section, we give an overview of related work.

Section 3 defines the model that we study in this paper.
In Section 4, we discuss the dynamic problem with Byzan-
tine failures. Section 5 introduces the weak snapshot object,
which provides fundamental functions for constructing our
broadcast protocols. In Section 6, we present two dynamic
Byzantine broadcast protocols. We conclude this paper in
Section 7.

II. RELATED WORK
In this section, we first review several existing solutions
retrospectively as solving a dynamic problem. Then, wemove
to three specific topics that consider broadcast services with
dynamism.

The majority of related work on reconfiguration considers
read/write storage. RAMBO [5], [8] was the first to imple-
ment a dynamic atomic register with asynchronous read/write
operations. The main idea of the protocol is to use consensus
to agree on reconfigurations. It supports operations to check
all available configurations in the system and write to the
latest one. Other works [9], [21], [22] use the same idea to
design dynamic atomic registers with Byzantine failures.

Other approaches provide a fault-tolerant emulation of
arbitrary data types with the State Machine Replication
(SMR) [23], [24]. The first method is to achieve an agreement
on a sequence of operations applied to the data. SMR was
implemented in Paxos [23], which allows nodes to change
the system configuration by keeping the configuration as part
of the state stored in the state machine. Another method is to
introduce a secondary configuration manager to arrange con-
figuration changes. The manager engages this information
into the replication protocol. Several practical systems [19],
[25], [26], [27] use this method to achieve dynamism.

Another study [28] considers the situation that the oppor-
tunity of losing more than a minority of participants unavoid-
ably grows. They design a failure detector to deal with the
number of failures right from the beginning. However, their
model does not allow adding more participants to the system.

Unlike other previous studies, DynaStore [10] was the
first to the solve dynamic reconfiguration problem in
asynchronous message-passing systems without consensus.
It uses a weak snapshot abstraction to formulate a digraph
containing information about the changes of system con-
figurations. Even though it does not solve the agreement
problem in asynchronous systems, it still ensures the safety by
traversing the digraph of the system configuration. Followed
by that, SmartMerge [14] and Parsimonious SpSn [13] use
very similar ideas to solve the dynamic problem. We also
employ the similar idea to construct a digraph of system
configurations with the weaker snapshot abstraction in this
paper. Moreover, we extend this concept for Byzantine fault
tolerance.

Dynamic Broadcast protocols have been studied even ear-
lier than the reconfigurable read/write storage. In 1987, a pro-
tocol [17] was proposed for failure-free scenarios. Several
works [1], [22], [24], [27] extend this idea for fault tolerance,
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where failure-prone nodes are replaced by fault-tolerant dis-
joint groups.

Configuration-oriented group communication systems
maintain a dynamic configuration of active participants.
They provide broadcast and atomic multicast services within
the member of a configuration by keeping agreement on a
sequence of configurations [29].

Other dynamic broadcast protocols [16], [30] do not solve
the reconfiguration problem. Instead, they seek to allow
replicas to dynamically change the broadcast groups they
subscribe to, while the membership of the system remains
constant.

Guettaoui et al. [31] addressed a similar problem as we
study in this paper. Compared to algorithms that we propose,
the previous work only provides interfaces for broadcasting
a single message. However, the broadcast abstractions [32]
for Byzantine failures in a static configuration always support
arbitrary number ofmessages, which is a practical regiment in
reality. Our protocols support broadcasting arbitrary number
of messages in dynamic configurations, which can be consid-
ered as broadcast channels in the system.

Moreover, our protocols are not restricted to any specific
broadcast abstractions, it can be easily adjusted to other
Byzantine broadcast primitives in distributed applications.
In this paper, we present a consistent broadcast and discuss
how to modify it for other broadcast abstractions.

III. DISTRIBUTED SYSTEM MODEL
Consider a distributed system composed of a set

∏
=

{p, q, . . . } of interconnected nodes. Some nodes in the system
are Byzantine. Theymay behave arbitrarily, i.e., generate fake
messages, drop messages, or even corrupt messages.

Any nodes pair u and v can send messages to each other
directly. The transmission mechanism is point-to-point, i.e.,
nodes send a message to at most one neighbor at a time. The
communication channels between nodes are authenticated.
Nodes can recognize who is the sender of the message when
they receive a message. Messages cannot be modified by any
third parties if messages are delivered via the authenticated
channel between nodes.

The systemwe study in this paper is asynchronous. In asyn-
chronous distributed systems, the message delay from one
node to another is without finite upper bound, i.e. messages
may be delayed for arbitrary time periods. However, mes-
sages will eventually be delivered. Nodes only take actions
when they are activated by events, such as messages arriving.

We assume that the total number of nodes are unbounded
and possibly infinite. However, not every node remains active
in the system throughout the life of the system. At the begin-
ning of execution time, there is a set of available nodes, Init ,
which can be accessed by users. Other nodes are initially
inactive. Active set Init is known to every node. Nodes can
be activated when joining the system or be removed from the
system during execution. Once they have been removed from
the system, they cannot become active again.

FIGURE 2. Configuration w of a system with 5 active nodes and
3 removed nodes.

Algorithms we propose in this paper use operations,
functions and upon clauses. Operations are invoked by
users. Functions are invoked by operations, upon clauses,
or other functions. When a node p receives messages from
other nodes, it stores these messages in a local buffer.
The upon clauses are internal actions enabled when some
conditions hold. In the face of concurrency, at most one
operation and one upon clause can be performed simultane-
ously. Note that operations and upon clauses might execute
concurrently.

IV. PROBLEM DEFINITION
The goal of our work is to implement a dynamic broadcast
service which tolerates byzantine failures. The broadcast ser-
vice is deployed on a collection of nodes that interact with
asynchronous message-passing.

A. BYZANTINE DYNAMIC BASICS
We give a formal definition of a system configuration below,
which comes from [10]. An example of a system configura-
tion w is presented in Figure 2.
Definition 1 (Configuration): A configuration w repre-

sents sets of active nodes and removed nodes. It holds two
sets: The first set is a set of active nodes, w.active. Nodes in
w.active are either active at the beginning of the system or
are activated during the execution but not removed from the
system. The second set is a set of removed nodes w.removed,
which are nodes removed from the system. The size of w is the
sum of the size of w.active and the size of w.removed.

Users can change the system configuration by recon-
figuration operations. A set of configuration changes
cng contains two subsets. Subset cng.join contains nodes
which are activated for joining the system and subset
cng.remove contains nodes which will be removed from the
system.

We define an addition operation between a configuration
w and a set of changes cng. The result of w′ = w + cng is a
configuration. w′.active = w.active ∪ cng.join \ cng.remove
and w′.removed = w.removed ∪ cng.remove. An example of
such computation is shown in Figure 3.

Once a node is excluded from the system, it can no longer
be included in the system with the same identity. If there
exists some change sets cng1, cng2, . . . that validate the equa-
tion w+ cng1 + cng2 + . . . = w′, then we have w ⊆ w′.
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FIGURE 3. Applying a change set cng to a system configuration w . The new configuration w ′ contains 6 members and 4 nodes
have been removed from the system.

B. LIVENESS CONDITIONS
Before we specify the liveness conditions for the dynamic
reconfiguration problem with Byzantine failures, we first
indicate some preliminary definitions for this problem.

At any time t in the execution, we define P(t) be the set
of pending changes at time t such that a reconfig(cng) was
invoked but has not completed. We define B(t) as the set of
nodes that are Byzantine (including crashed nodes) by time t .

It is impossible to achieve agreement in an asynchronous
message passing system with Byzantine failures [11]. There-
fore, the configurations known by each node may be different
during the execution. Let us denote CurConfigp(t) as the lat-
est configuration that node p keeps at time t . A configuration
AvaiConfig is available at time t if and only if there exists an
active node p such that CurConfigp(t) ⊆ w.
The following liveness conditions hold during the whole

execution time of the system: at any time t , for any available
configuration AvaiConfig in the system at time t , fewer than
|AvaiConfig.active|

3 nodes out of set P(t).join∪AvaiConfig.active
are in set B(t) ∪ P(t).remove.

C. DYNAMIC BROADCAST WITH BYZANTINE FAULTS
The dynamic broadcast is a communication abstraction that
helps with highly available and scalable system applications.
Dynamic broadcasts support two communication primitives,
broadcast(m) and deliver(m), and a reconfiguration primi-
tive, reconfig(cng). In this paper, we realize dynamic Byzan-
tine broadcast primitives, which allow nodes to broadcast
an arbitrary number of messages by invoking broadcast(m)
multiple times and enable communications beyond point-to-
point in the system.

Users call broadcastp(m) to broadcast a message m in the
system. When a message m is delivered at node p, node p
will get an indication such that a message m with label l
broadcast by node p is delivered. Label l can be an arbitrary
bit string. All messages delivered for a particular sender are
distinctively labeled.

In addition to broadcast and deliver primitives, the service
exposes an interface, i.e., reconfigp(cng), for invoking recon-
figurations. Operation reconfigp(cng) allows an active node
p to add new nodes to the system or remove nodes from the
system, where cng is a set of nodes changing.

Only nodes that are members of the current system con-
figuration should be allowed to initiate actions. Therefore,
the broadcastp, reconfigp operations at node p are initially
disabled, until an enable event occurs at p. Operations are
no longer accessible at node p if haltp event is invoked.
After terminated by the haltp event, node p can still deliver
messages that were broadcast before it left.

We assume that Byzantine nodes cannot arbitrarily remove
or add nodes. Otherwise, the systemwill not be valid anymore
if infinite Byzantine nodes are added to the system. The
correct reconfiguration behavior can be regulated outside our
protocols. We say node p is active in the system if and only if
it is added to the system correctly, i.e., it starts with a correct
configuration.

We study two dynamic Byzantine broadcast protocols
in this paper: dynamic Byzantine consistent broadcast and
dynamic Byzantine reliable broadcast. Both of them support
multiple messages broadcast. We point out the properties of
these two broadcasts as follows.

The dynamic Byzantine consistent broadcast has four
properties [33]:

Validity: If a correct node (active node that follows
the algorithm protocol) p broadcasts a message m, then
every correct node q which joins the system before and
does not leave until after the broadcast of m eventually
delivers m.

No duplication: If a correct node p broadcasts a message
m with label l, then every other correct node delivers at most
one message with label l from p.

Integrity: If a correct node q delivers a message m from
sender p and p is correct, then m was previously broadcast
by p.

Consistency: If a correct node q delivers a messagemwith
label l from sender p, and another correct node s delivers a
message m′ with label l from sender p, then m = m′.
The dynamic Byzantine reliable broadcast has four prop-

erties [33]:
Validity, No duplication, Integrity: same properties as

the dynamic Byzantine consistent broadcast.
Agreement: If a correct node q delivers a message m with

label l from sender p in configuration w, then every other
correct node in configuration w delivers a message m with
label l from sender p eventually.

VOLUME 10, 2022 91375



J. Li et al.: Dynamic Byzantine Broadcast in Asynchronous Message-Passing Systems

V. THE WEAK SNAPSHOT ABSTRACTION
Before discussing broadcast protocols, we first introduce a
weak snapshot object [10] S, which provides fundamental
functions for constructing broadcast protocols.

Aweak snapshot objectws is accessible by a setP of nodes.
It supports two operations for every node p ∈ P: updatep(cng)
and scanp(). Operation updatep(cng) has an input value cng.
The operation returns a Boolean value that indicates whether
the update operation success. Operation scanp() returns a set
of values that have been successfully updated by updatep()
previously. For each weak snapshot object, the nodes set P
is static. Operations scanp() and updatep() have following
properties:

integrity: Let o be a scanp() operation that returnsC . Then,
for each cng ∈ C , an update(cng) operation is invoked by
some node q prior to the completion of o.
validity: Let o be a scanp() operation that is invoked after

the completion of an update(cng) operation, and that returns
C . Then, C 6= ∅.

monotonicity of scans: Let o be a scanp() operation that
returnsC and let o′ be a scanq() operation that returnsC ′. If o′

is invoked after the completion of o. Then, C ⊆ C ′.
non-empty intersection: There exists a change set cng

such that for every scan() operation that returns C 6= ∅,
it holds that cng ∈ C .
termination: If some majority M of nodes in P do not

crash, then every scanp() and updatep(cng) invoked by any
node p ∈ M eventually completes.
Generally speaking, these properties require that all scan

operations with non-empty returns observe the ‘‘first‘‘ update
operation.

Every configuration w in the system has a weak snap-
shot object ws(w), which can be accessed by nodes in
w.active. The algorithm uses an array of single-writer multi-
reader atomic registers as Mem[w] of size |w.active| for
each weak snapshot object. We use the Byzantine Quo-
rum with Listeners algorithm [34] to implement such
Byzantine atomic registers in asynchronous message-passing
systems.

Operation collectp() reads updates which are stored in
Mem[w]. Node p invokes updatep(w, cng) to write a set of
changes cng to theMem[w][p] in ws(w), which is considered
as reconfigurations to configuration w. In updatep(w, cng),
the algorithm first reads all updates that have been written
in Mem[w] by invoking collect(w). If it has not found any
existing updates, it writes cng inMem[w][p]. Change set cng
will be observed by following collectq(w) functions for any
q ∈ w.active. Node p learns updates proposed by other nodes
to w by invoking scanp(w). It calls collect(w) to read all pre-
vious updates to w. If no update has been written inMem[w],
it returns an empty set ∅. Otherwise, it calls collect(w) again
and returns all previous updates.

The relationship between configurations in a system can
be represented by a digraph G = (V ,E). Each vertex in G
indicates a system configuration. There is a directed edge
pointing from vertex vw to vertex vw′ if and only if the

Algorithm 1Weak Snapshot-Code for p
1: function updatep(w, cng)
2: if collect() = ∅ then
3: Mem[w][p].Write(cng)
4: return true
5: else
6: return false
7: end if
8: end function
9: function scanp(w)

10: C ← collect(w)
11: if C = ∅ then
12: return ∅
13: end if
14: C ← collect(w)
15: return C
16: end function
17: function collectp(w)
18: C ← ∅
19: for all q ∈ w.active do
20: cng← Mem[w][q].Read()
21: if c 6=⊥ then
22: C ← C ∪ {cng}
23: end if
24: end for
25: return C
26: end function

following relationship holds for the configuration w and the
configuration w′, i.e., w′ = w+ scanp(w) for a node p.
Intuitively, we use these weak snapshots as follows: when

a node p wants to change the configuration w, it invokes
updatep(w, cng) to propose a set of changes cng; it learns
the changes of configuration proposed by other nodes to
configuration w by invoking scanp(w), which returns a set
of changes. Compare to atomic snapshot objects [35], we do
not require atomicity, i.e., all operations can be ordered in a
sequential execution.

Integrity and termination properties have been guaran-
teed by the correctness of Byzantine atomic registers [34].
Aguilera et al. [10] explained in detail why Algorithm 1 pre-
serves validity, monotonicity and non-empty intersection
properties.

VI. DYNAMIC BYZANTINE BROADCAST
This section describes in detail the dynamic Byzantine broad-
cast protocols. We first introduce the consistent broadcast
from Section 6.1 to Section 6.4. Then we present the reliable
broadcast in Section 6.5.

Key components of our consistent broadcast proto-
col are shown in Algorithm 3, which contain func-
tion BroadcastInConfig (lines 48-56) and upon clauses
(lines 73-86) for broadcasting and delivering messages in a
given configuration. We realize the broadcast service in a
given configuration with the authenticated echo broadcast
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Algorithm 2 Code for Node p, Local Variables
1: local variables
2: MsgNump, initially 0, F the number of messages that p broadcasts to others
3: ConfigListp, initially ∅, F the set of configurations that visited by node p
4: CurConfigp, initially Init , F latest configuration found by p in the system
5: ReceivedMp, initially ∅, F the set of ECHO messages received by node p
6: ValidatedMp, initially ∅, F the set of messages validated by a quorum of a configuration, waiting for final delivery by

node p
7: DeliveredMp, initially ∅, F the set of messages delivered by node p
8: end local variables

protocol [36], [37]. The algorithm has two phases, broadcast-
phase and check-phase. When there are no reconfigurations,
all nodes stay in the same configuration. Operation broadcast
executes a check-phase to find configuration updates in the
system and enters the broadcast-phase after the check-phase.
When a node receives newmessages from other nodes, it runs
a check-phase to update its current configuration.

To allow reconfiguration, system members store informa-
tion about configuration changes in weak snapshot objects.
Members of a configuration are able to change the con-
figuration by updating a change set in the weak snapshot
object. We allow concurrent reconfiguration operations with
any broadcast operations and deliver events. Node p delivers
all messages that broadcast between its appearance in the
system and its departure. Furthermore, once a reconfiguration
operation is completed, future broadcast can be carried out
in the new configuration. The key challenge is to ensure that
no message delivers linger behind in the old configuration,
while updates are made to the new configuration. We use the
following strategies to make sure the correctness of broadcast
services in dynamic systems.

• In our dynamic protocol, nodes do not directly deliver
messages when it is confirmed by a quorum of the
system. The procedure is modified so that nodes first
accept all messages that they receive in any configu-
rations. Then nodes deliver messages according to the
configuration they have observed. Messages are suc-
cessfully delivered at node p if they are broadcast in a
configuration that p has visited. If a newmessage is sent
to a node, the node starts the check-phase to detect new
configurations in the system.

• The broadcast-phase works in the latest configuration
found by the check-phase. First, nodes broadcast the
message in the latest configuration during the broadcast-
phase, and then nodes read the reconfiguration infor-
mation. If nodes find a new configuration, the protocol
restarts the check-phase.

• The reconfig operation starts with a check-phase and
then writes information about the new configuration to
the quorum of the old configuration. These procedures
will be iterated until no new configurations are found.

Function BroadcastInConfig is the core of a broadcast
phase, which implements the basic functionality of the

broadcast-phase. It first broadcasts the message in the current
configuration (line 50-52), and then finds previous update
of the current configuration by scanning its weak snapshot
object in line 54. To deliver a message, nodes run function
ReceiveMsg when they receive messages from other nodes
(line 84) or visit a new configuration (line 26).

Let us discuss a simple example where only one reconfig-
uration request, i.e., RC , is called, from w1 to w2. Consider
a broadcast operation, i.e., B, runs a broadcast-phase with
message m. There are two possible cases with respect to B.
One is that it does not observe any updates of configurations.
This means that B’s execution of broadcast-phase is inw1 and
all correct nodes will receive m and deliver it successfully.
Otherwise, B observes RC in its check-phase and broadcasts
m in w2. After receiving messages from other nodes, correct
nodes start check-phase to detect new configuration in the
system. Because RC is already found by B, it will be also
found by other check-phases which start after B’s check-
phase. Message m will be delivered in w2 at correct nodes
eventually.

In the example above, we ignored the correctness of the
dynamic broadcast if several nodes concurrently propose
changes to w1. Therefore, the rest of our algorithm aims to
handle the complexity that incurs due to multiple reconfigu-
ration requests. In Section 6.1, we introduce the local state of
nodes. Section 6.2 presents the pseudo-code of the dynamic
Byzantine consistence broadcast. We discuss the notion of
established configurations in Section 6.3. The analysis and
proof of the correctness are presented in Section 6.4. Finally,
we further introduce the dynamic Byzantine reliable broad-
cast in Section 6.5.

A. STATE OF NODES
In this subsection, we discuss the local state of nodes. Each
node stores several variables in localmemory. These variables
are shown in Algorithm 2. Note that all actions to local
variables are atomic. Local variables at node p are denoted
with subscript p.
All configurations which have been visited by node p are

stored in ConfigListp, which is initialed as an empty set. The
latest configuration found by node p is kept in CurConfigp,
which is initialed as Init , i.e., the primary system configura-
tion. MsgNump is the number of messages that broadcast by
node p.
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Algorithm 3 Code for Node p, Dynamic Byzantine Consistent Broadcast

1: initially:
2: if p ∈ Init.active then
3: enable operations
4: end if
5: end initially:
6: operation broadcastp(m)
7: newConfig← Traversep(∅,m)
8: MsgNump← MsgNump + 1
9: end operation

10: operation reconfigp(cng)
11: CurConfigp← Traversep(cng,⊥)
12: for all q ∈ cng.join do
13: send (Join, newConfig, p)
14: end for
15: return newConfig
16: end operation
17: function Traversep(cng,m)
18: desiredConfig← CurConfigp + cng
19: Front ←

{
CurConfigp

}
20: loop
21: w← l ∈ Front s.t. l is the minimal configuration

in Front
22: if p /∈ w.active then
23: haltp
24: end if
25: ConfigListp← ConfigListp ∪ w
26: ReceiveMsgp()
27: if w 6= desiredConfig then
28: updatep(w, desiredConfig \ w)
29: end if
30: ChangeSets← scanp(w)
31: if ChangeSets 6= ∅ then
32: Front ← Front \ {w}
33: for all c ∈ Changesets do
34: desiredConfig← desiredConfig+ c
35: Front ← Front ∪ {w+ c}
36: end for
37: else
38: ChangeSets← BroadcastInConfigp(w,m)
39: m←⊥
40: end if
41: if ChangeSets = ∅ then
42: CurConfigp← desiredConfig
43: return desiredConfig
44: end if
45: end loop
46: end function

47: function BroadcastInConfigp(w,m)
48: if m 6=⊥ then
49: for all q ∈ w.active do
50: send (SEND, p,MsgNump,m,w) to q
51: end for
52: end if
53: ChangeSets← scanp(w)
54: return ChangeSets
55: end function
56: function ReceiveMsgp
57: for all q∈CurConfigp.active

⋃
CurConfigp.removed

do
58: for all (q,MsgNumq,m,w) ∈ ValidatedMp do
59: if (q,MsgNumq,m, ∗) /∈ DeliveredMp and

w ∈ ConfigListp then
60: DeliveredMp ← DeliveredMp ∪

(q,MsgNumq,m,w)
61: ValidatedMp ← ValidatedMp \

(q,MsgNumq,m,w)
62: end if
63: end for
64: end for
65: end function
66: upon receiving (SEND, s,MsgNum,m,w) from node s
67: for all q ∈ w.active \ s do
68: send (ECHO, p, s,MsgNum,m,w) to q
69: end for
70: end upon
71: upon receiving (ECHO, q, s,MsgNum,m,w) from node

q
72: ReceivedMp← ReceivedMp ∪ (q, s,MsgNum,m,w)
73: if #t >

2·|w.active|
3

74: s.t.(t, s,MsgNum,m,w) ∈ ReceivedMp then
75: ValidatedMp←ValidatedMp∪(s,MsgNum,m,w)
76: end if
77: CurConfigp← Traversep(∅,⊥)
78: ReceiveMsgp()
79: end upon
80: upon receiving (Join,w, q) from node q
81: if p ∈ w.active and p /∈ Init.active then
82: enable operations
83: if CurConfigp = Init then
84: CurConfigp← w
85: end if
86: end if
87: end upon

Node p delivers a message in four steps. First, it sends
ECHOmessages to other nodeswhen it receives a SENDmes-
sage from the sender. Second, it puts messages inReceivedMp
whenever it receives ECHO messages from others. A mes-

sage m is considered to be correct in configuration w if a
quorum of w.active confirms its correctness with an ECHO
message. These messages are stored it in ValidatedMp with
its broadcast configuration w in the third step. Until w is
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visited by p, messages in ValidatedMp with configuration w
are successfully delivered and enter in DeliveredMp.

B. DYNAMIC BYZANTINE CONSISTENT BROADCAST
This subsection describes the algorithm for the dynamic
Byzantine consistent broadcast, which is shown in Algo-
rithm 3. Operations and functions at node p are denoted with
subscript p. There are two operations that can be invoked
directly by users at node p, broadcastp(m) and reconfigp(cng).
Users call broadcastp(m) to broadcast a message m in

the latest configuration and propose a set of configura-
tion changes cng to the system by invoking reconfigp(cng).
We introduce these two operations respectively in this sub-
section. Then, we discuss how nodes deliver messages. The
main logic function Traversep is introduced in the last part of
this subsection.

1) BROADCASTING MESSAGES
Operation broadcastp(m) invokes Traversep(∅,m) to find the
latest configuration w in the system and broadcast message
m, where ∅ implies that this execution does not change the
system configuration. After broadcasting, variableMsgNump
increases by 1 for further broadcasting.

2) RECONFIGURATIONS
Similar to a broadcastp(m) operation, a reconfigp(cng) also
invokes Traversep(cng,⊥) to find the latest configuration
w, and apply a change set cng to the system configuration,
where ⊥ implies that this execution does not broadcast any
messages.

Node p sends the new configuration to all joining nodes
in line 12-14. A new node successfully joins the system if it
receives a correct configuration.

3) DELIVERING MESSAGES
Message delivery is a passive procedure in the protocol.
It is triggered when nodes receive messages from other
nodes. We implement an authenticated echo broadcast algo-
rithm in a certain configuration. After receiving a mes-
sage m with a SEND tag broadcast in configuration w by
node s (line 50-52), node p broadcasts m with ECHO tag
to other nodes in configuration w (line 74-76). When node
p receives more than 2·|w.active|

3 ECHO messages contain-
ing the same message m broadcast by node s, in the same
configuration m, with the same message number MsgNum,
it validates m and store it in set ValidatedMp (line 80-83).
Node p starts to find the latest configuration in the system
whenever it receives ECHO messages from other nodes by
invoking Traversep(∅,⊥) (line 84), where ∅ implies that
this execution does not change the system configuration
and ⊥ implies that this execution does not broadcast any
messages.

Messagem received by p in configurationw is not delivered
immediately because w could be a fake configuration and
message m may not be broadcast in the real system. Node p
delivers messagem if it has visited the configuration wwhere

m was broadcast (line 57-72). Node p checks all validated
messages by calling function ReceiveMsgp() when it visits a
new configuration (line 26) or it receives an ECHO message
(line 84).

4) TRAVERSING THE GRAPH OF CONFIGS
Weak snapshots form all configurations into a digraph,
where configurations are vertices in the graph. If there is
an updateq(w, cng) happening with return true during the
execution by node q ∈ w.active where w′ = w + cng,
cng 6= ∅, we have a direct edge from vertex w to vertex
w′ in the digraph. Our algorithm requires that a removed
node cannot join the system again, thus the size of w′ is
always larger than w and the graph or configurations is
acyclic.

Node p gets the latest configuration information through
the function Traversep(), which is invoked by all operations
or when node p receives messages from other nodes. This
function traverses the digraph of configurations from its cur-
rent configuration CurConfig. Then, the digraph is visited
for collecting configuration changes which are previously
applied to the system. All changes are gathered in the set
desiredConfig. After finding all changes, desiredConfig is
included in the digraph if it does not exist. A weak snapshot
object of desiredConfig is connected to the graph by function
updatep(). Other nodes in the system can find desiredConfig
in subsequent searches.

We implement a well-known Dijsktra algorithm [38] to
traverse the graph, with a modification such that the traversal
also reforms the digraph, which is similar to the traver-
sal algorithm in [10]. Function Traversep() keeps a set of
configurations Front , which contains discovered configu-
rations waiting for further visit. Set Front is initialed as{
CurConfigp

}
(line 19). Each iteration, Traversep visits the

nearest configuration from CurConfigp in Front (line 21),
i.e., the configuration which has the minimal size in the set,
and remove this vertex from Front (line 33) after visiting.
If more than one configuration has the same size, Traversep()
first visits the one with the minimal size of removed
subset.

When Traversep() visits a configuration w (line 20-46),
it first checks if p is still in the system and then deliv-
ers messages that p has stored in ValidatedMp by invok-
ing ReceuveMsgp(). It is possible that w does not include
all known changes found by the traversal, i.e., w 6=

desiredConfig. In this case, p calls updatep() to build an edge
from w to desiredConfig in the digraph (line 28-30). This
update can be failed because another node has already built
an edge outgoing from w. If so, Traversep() will visit the
successor node of w and update it again.
Once an update has been applied to the weak snapshot

of w successfully (line 29), latter scanp(w) (line 31) will
return the update. A non-empty changes set is returning if
there are edges outgoing from w. For every change set c ∈
ChangeSets returned by scanp(w), there is an edge from w
to w + c. Thus, we add w + c to Front for furthering visit

VOLUME 10, 2022 91379



J. Li et al.: Dynamic Byzantine Broadcast in Asynchronous Message-Passing Systems

FIGURE 4. Traversal of the digraph of configurations.

(line 36). Change sets c is also collected by desiredConfig
(line 35). If there is no outgoing edges from w, node p
invokesBroadcastInConfig(w,m) (line 39), which broadcasts
the message in w (line 50-52) and scans the weak snapshot
object of w again (line 54). If there is nothing found by
scanp(w), function Traversep() completes.
When there is only one configuration in Front ,

desiredConfig is visited by Traversep() because it has
the maximum size among all configurations visited by
Traversep() in the execution. This configuration contains all
changes observed during the traversal. Moreover, if w 6=
desiredConfig, the condition in line 32 is always satis-
fied. Therefore, BroadcastInConfig(w,m) is invoked when
there is only one configuration in Front , i.e., desiredConfig.
For the same reason, when Traversep finishes, we have
Front = {desiredConfig}. This configuration is assigned to
CurConfigp in line 43 and returned by Traversep.
We consider the example that we discussed in Introduction.

Operations reconfigp(cng1) and reconfigq(cng2) are executed
concurrently, where cng1 = {+p5} and cng2 {−p4}. There
are two possible cases resulted from such simultaneous oper-
ation. In the first case, either cng1 or cng2 are first updated
succefully with a update(w, cng) function. Suppose it is cng1.
The other update function observes cng1 and will not write
cng2 in the weak snapshot object of w. Function Traverseq()
invoked by reconfigq(cng2) renews its desiredConfig from
w+cng2 tow+cng2+cng1, visits configuration (w+cng1) in
the next iteration and writes cng2 inws(w+cng1). Traversep()
will find w+cng2+cng1 from w+cng1 in future executions.
In the second case, both cng1 and cng2 are successfully

written into the weak snapshot object of w. Benefited from
the validity property of the weak snapshot object, scanp(w)
and scanq(w) both return non-empty sets Cp and Cq. The
non-empty intersection property of the weak snapshot object
ensures Cp ∩ Cq 6= ∅, i.e., either Cp ∩ Cq = cng1, Cp ∩
Cq = cng2 or Cp ∩ Cq = cng1 ∪ cng2. Suppose it is cng1.
Then Traverseq() discovers both configuration w+ cng1 and
configuration w + cng2. It will visit them in the following
iterations and build edges from configuration w + cng1 and
configuration w + cng2 to configuration w + cng1 + cng2.
Traversep() will find w + cng2 + cng1 in future executions.
If Cp ∩ Cq = cng1 ∪ cng2, both Traversep() and Traverseq()

will find w + cng1 + cng2 in this execution. The digraph of
this example is shown in Figure 4.

C. SEQUENCE OF ESTABLISHED CONFIGURATIONS
The difficulty of the reconfiguration problem is that different
nodes might keep different configurations if several reconfig-
uration operations are invoked concurrently. In our algorithm,
when multiple nodes invoke update(w) at the same time, con-
current scan(w) might see different outgoing edges from w.
Fortunately, the non-empty intersection property of weak

snapshot objects ensures that nodes will never work on dif-
ferent branches of the digraph. Actually, at least one outgoing
edge is returned by all scan(w) functions and the destination
of this edge will be visited by all traverse() functions. This
fact enables us to define a totally ordered subset of configu-
rations, i.e., established configuration, as follows:
Definition 2 (SequenceofEstablishedConfigurations [10]):

The unique sequence of established configurations ε is con-
structed as follows:

• the first configuration in ε is the initial configuration
Init;

• if w is in ε, then the next configuration after w in ε is
w′ = w+cng, where cng is an element chosen arbitrarily
from the intersection of all sets C 6= ∅ returned by some
scan(w) operations in the execution.

The first digraph traverse in the system starts from
CurConfigp = Init , which is an established configuration by
definition. At each iteration, Traversep() visits a configura-
tion w, removes it from Front and adds its children in Front .
If w is an established configuration, then one of its children is
also an established configuration, which is included in Front .
If w is not established, an established configuration is still in
Front . Thus, at least one established configuration in Front in
each iteration. At the end of the execution of Traversep, there
is only one configuration desiredConfig in Front . Therefore,
configuration desiredConfig is also an established configu-
ration. We conclude that desiredConfig which is assigned to
CurConfigp in line 43 and returned from Traversep is estab-
lished at the first digraph traverse. By induction, Traversep()
always starts with an established configuration and returns an
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established configuration. Configuration CurConfigp is also
always established.

Function BroadcastInConfigp (line 48-56) is performed in
an established configuration as well. Moreover, we prove
that each Traversep() visits every established configura-
tion in ε between the starting configuration CurConfigp
and the returned configuration desiredConfig. Thus, intu-
itively, by visiting each configuration during a traversal,
it is guaranteed to never broadcast on different branches
on the digraph and all correct messages can be delivered
eventually.
Lemma 1: Whenever BroadcastInConfigp(w, ∗) is invoked,

w is an established configuration.
Proof: As we discussed above, the first digraph traver-

sal stars from an established configuration CurConfigp =
Init . Therefore, by induction, configuration desiredConfig
returned from Traversep in line 44 is always established and
CurConfigp is always an established configuration.

We claim that if scanp(w) returns ChangeSets = ∅ at some
iterations of the loop in lines 20-46, then w = desiredConfig
and Front = {desiredConfig}.

If w is not equal to desiredConfig, then there must be
a function updatep(w, desiredConfig \ w) which completes
before scanp(w) starts. This is impossible because of the
validity property of weak snapshot objects.

Moreover, if Front 6= {desiredConfig}, there is another
w′ ∈ Front . We either have |w| <

∣∣w′∣∣, or ∣∣w′.removed∣∣ <

|w.removed |. Because w = desiredConfig = w′+ c for some
change set c, these inequalities are impossible to hold.

Since during the iteration, scan(w) returns ∅, Front does
not change from the beginning of the iteration. Any configu-
ration w passed to BroadcastInConfigp(w, ∗) is established.

�
Lemma 2: Let T be an execution of Traversep() and

initConfig be the value of CurConfigp when node p starts
this execution. Let desiredConfig be the value of CurConfigp
when this execution terminates. Then Traversep() visits all
configurations from the sequence of established configura-
tions between initConfig and desiredConfig.

Proof: When T begins, Front = {initConfig}.
Let estConfig = initConfig. Consider some iterations

during T visit w 6= estConfig. This happens only if estConfig
is removed from Front and some scan(estConfig) during T
returns a non empty ChangeSets.
After removing estConfig from Front , for every c ∈

ChangeSets returned by scan(estConfig), (estConfig + c) is
added to Front . By the non-empty intersection property of
weak snapshot objects and the definition of the sequence of
established configurations, the configuration after estConfig
in ε is added toFront andwill be visited by Traversep in future
iterations.

Arguments above hold for every established configuration.
When BroadcastInConfig(w, ∗) is invoked, scan(w) com-
pletes in line 31 and returns ∅, which ends the proof. �

D. CORRECTNESS
In this subsection, we show that our algorithm satisfies all
properties of the dynamic Byzantine consistent broadcast.
We indicate the correctness of the algorithm respectively in
Lemma 3, Lemma 4, Lemma 5 and Lemma 6.
Lemma 3: Our algorithm satisfies the validity property.
Proof: If node q joins the system before node p broad-

casts the message m, then p will enter an established config-
uration w where q ∈ w.active ∪ w.removed . Because q does
not leave the system when p broadcasts m, q /∈ w.removed .

When node q joins the system, it starts with an established
configurationwhich is already included in the digraph. So this
configuration must be visited by node p when it broadcast m.
By lemma 2, q will also visit w and deliver m eventually. �
Lemma 4: Our algorithm satisfies the no duplication

property.
Proof: Because node p only broadcasts m in a certain

configuration w and updates MsgNump for each broadcast-
ing. The MsgNum and configuration form a unique label for
each message. In addition, the no duplication property of
the authenticated echo broadcast algorithm ensures that there
is no duplication in broadcasting of messages in a certain
configuration.

Therefore, every correct node only delivers at most one
message with label l from sender p.

�
Lemma 5: Our algorithm satisfies the integrity property.
Proof: The integrity property of the authenticated echo

broadcast algorithm ensures that if node q validates amessage
in a correct configuration w from sender p, it must previously
broadcast by sender p in configuration w.

According to Lemma 1, a correct node p only broadcasts
messages in established configuration. Hence, a correct node
q delivers a message m in an established configuration after
p broadcasting it.
Our assumption of the number of Byzantine nodes and the

correctness of reconfiguration operations ensure that every
correct node will never visit a fake configuration. Therefore,
any validated messages in fake configurations will never be
delivered.

�
Lemma 6: Our algorithm satisfies the consistency prop-

erty.
Proof: The integrity property of the authenticated echo

broadcast algorithm directly implies that if correct node q
delivers a message m with label l from sender p in config-
uration w and correct node q delivers a messagem′ with label
l from sender p in configuration w, then m = m′.

The label in our protocol contains the information of the
system configuration. Therefore, if two delivered messages
have the same label, then they are delivered in the same
configuration. The consistency property holds intuitively. �
Theorem 1: Algorithm 3 realizes a dynamic Byzantine

consistent broadcast.
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Proof: Because Algorithm 3 satisfies validity, no dupli-
cation, integrity, and consistency properties, it realizes a
dynamic Byzantine consistent broadcast. �

E. DYNAMIC BYZANTINE RELIABLE BROADCAST
In this subsection, we present the dynamic Byzantine reli-
able broadcast protocol. Only the differences between the
consistent broadcast and the reliable broadcast are listed in
Algorithm 4.

Algorithm 4 Code for Node p, Differences From the Consis-
tent Broadcast Protocol
1: local variables
2: ReadyMp, initially ∅, F the set of READY messages
3: end local variables
4: upon receiving (ECHO, q, s,MsgNum,m,w) from node
q

5: ReceivedMp← ReceivedMp ∪ (q, s,MsgNum,m,w)
6: if #t >

2·|w.active|
3 s.t.(t, s,MsgNum,m,w) ∈

ReceivedMp then
7: for all t ∈ w.active \ s do
8: send (READY, p, s,MsgNum,m,w) to t
9: end for

10: end if
11: end upon
12: upon receiving (READY, q, s,MsgNum,m,w) from

node q
13: ReadyMp← ReadyMp ∪ (q, s,MsgNum,m,w)
14: if #t >

|w.active|
3 s.t.(t, s,MsgNum,m,w) ∈ ReadyMp

then
15: for all t ∈ w.active \ s do
16: send (READY, p, s,MsgNum,m,w) to t
17: end for
18: end if
19: if #t >

2·|w.active|
3 s.t.(t, s,MsgNum,m,w) ∈

ReadyMp then
20: ValidatedMp ← ValidatedMp ∪

(s,MsgNum,m,w)
21: end if
22: Traversep(∅,⊥)
23: ReceiveMsgp()
24: end upon

As we discussed in previous sections, our protocol is able
to be adjusted into any broadcast abstractions. Here we show
how to build the reliable broadcast based on our protocols.

Compare to the consistent broadcast, the basic broadcast
algorithm is changed from the authenticated echo broadcast
algorithm to the authenticated double-echo broadcast algo-
rithm [39]. The algorithm is called authenticated double-echo
broadcast because it has two ECHO steps. In the first ECHO
step, node p sends message m with ECHO tag to other nodes
when it accepts the message m with SEND tag from node s.
In the second step, if node p receives message m with ECHO
tag, it stores it in ReceivedMp (line 5). If more than 2·|w.active|

3

copies of the message m with ECHO tag from other nodes
in configuration w are stored in ReceivedMp, node p sends
message m with READY tag to other nodes in configuration
w (line 6-11).
We introduce the second echo procedure in the broadcast

algorithm. Nodes broadcast messages with READY tag to
response the first echo. If node p receives a message with
READY tag, it stores it in ReadyMp (line 14). If more than
|w.active|

3 copies of the message m with READY tag from
other nodes in configuration w are stored in ReceivedMp,
node p sends message m with READY tag to other nodes in
configuration w (line 15-20).
If more than 2·|w.active|

3 copies of the message m with
READY tag from other nodes in configuration w are stored in
ReceivedMp, node p validates message m in configuration w
and stores it in ValidatedMp (line 21-24), for further delivery.
With the same argument as in Section 6.4, we can prove

that the algorithm satisfies the validity, no duplication, and
integrity properties of the dynamic Byzantine reliable broad-
cast.

Generally speaking, if a Byzantine broadcast algorithm
works in a static configuration of nodes, it can be directly
adjusted to a dynamic Byzantine broadcast algorithm within
our protocols.
Lemma 7: Our algorithm satisfies the agreement property.
Proof: The totality property [33] of the authenticated

echo broadcast algorithm directly implies that if correct node
q delivers a message m with label l from sender p in con-
figuration w, then every correct node eventually delivers a
message m with label l from sender p in configuration w.

Correct nodes are stimulated to discover the updated con-
figuration when it receives a message in such a configuration.
Our assumption of the number of Byzantine nodes and the
correctness of reconfiguration operations ensure that every
correct node will eventually visit all established configura-
tions in the system.When a configurationw is visited by node
p, it will deliver all messages it validates in w. The agreement
property holds intuitively. �
Theorem 2: Algorithm 3 and Algorithm 4 realize a

dynamic Byzantine reliable broadcast.
Proof: Because Algorithm 3 satisfies the validity,

no duplication, integrity, and consistency properties, and
Algorithm 4 satisfies the agreement property. With the mod-
ification in Algorithm 4, our protocol realizes a dynamic
Byzantine reliable broadcast. �

VII. CONCLUSION
In this paper, we studied the dynamic broadcast problem in
asynchronous systems with Byzantine faults. Previous recon-
figuration results in asynchronous systems restricted to crash
only. They assumed nodes behave correctly during the exe-
cution. However, in real distributed systems, some malicious
nodes would like to attack the system. It is essential to ensure
that the robustness of system is still guaranteed even some
nodes are Byzantine.
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We discussed dynamic Byzantine algorithms without con-
sensus. We first specified the liveness condition of the
dynamic reconfiguration problem with Byzantine failures.
We also introduced a dynamic Byzantine consistent broad-
cast and then discuss how to adjust this protocol to other
dynamic broadcast protocols. We showed a dynamic Byzan-
tine reliable broadcast as an example, which could inspire
future dynamic Byzantine broadcast primitives in fully asyn-
chronous message-passing systems.
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