
Received 11 July 2022, accepted 22 August 2022, date of publication 29 August 2022, date of current version 2 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3202644

A Control Plane Enabling Automated and Fully
Adaptive Network Traffic Monitoring With eBPF
SIMONE MAGNANI 1,2, (Member, IEEE), FULVIO RISSO 3, (Member, IEEE),
AND DOMENICO SIRACUSA 1
1Cybersecurity, Fondazione Bruno Kessler, 38121 Trento, Italy
2DIBRIS Department, Università di Genova, 16145 Genova, Italy
3DAUIN Department, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Simone Magnani (smagnani@fbk.eu)

ABSTRACT The extended Berkeley Packet Filter (eBPF) enables the dynamic injection of user-defined
processing logic at run-time in the Linux networking stack without disrupting any active monitoring process.
This enables the selective extraction of only the traffic features that are needed in a given instant of time,
which is what we define fully adaptive network traffic monitoring. However, eBPF programs require ad-hoc
control plane routines for each specific scenario in order to orchestrate the underlying data plane and export
the required metrics, resulting in potentially duplicated source codes to maintain, and creating the risk
of deploying, at runtime, unverified user-defined code that controls the devices running the monitoring
process. This paper presents a control plane that automatically adapts both its management tasks and data
extraction methodologies based on the underlying data plane provided by the user, who can merely focus
on the monitoring logic definition. The paper evaluates the performance of the control plane’s modules and
demonstrates the advantages, in terms of processing speed and memory consumption, of a fully-adaptive
monitoring approach with respect to nProbe (a state-of-the-art solution), an adaptive and a non-adaptive
methodology in eBPF. Experiments prove that the control plane monitoring options do not significantly
affect the underlying data plane (0.15% degraded throughput) and leverage the most efficient extraction
primitives (20x faster execution time). Moreover, the fully-adaptive monitoring leads to a higher number of
processed packets (10x) and significantly lower memory occupancy (10x) when extracting the smallest set
of features.

INDEX TERMS Adaptive monitoring, control plane, data plane, eBPF, network traffic monitoring.

I. INTRODUCTION
The increasing need for computation capabilities at the edge
of the infrastructure (e.g., outside data centres or enterprise
networks) has reshaped the concept of network perimeter and
spurred the emergence of zero-trust architectures [1], posing
more severe challenges for network monitoring tools, which
need to adapt to dynamic and heterogeneous environments
including devices with different capacities (e.g., powerful
servers, end-hosts, small IoT gateways, mini PCs), capabil-
ities (e.g., machines with GPUs or specific architectures),
locations (on-premise, remote), and more. To scale up with
the enormous amount of potential scenarios, infrastructure

The associate editor coordinating the review of this manuscript and

approving it for publication was Jon Atli Benediktsson .

managers should have the possibility to define the logic of
monitoring functions in an infrastructure-agnostic way and
should be able to deploy them with unprecedented levels of
adaptability, effectiveness, and automation.

Conventional monitoring tools present a control logic
pre-tailored to the extraction primitives they employ,
resulting in ad-hoc monolithic systems that accomplish
scenario-specific purposes. In addition, many solutions build
upon proprietary non-native drivers that not only need to
be constantly maintained according to the underlying oper-
ating system updates, but they also re-implement part of
the networking logic present in the kernel of the system to
preserve the default network packets routes. Moreover, such
non-adaptive solutions statically define the nature of gathered
data in terms of amount, type, and granularity of information

90778 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4957-3577
https://orcid.org/0000-0001-6134-7890
https://orcid.org/0000-0002-5640-6507
https://orcid.org/0000-0003-0621-9647


S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

extracted from packets throughout the entire monitoring
session, resulting in a constant and fixed logic. This method-
ology not only has a noticeable impact on high-speed net-
works due to its unnecessary additional memory consumption
and processing overhead, but it might also be too heavy to
be supported by a resource-constrained device with old/low
requirements, and, therefore, unusable in many solutions.

A partial solution to the above problem consists in what
we call adaptive network monitoring, a methodology for
enabling the dynamic activation of features through addi-
tional support data structures used for selecting, among a long
and immutable predefined list, which features the monitor-
ing program extracts from network traffic. Despite enabling
a finer tuning of the computational power at runtime, this
methodology still implies a non-negligible cost in terms of
processing overhead, as the monitoring system needs to keep
consulting the support structures to decide whether to extract
or not each feature, and even conditional statements and
memory loads are expensive operations in high-speed packet
processing environments. More importantly, this solution
prevents extending the extraction pipeline, at least not without
a cold restart of the system, thus limiting the flexibility of the
monitoring logic.

On the other hand, what we call fully-adaptive methodol-
ogy introduces the possibility to precisely define the set of
information to be gathered, characterising custom features
(evenmore complex than a simple counter) and the associated
extraction logic, and applying such configurations at runtime
without disruptions to monitoring operations. The extended
Berkeley Packet Filter (eBPF) [2] enables such monitoring
by providing a virtualized in-kernel environment that, thanks
to its companion compiler and verifier, defines a secure and
safe boundary where to extend the monitoring pipeline by
adding and removing custom user-defined programs. Dif-
ferently than the traditional Linux Traffic Control (TC) [3]
networking layer hook, combining eBPF with the eXpress
Data Path (XDP) [4] allows moving the entire execution of
the monitoring program to the lowest layer of the operating
system, even directly within the network card interface itself
(if supported), resulting in early (and efficient) processing of
network packets.

As a matter of fact, each eBPF data plane program needs
a sibling control plane for management tasks, including
accessing and exporting the content of the monitoring values
extracted from network traffic and contained in specific data
structures. However, eBPF only provides a safe sandbox for
the compilation and execution of the data plane program,
which means that any remote device under monitoring should
accept user-defined and unverified control plane routines
that might potentially harm the system. Moreover, control
plane programs referring to different scenarios still share a
high portion of control routines for accessing monitoring
data. This does not only worsen the software maintainability,
as infrastructure managers have to maintain and update dif-
ferent source codes, but it also potentially introduces flaws

and latency due to an ineffective (or incorrect) extraction
methodology.

Taking all these considerations into account, our key idea
is to supply a control plane to limit the tasks of infrastructure
managers to the mere creation of the data plane logic, by pro-
viding verified and optimised management and extraction
routines, which can be safely pushed into the remote device
to monitor alongside the user-defined data plane to supervise
and export its gathered data. More specifically, this work
introduces two major contributions:
• First, it proposes a control plane to enable and sup-
port the fully-adaptive approach in remote monitoring
devices through exposing unified methods to interact
with the system, which allow to (i) dynamically receive
the data plane configuration (i.e., eBPF monitoring pro-
gram), (ii) safely compile and inject it into the monitor-
ing pipeline of the system, and (iii) automatically access
and export the defined metrics from the monitoring pro-
gram to the requesting entity (e.g., user or automated
system). We discuss the adoption of such controller and
evaluate its monitoring options with respect to a baseline
version, in terms of performance degradation.

• Second, it evaluates the fully-adaptive network monitor-
ing methodology and compares it against nProbe [5],
a NetFlow-compatible [6] implementation, and the
adaptive and a non-adaptive approach in eBPF, report-
ing significant advantages of adopting such methodol-
ogy, in terms of number of network packets processed
and memory consumption.

The rest of the paper is structured as follows: Section II
reviews and discusses related works. Section III enriches
the introduction by presenting the motivations behind our
research. Then, Section IV provides information concern-
ing the proposed methodology, the adopted architecture and
monitoring options. The experimental validation and the
comparison with state-of-the-art methodologies is described
in Section V. Finally, Section VI outlines future research
directions and extensions to this work, while Section VII
concludes the paper.

II. RELATED WORK
In this section, we present some application of both eBPF
and non-eBPF based state-of-the-art monitoring solutions,
pointing out the difference with our approach in terms of
monitoring logic definition and injection. Works that analyse
gathered data for any further purposes (e.g., detect cyberat-
tacks or gather insights on network performance) are there-
fore willingly omitted.

A. eBPF-BASED APPLICATIONS AND APPROACHES
The creation of programmable data plane monitoring
programs in-kernel led many researchers to investigate
the effects, in terms of both performance improve-
ment/degradation [7] and programmability/feasibility [8],
of adopting eBPF-based solution to replace state-of-the-art

VOLUME 10, 2022 90779



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

approaches and monitoring functions. In fact, not only
communities [9], [10] and open-source frameworks for
observability (e.g., Cilium1) constantly grow, but also many
companies including Google, Microsoft, Facebook, Cloud-
fare,2 and Sysdig3 re-designed an optimised version of many
applications in eBPF, such as firewalls, load-balancers, and
more. For instance, in [11] authors use eBPF to efficiently
replace iptables,4 a well-known firewall and traffic manage-
ment tool for Linux systems. Additional applications include
safeguarding users privacy while using common domain
resolution protocols [12], network congestion [13], [14]
and fault [15] detection, network traffic mirroring [16], the
deployment of mobile gateway for 5G networks [17], iden-
tification and performance tuning of a Redis database [18],
Intrusion Detection and Prevention Systems [19], [20], and
the detection of specific cyberattacks, such as for Distributed
Denial of Service [21] orWater Torture [22].

The authors of [23] and [24] propose elastic in-kernel
transparent monitoring systems for microservices observ-
ability using fine-grained indicators, which allow inspecting
internal states of microservice instances. A similar purpose is
achieved in [25] for locating insects of troubles in a network.
Moreover, in [4] authors partially address few limitations
we discussed in Section I, such as the importance of having
a non-intrusive monitoring logic, by combining eBPF with
XDP and extracting ad-hoc features to reduce the resource
footprint of software network analytics.

However, all the mentioned applications share at least
one of the following constraints. First, they couple the data
plane monitoring logic with a static control plane specific for
the application they are designed for, resulting in having a
multitude of similar code replicated for each scenario. Sec-
ond, the majority of these solutions builds upon precompiled
programs that are not meant to change throughout the entire
execution of the software, resulting in a bounded monitoring
logic. The remaining ones support the dynamic tuning of the
extraction logic, but only between the previously defined ones
as they do not accept external user-defined code, resulting in
a limited adaptive monitoring.

B. NON-eBPF BASED APPROACHES
Concerning non-eBPF technologies, the de-facto monitoring
protocols are NetFlow and IPFIX [26], its open counterpart.
A famous compliant implementation used also as an evalua-
tion metric in this paper is nProbe [5], which relies on differ-
ent underlying packet processing technologies (PF_RING5

and libpcap6). However, it does not support changing the
monitoring pipeline at runtime, hence extracting a constant
set of features from the traffic.

1https://cilium.io/
2https://www.cloudflare.com/
3https://sysdig.com/
4https://linux.die.net/man/8/iptables
5https://www.ntop.org/guides/pf_ring/
6https://github.com/the-tcpdump-group/libpcap

Other approaches focus on different adaptive properties.
In fact, they propose to adapt the monitoring frequency
[27], [28], the granularity of traffic aggregate [29], [30], [31]
(e.g., the session identifier used to group packets), and the
features collected for monitoring [32], [33], [34] depending
on decisions that rely on the undergoing networking situation.
In [35], the authors propose a similar approach that enables
the dynamic data plane program reconfiguration, but it builds
upon a different technology (P47) that restricts data struc-
tures and extraction operations to traditional flow-table based
aggregates, limiting the nature of the network monitoring.
Finally, a solution for data centres network event monitoring
at full line rate is proposed in [36], but it supports only a
limited set of features and event definition.

The most important limitation that all these methodologies
suffer consists in a constrained choice of features among
only the ones defined before starting the monitoring session,
as they do not support dynamic program recompilation and
injection. This results in having a bounded piece of software
that can support only the foreseen and designed logic at most.
Finally, the purpose of such methodologies is limited to a
single application-specific scenario, resulting in monolithic
solutions.

On the other hand, we propose an architecture that over-
comes all the limitations of conventional network monitoring
technologies, enabling a fully-adaptive network monitoring
system that requires only the desired processing logic to
reconfigure both the monitoring pipeline and all management
tasks, including the automatic export of the monitoring met-
rics to the user.

III. MOTIVATIONS
We envision the deployment scenario depicted in Fig. 1. Dif-
ferently than a traditional approach whose feature-gathering
process remains constant among the execution of the moni-
toring session, in this scenario we foresee the deployment of
smart algorithms that analyse the collected data and deter-
mine whether it is rich enough for the undergoing analy-
sis. In this case, many network nodes may participate in
the features-gathering process, which are orchestrated by an
apposite controller, likely running on a different node, which
is then required to inject the updated remote monitoring
probes on the gathering devices. When more data is required
(e.g., more features referring to the traffic coming from a
specific set of network sources), the monitoring probe (hence
data and control plane) is updated and then injected in the
remote network nodes of interest. Such probes, distributed
across the infrastructure, gather data and send it to a (central-
ized) data collector that provides the way to perform further
data analysis (monitoring, security, etc).

The variability of the source monitoring code is a pillar
in such a dynamic environment, where the element taking
decisions can potentially adjust the granularity of the analysis

7https://opennetworking.org/p4/

90780 VOLUME 10, 2022



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

FIGURE 1. Possible deployment scenario.

very frequently. Within this scenario, our research aims at
addressing the following needs:
• Simplification: every application that leverages eBPF
for network monitoring requires a data plane program
and a control plane to supervise it and extract its gath-
ered data from specific data structures. However, those
two primitives result extremely similar among different
monitoring applications, differing by only the reference
to the actual data structure. As a result, infrastructure
managers need to maintain duplicated source control
plane codes for every deployment scenario, which is
clearly inefficient and expensive in terms of time and
resources. Our control plane provides a generalised ver-
sion of such functions that can automatically adapt to
the underlying data plane program, inferring the correct
(and most optimised) extraction methodology for the
specific metric, leaving users focusing on the mere data
plane logic definition.

• Runtime Customisation: features engineering is a well-
known state-of-the-art problem that cannot be defined
in a unique global solution, as every application aims
at monitoring different parameters to achieve the best
results. We provide a generalised network monitor-
ing methodology, so that it can be deployed in dif-
ferent monitoring scenarios, just by providing the
data plane configuration, and letting the rest of the
architecture automatically adjust the management tasks
accordingly. Our solution does not only allow defin-
ing completely customized features within the monitor-
ing pipeline, but it also supports dynamic data plane
updates so that the set of instructions and features can
be enlarged/restricted as needed, without disruptions to
the monitoring process.

• Heterogeneity: monitoring probes can be installed on
different devices within the network, such as servers,
data centres, end-user laptops, switches, routers, both
physical or even virtualised resources. As a conse-
quence, to be fully-compatible with a cloud-native and
distributed scenario, probes must be versatile and ready
to be used, independently by the underlying architec-
ture, which must only support eBPF. This requires a
control plane that supervises their execution through-
out their lifecycles, and transparently addresses issues
arisen by the different systems specifications and sup-
port (e.g., different system calls, missing operations on
data structures, etc.).

• Safety: while eBPF guarantees that the code injected at
run-time is safe and cannot harm the system, no such
a sandbox exists for the control plane running in user-
space, which has to be tailored to the data produced
by the underlying monitoring code, hence dynamically
updated as well. As a consequence, in a deployment
scenario with strong safety requirements in which user-
defined ad-hoc routines cannot be accepted, the con-
trol plane needs to properly interact with any eBPF
data plane program without requiring any source code
update, dynamically re-configuring its extraction primi-
tives at run-time, and it must be verified and guaranteed
to be safe ahead-of-time.

IV. METHODOLOGY
This section presents the envisioned control plane architec-
ture, discussing all the design choices dictated by the needs
introduced in Section III, and a typical interaction workflow
between a user and the system. Finally, we also discuss addi-
tional monitoring options needed to offer a more complete

VOLUME 10, 2022 90781



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

FIGURE 2. Envisioned architecture and interaction workflow.

support for different types of monitoring, presented later in
this section.

More details about possible implementations of the
proposed architecture are available in some open-source
projects8 9 we contributed to, which helped us to verify the
feasibility and completeness of our architecture, and served as
main environment for easily deploying our monitoring probes
for the evaluation. We also publish the code for replicability
of tests in the following open source repository.10 Please note
that results are strictly related to the used testbed, hence slight
differences on the setup may lead to completely different
results.

A. ARCHITECTURE
We propose the architecture depicted in Fig. 2. Differently
from many state-of-the-art approaches where both the mon-
itoring logic and the set of control functions are performed
by a unique monolithic component, we prefer the data and
control planes to be decoupled, as it prevents that additional
(and potentially slow) user-space operations (e.g., system
calls) interfere with the monitoring process and affect its
performance.

The data plane includes the kernel space functions and pro-
cesses that analyse packets coming from network interfaces
according to the user-defined monitoring logic. While con-
ventional technologies support only dynamic feature selec-
tion, consisting in selecting monitored features among a

8https://github.com/dechainers/dechainy
9https://github.com/polycube-network/polycube
10https://github.com/s41m0n/opportunistic_monitoring

predefined and immutable list, the eBPF re-programmability
allows performing entire dynamic user-defined programs
replacement, meaning both features (either simple counter or
more complex personalized ones), operations to be applied
on network traffic, and entire data structures definitions.
Each program defines the required tables to store the data
gathered from the analysis (eBPF maps), which are very
efficient in-kernel data structures that can be accessed also
from user space, allowing the control plane to read and
export their values afterwards. Each map is characterised
by (i) the type (e.g., FIFO, LIFO, Hash); (ii) the precise
structure for their entries (e.g., key as a simple integer or
as a more complex structure); (iii) the number of entries;
and (iv) the visibility level that either enables to share maps
among different eBPF programs or to keep them local to the
current one.

The data plane component is provided within a monitoring
configuration (step 1 in Fig. 2) containing, for each direction
of the traffic to analyse (ingress and egress, using TC
in case of outgoing traffic as XDP is not yet supported11)
from a specific network interface (interface), the source
code to be compiled and injected (source), and a list of
metrics to be exported as a result of the analysis (metrics)
using the required data interchange format (format, such
as JSON or XML). Each metric is characterised by (a) a
name (name), (b) the name of the corresponding underlying
eBPF map (map), (c) a brief description (help), (d) two
variables (later discussed in Section IV-B) that influence the
nature of the access to the map (snapshot) and whether

11https://lwn.net/Articles/813406/

90782 VOLUME 10, 2022



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

to re-initialise its content or not (init), and (e) a variable
used only in case of PERCPU eBPF maps,12 whose values
are scattered acrossmultiple arrays, in case only the aggregate
result needs to be exported, computed using the algorithm
selected from those supported by the control plane (agg,
such as averaging or summing values). Furthermore, all the
eBPFmaps declared in the source code that do not correspond
to a metric specified by the user cannot be accessed from
outside the system for security reasons, to prevent exporting
sensitive data (e.g., internal data required for connection
tracking).

The duties of a control plane that must interact with any
user-defined monitoring program include the capability to
dynamically compile and inject such programs in the system,
but most importantly it has to correctly (and efficiently)
interact with any eBPF program without requiring a source
code update, extract the kernel-gathered data and return it
back to the user using the desired format. As a result, users
need to supply only the data plane configuration (i.e., mon-
itoring code and the list of metrics to be exported), which
can be even replaced at runtime by providing a new one, and
the controller automatically re-adjusts the monitoring-and-
extraction pipeline. While the north-bound interface of the
control plane (blue circles referred as APIs in Fig. 2) enables
such interactions between users and the system by exposing
(REST13) APIs, the two underlying macro-modules designed
to handle those requests are:
• Configuration Parser: it parses the received data plane
configuration and prepares the desired monitoring
pipeline accordingly. In particular, it extracts and com-
piles the eBPF source code representing the monitoring
probe, and injects the resulting executable in the system.
During such phase, it uses the standard eBPF compiler
and verifier to check the correctness of the program and
compile it according to the platform, while it manually
handles the remaining parameters in the configuration.

• Metrics Exporter: it provides a unified and standard-
ised method to retrieve the defined monitoring met-
rics according to the received data plane configuration.
Extracting those values from the underlying data
plane program requires taking into account all the
(i)-(iv) characteristics of each map presented above,
plus the possible monitoring options for each map
(i.e., snapshot retrieval and content re-initialisation).
This component retrieves at runtime this information
from the received monitoring configuration, and infers
the apposite and most optimised extraction method to
use, presented in Algorithm 3. Finally, it converts the
values extracted from the eBPF maps into the specified
data interchange format, requiring additional conversion
depending on the original data type (e.g., integer value to
string, a user-defined structure to a key-value formatted
string).

12https://lwn.net/Articles/674443/
13https://restfulapi.net/

B. MONITORING OPTIONS
Among all the possible use cases and monitoring needs
(e.g., flow aggregation or per-packet analysis), we identify
the following two properties that characterise the nature of
the network monitoring, hence requiring additional support
in the control plane:
• Timing

– Incremental analysis: statistics and features are
incrementally updated throughout the monitoring
session, operating on values that are never reset and
computed since the beginning of the session;

– Time-window based analysis: the system com-
putes statistics and features within a specified time-
window, which forces the system resetting such
values when a new one begins.

• Consistency:
– Snapshot access: when accessing one of the data

structures defined within the monitoring session,
the system ensures that none of the remaining ones
are updated in the meantime, preventing inconsis-
tent states and offering a fair snapshot of monitoring
values (e.g., two structures are strictly related, such
as an internal session tracker and its public accessi-
ble counterpart);

– Independent access: the access to one of the mon-
itoring data structures does not require locking all
the other ones defined within the program, offering
direct access to data (e.g., access to data structure
X containing information from the network pack-
ets does not require locking the entire structure Y,
whose values represent firewalling rules).

To enable such different monitoring natures, a con-
trol plane must support at least the following options
that users can specify when providing the monitoring
configuration.

1) SNAPSHOT METRIC RETRIEVAL
Since data and control plane are fully decoupled, it may
happen that while the control plane retrieves certain values
from a specific eBPFmap, the data plane updates other entries
from the same map or from a different one that is strictly
related to the one handled by the control plane. For instance,
a program might use a private session tracker map and its
public counterpart, containing only a subset of values allowed
to exit the monitoring system. While this behaviour can be
acceptable for some monitoring applications, in other cases
all the gathered metrics should be consistent, hence raising
the need for a snapshot data retrieval.

A swappable dual-map approach allows the control plane
to retrieve data from a first eBPF map that represents a
snapshot of the traffic at a given time, while the data plane
program keeps analysing packets and computing the traffic
information within a second (equivalent) map. Whenever the
control plane needs to retrieve data, it swaps the two maps.
However, as pointed out in [8], the dual-map approach turns
out to affect the performance of the monitoring program, due

VOLUME 10, 2022 90783



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

to a significantly high swapping latency in eBPF. As a result,
we promote a dual-program approach.

The approach consists in cloning and compiling a second
eBPF program equal to the original one, each program using
its own data structures. Once the controller successfully com-
piles and injects both the two programs in the system, it acti-
vates only one of them, which will perform the analysis on the
network traffic and store metrics on its own maps. When the
metrics need to be exported, the system swaps the currently
active program with the unloaded one by changing the index
of the program to be invoked from a specific map, which is
a simple and atomic operation, hence with supposed small
impact on the system in terms of packets loss. The semantic of
the original data plane program injected is preserved thanks to
an intense precompile stage performed by the Configuration
Parser, which ensures that references to the eBPF maps and
the sequence of operations are correctly preserved throughout
the entire monitoring.

On the other hand, keeping aligned both sets of data
maps belonging to the two programs with the same val-
ues would imply an excessive swapping latency, as values
from the old maps should be copied into new ones, while
at the same time stopping the network monitoring process,
which is clearly undesirable. As a result, such attribute likely
implies that metrics are periodically reinitialised, resulting in
a time-window based network monitoring. Moreover, while it
addresses issues typical of transactional systems, the issues of
multi-access to the resources still needs to be handled by the
implementation of the controller, which must ensure that no
concurrent external entities access the same data via apposite
thread-lock and mutual exclusion mechanisms.

2) METRIC REINITIALISATION
In a time-window based network monitoring, data structures
need to be reinitialised at the beginning of each monitoring
interval, after the system retrieves and exports their values.
This requires the Metrics Exporter module to erase the con-
tent of the eBPF maps, so that the data plane program can
collect monitoring metrics referring to the new time-window
starting with clean counters. Even though this operation is
intuitively easy to perform, its actual implementation is less
straightforward because (i) the control plane has to invoke
the correct reset mechanism for each type of map (which, for
performance reasons, should be selected at compile time),
and (ii) this operation could potentially raise concurrency
issues between data and control plane (e.g., data plane updat-
ing some counters while the control plane is still clearing the
remaining part of the table).While the concurrency issues can
be partially solved by enabling the snapshot metric retrieval,
invoking the correct reset method requires taking into account
all the properties of the eBPF maps under analysis. Unfortu-
nately, standard eBPF does not provide a unique reset method
usable with all data structures, hence the control plane care-
fully selects the correct (and optimised) one for each metric,
as later presented in Algorithm 3.

On the other hand, supporting all the reset methods that
eBPF offers to empty its data structures allows the Controller
(i.e., its Metric Exported module) to properly use the most
efficient implementation, such as for the batch operations,
which enable faster and atomic accesses to the maps by
acquiring the lock only once, instead of iterative and slow
routines. As a result, especially when dealingwith hugemaps,
those methods bring significant advantages to the controller,
which can then process faster all the incoming requests.
Again, to preserve the monitoring performance especially in
high-speed environments, this attribute should be combined
with the snapshot metric retrieval. In fact, despite all the
optimisations, every operation on the same data structure used
simultaneously with the data plane program could degrade
its performance when handling traffic at line rate, while
the snapshot retrieval allows operating on the data structure
belonging to the unloaded program, leaving the monitoring
process handling packets undisturbed.

C. WORKFLOW AND ALGORITHMS
A typical interaction workflow between an external entity and
the fully-adaptive monitoring system consists of the 1-6 steps
depicted in Fig. 2:

1) The user, or an external automated system, interacts
with the system by providing the monitoring config-
uration to the controller, using the dedicated API.

2) Once received the configuration, the control plane
leverages its Configuration Parser module to parse it,
extract the source code of the monitoring program to
be compiled, and executed apposite routines related to
the monitoring options specified for each metric.

3) The controller compiles the extracted source code into
bytecode and checks its correctness using the standard
eBPF compiler and verifier, and it finally injects the
executable safe probe in the kernel, if no errors arise.
From this point on, the monitoring code will be exe-
cuted on each incoming/outgoing packet, depending on
the configuration.

4) The data plane program stores monitoring data in the
proper set of declared eBPF maps, which represent the
only communication channel with the control plane.

5) When the user issues a request to read the collected
metrics using the proper API, the control plane invokes
its Metrics Exporter module, which is in charge of
retrieving data from the underlying maps and convert-
ing it. During this phase, the controller checks whether
monitoring metrics need to be re-initialised and if the
data plane program needs to be dynamically substituted
with its cloned version (i.e., snapshot data retrieval
attribute enabled).

6) Finally, the controller returns output data to the user
using the desired format.

We therefore propose the main procedures that the con-
troller recalls while performing the mentioned steps in the
workflow. To start with, Algorithm 1 describes the parseC-
onfiguration(C) procedure that represents the controls and

90784 VOLUME 10, 2022



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

Algorithm 1 parseConfiguration(C), Controller Procedure to
Parse the Received Data Plane Configuration
Input: C, the data plane configuration
Output: P, the resulting monitoring probe
1: P← Probe()
2: for H in [‘‘ingress’’, ‘‘egress’’] do
3: C[H ].cloned ←′′′′

4: P[H ].snapshot ← FALSE
5: forM in C[H].metrics do
6: ifM.snapshot then
7: P[H ].snapshot ← TRUE
8: C[H ].cloned ← C[H ].source
9: break

10: end if
11: end for
12: if P[H].snapshot is TRUE then
13: for L in findDeclarations(C[H].source) do
14: if L in C[H].metrics then
15: mapFictitious(C[H].cloned, L, randName())
16: else
17: mapShared(C[H].source, C[H].cloned, L)
18: end if
19: end for
20: P[H ].inactive_prog← compile(C[H ].cloned)
21: end if
22: P[H ].active_prog← compile(C[H ].source)
23: end for
24: return P

operations performed in steps 1-3 once received the data
plane configuration C, to create the final probe P. Such algo-
rithm ensures support for both in/out traffic, while we omit
other possible low-level details, such as mutual exclusion,
invalid references and other minor controls. Note that the
algorithm controls whether at least one metric requires the
snapshot retrieval attribute, which will force the generation
of a new copy of the program with fictitious data structures,
while preserving all those without such attribute between the
two compiled programs. If this attribute is active, then the
resulting probe will contain two executables, which alterna-
tively swaps at every metrics retrieval.

In addition, Algorithm 2 describes the metrics-extraction
procedure more in general, while Algorithm 3 describes how
the controller extracts the actual monitoring values from the
underlying eBPF maps, using the standard system calls asso-
ciated to the map type, and applying controls belonging to the
additional monitoring options enabled. In Algorithm 2, the
controller first checks whether the requested probe exists, and
if the underlying monitoring program needs to be swapped,
meaning that at least one metric requested the snapshot
retrieval. Then, for each metric to be exported, it executes
the Algorithm 3, a more in-depth procedure, consisting in
selecting the proper set of functions to call according to the
eBPF map of interest. Thanks to an analysis of the eBPF

Algorithm 2 exportMetrics(N), Controller Procedure to
Extract and Export Monitoring Metrics
Input: N, the name of the monitoring probe
Output: V, the content of all monitoring metrics
1: V ← {‘‘ingress′′ : {}, ‘‘egress′′ : {}}
2: for H in [‘‘ingress’’, ‘‘egress’’] do
3: T ← Ctr .probes[N ][H ]
4: if T.snapshot is TRUE then
5: T.changeActiveEbpfProgram()
6: end if
7: E ← T .inactive_prog
8: forM in T.metrics do
9: ifM.exportable then

10: V [H ][M ]← extractMetric(E,M )
11: if E[M].type is PERCPU and M.agg is not ’’’’

then
12: aggregateValues(V[H][M], M.agg)
13: end if
14: else ifM.reinitialise then
15: eraseMetric(E, M)
16: end if
17: end for
18: end for
19: return convertToFormat(Ctr.probes[N].format, V)

support in the Linux kernel, including the more enhanced
batch operations that allow accessing the entire content of
the map at once preventing iterative and slower accesses,
we support all the possible cases included in the algorithm.
Moreover, we optimise this procedure by referring to the
right operations to be invoked also considering whether the
map needs to be reinitialised or not, to avoid accessing it
twice. We omit the description of the eraseMetric(E, M)
procedure in Algorithm 2 used for metrics that do not need to
be exported, as it performs the same exact operations listed in
Algorithm 3 without retrieving their values, but directly call-
ing the apposite delete method (i.e., deleteBatch() or delete())
on the eBPF map.

Finally, the controller checks whether the value of each
retrieved metric needs to be aggregated, as it belongs to the
special PERCPU eBPF map category. In that case, the value
would actually be an array of values, each one representing
a single core of the CPU. The controller supports simple
aggregation algorithms such as averaging or summing all
the values, which needs to be specified inside the monitor-
ing configuration alongside the specific metric to aggregate.
Once terminated, it returns the monitoring metrics converted
according to the specified format in the configuration.

V. EXPERIMENTAL VALIDATION
This section presents (a) the validation of the monitoring
options introduced in Section IV-B and (b) comparisons of the
fully-adaptive network monitoring approach with an adap-
tive and a non-adaptive methodology. The advantages of a

VOLUME 10, 2022 90785



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

Algorithm 3 extractMetric(E, M), Controller Procedure to
Extract the Value of a Monitoring Metric From an eBPF
Program
Input: E, the inactive eBPF program in a probe
Input: M, the metric to be extracted
Output: V, the content of the monitoring metric
1: V ← NULL
2: if E[M].type is FIFO or LIFO then
3: V ← []
4: for i = 0 to E[M].size do
5: V .append(lookupAndDelete(E[M ]))
6: end for
7: else if E[M].type is ARRAY then
8: V ← []
9: if OS_SUPPORT_BATCH() is TRUE then

10: K ← [0, 1, . . .E[M ].size− 1]
11: V ← lookupBatch(E[M ],K )
12: ifM.reinitialise then
13: B← Array(E[M ].zero, size = E[M ].size)
14: updateBatch(E[M ],K ,B)
15: end if
16: else
17: for i = 0 to E[M].size do
18: V .append(lookup(E[M ], i))
19: ifM.reinitialise then
20: update(E[M ], i,E[M ].zero))
21: end if
22: end for
23: end if
24: else if E[M].type is HASH then
25: V ← {}
26: if OS_SUPPORT_BATCH() is TRUE then
27: ifM.reinitialise then
28: V ← lookupAndDeleteBatch(E[M ])
29: else
30: V ← lookupBatch(E[M ])
31: end if
32: else
33: K ← NULL
34: while (K ← E[M ].nextKey(K )) is not NULL do
35: ifM.reinitialise then
36: V .append(lookupAndDelete(E[M ],K ))
37: else
38: V .append(lookup(E[M ],K ))
39: end if
40: end while
41: end if
42: end if
43: return V

non-invasive monitoring are evaluated from (i) the CPU and
(ii) memory consumption points of view. We willingly omit
testing all the properties unrelated to network monitoring,
such as the performance of the framework (web server) cho-
sen for providing REST APIs.

FIGURE 3. Test bed setup.

The testbed depicted in Fig. 3 includes two physical
client-server machines running Ubuntu Server 18.04.3 LTS
(x86_64), kernel 5.8.0-43-generic, provided with an Intel(R)
Xeon(R) E3-1245 v5 3.50 GHz CPU, 64 GB DDR4 RAM,
and dual Intelr Ethernet Converged Network Adapter
XL710 10/40 GbE with the i40e driver for the XDP programs
injection (XDP_DRV).

The client uses the MoonGen14 high-performance packet
generator to continuously generate traffic with all the avail-
able CPU cores at line rate, so that we can evaluate the
monitoring configuration performance in terms of number of
network packets handled by the server. The network traffic
is composed by simple TCP SYN packets of total size equal
to 60B belonging to 25000 different sessions (the maximum
number allowed by the trial version of nProbe), so that we
could extract the same transport-layer features of nProbe.
Finally, we configured all the incoming interrupt requests
coming from the network card of the server to be dispatched
to a single CPU core, in order to avoid the influence of
possible multicore synchronization issues in our results that
are orthogonal to the proposed monitoring technique.

A. SNAPSHOT METRIC RETRIEVAL
This test measures the impact of the snapshot metric retrieval
described in Section IV-B in terms of compilation overhead
and throughput with respect to a baseline version with this
feature disabled. In particular, we measured the overhead
introduced by the creation and compilation of the additional
monitoring program while defining a variable number of
eBPF maps that requires further controls (differently than the
number of entries in eachmap that do not affect such process).
Moreover, we simulate ametric export request at different fre-
quencies to measure whether the swapping process involving
eBPF maps affects the monitoring.

Fig. 4a depicts results concerning the compilation time of
the eBPF program. Despite the number of maps used, the
snapshot retrieval attribute requires slightly more than 2x
the time with respect to the baseline version, as the system
compiles two eBPF programs instead of one. However, the

14https://github.com/emmericp/MoonGen

90786 VOLUME 10, 2022



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

FIGURE 4. Throughput and compilation time overhead of the snapshot
metric retrieval vs baseline.

overhead of all the additional checks and controls performed
during the compilation phase is negligible with respect to
the total compilation time, but it slowly increases with the
number of maps declared. In fact, the ratio between the
compilation time of the two versions increases from 2 when
declaring only one map, to 2.1 when defining 100 maps.

Despite swapping the two programs is a simple operation
to understand and explain, in a high-performance environ-
ment, such as in our testbed, the additional overhead could
potentially worsen the performance of the entire monitoring
pipeline. Under the hood, the swap operation consists in
acquiring a lock to access a specific eBPF map and change
the index of the program to be executed.

Fig. 4b shows the measured throughput while exporting
the defined metric at a different frequency (x-axis). The
baseline version reports a stable value throughout the various
extraction frequencies (on average equal to 33.25Mpps).
Interestingly, activating this functionalitymeans having slight
fluctuations on the maximum number of packets handled

FIGURE 5. Execution time of populate-and-erase operations on a eBPF
array map with different entries (log scale on y-axis).

by the device, with a peak at 33.25Mpps and a minimum
at 33.13Mpps. On average, the measured throughput is
33.20Mpps, resulting in 0.15% degraded monitoring perfor-
mance with respect to the baseline scenario.

B. METRIC RE-INITIALISATION
This test compares the execution time of most significant
eBPF operations carried out by the control plane on maps.
In particular, we focused on the metric re-initialisation,
a monitoring option supported by the controller, while per-
forming both iterative and batch accesses to the map. For this
purpose, we defined an eBPF array map with an increasing
number of entries, andwemeasured the total time required for
both populating the mapwith fictitious values, and for empty-
ing its content (zeroing all the entries) using the two different
methods. We achieved similar results while repeating the test
using eBPF hash maps, which support also batch operations,
and eBPF FIFO/LIFO maps, while iteratively erasing their
content (multiple consecutive push/pop operations), as they
do not offer support for batch operations.

Fig. 5 reports the results of the test, using a logarithmic
scale on the y-axis. Batch operations are always more than
1x order of magnitude faster than their iterative versions, even
when using small eBPF maps with a few entries, such as 1 or
10 in our case. However, this advantage becomes even more
relevant when exponentially increasing the number of entries,
reaching a peak of more than 3 seconds of difference (∼27x
times faster) when using 1000000 entries.

Unfortunately, despite batch operations are widely sup-
ported by almost all eBPF maps, some edge cases such as
the FIFO/LIFO maps cannot benefit from those optimisa-
tions, hence leading to a significantly slower emptying phase.
On the other hand, the controller can efficiently handle such
complex tasks for all the other types of map, wasting less
time performing system calls to access their content and leav-
ing the data plane gathering information effectively. When

VOLUME 10, 2022 90787



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

FIGURE 6. Throughput and memory occupation comparison while
increasing the set of extracted features using Non-Adaptive vs Adaptive
vs Fully-Adaptive methodologies, both in XDP and TC.

combining the metric re-initialisation attribute with the snap-
shot retrieval, the controller spends such time performing the
zeroing operation on the unloaded program, without affecting
the performance of the active monitoring process. However,
even in this case the advantage of batch operations is notable,
as they prevent blocking the controller for a long period
operating on the unloaded program, while it should be ready
to execute important and potentially frequent tasks on the
active one, such the program swap.

C. FULLY-ADAPTIVE MONITORING EVALUATION
This section covers the comparison with other two state-of-
the-art monitoringmethodologies we developed within eBPF,
to have a fair comparison of these approaches within the same
underlying technology. We defined the implementation that
does not allow modifying at all the monitoring logic as Non-
Adaptive, the fallback solution described in Section I based

on a eBPF support map to keep track of active features as
Adaptive, and our approach as Fully-Adaptive.
We decided a potential sequence of maximum 100 ficti-

tious features represented by counters (for instance, Open-
Flow v1.315 tracks 40 parameters), corresponding to exactly
100 eBPF instructions, which need to be continuously
updated when analysing new packets, and we measured the
throughput while increasing and reducing this subset.

Fig. 6a reports the measured throughput using the three
techniques, injected either in XDP or TC. As a matter of
fact, executing these programs in TC drops the performance,
flattening the measured throughput around 3Mpps for almost
all the programs. Moreover, the additional controls (which
almost double the number of instructions) to check whether
a feature is enabled or not lead the adaptive solution to a
significant low throughput even when using XDP, which
makes this solution barely usable in production high-speed
environments. The advantage of enlarging/restricting the set
of features within this approach is minimal, dropping the
throughput from 2.82Mpps and 2.73Mpps, to 2.71Mpps
and 2.61Mpps in XDP and TC when passing from 1 to
100 features respectively. Furthermore, the non-adaptive pro-
gram presents a constant behaviour both in XDP (14.3Mpps)
and TC (3Mpps), since it always requires extracting all the
features.

On the other hand, Fig. 6a clearly confirms the benefits of
a fully-adaptive approach, thanks to its capability to extract
only the requested features. In fact, while its performance
in TC slightly drops from 3.35Mpps to 2.99Mpps when
extracting all the features, such program injected in XDP
outperforms all the others, reaching a peak of 31.8Mpps and
a low of 14.3Mpps when passing from 1 to 100 features.

Other than reaching a higher throughput, the fully-adaptive
version brings advantages in terms of memory consumption,
as depicted in Fig. 6b. Both the non-adaptive and adaptive
programs require a constant and maximum (10MB) amount
of memory, independently by the number of features used.
In fact, even though a feature is deactivated, the adaptive
approach consumes the same amount of bytes to store an
empty value. On the other hand, the fully-adaptive approach
turns out to bemore flexible, adjusting such requirement from
0.1MB up to 10MB when gathering all the features.

As a result, the fully-adaptive approach makes the best use
of resources, allowing saving both space in memory to store
the extracted values, and computational power to handlemore
network packets when analysing a smaller set of features.

D. COMPARISON WITH nProbe
The second comparison with state-of-the-art approaches
involves nProbe, a NetFlow compatible implementation, and
our fully-adaptive version developed accordingly to extract
the exact same features, with the difference that in our
approach it is possible to incrementally widen the set of

15https://opennetworking.org/wp-content/uploads/2014/10/openflow-
spec-v1.3.0.pdf

90788 VOLUME 10, 2022



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

FIGURE 7. Throughput and memory consumption comparison while
increasing the set of extracted features using nProbe vs Fully-Adaptive,
both in XDP and TC.

monitored features. As a reference for the set of features
to be extracted from the traffic for each flow, we took and
numbered with IDs the following ones from the NetFlow v.9
specification16:
1) INPUT_SNMP 17: input SNMP interface number;
2) OUTPUT_SNMP17: output SNMP interface number;
3) SRC_AS17: source autonomous system number.
4) DST_AS17: destination autonomous system number.
5) IN_PKTS: number of incoming packets;
6) IN_BYTES: number of incoming bytes;
7) IPV4_SRC_ADDR: source IPv4 address;
8) IPV4_DST_ADDR: destination IPv4 address;
9) PROTOCOL: IPv4 carried protocol;

10) SRC_TOS: type of service;

16https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_
white_paper09186a00800a3db9.html

17one-time feature computed the first time the monitor records a packet,
and in our case always set to zero.

11) L4_SRC_PORT: L4 source port;
12) L4_DST_PORT: L4 destination port;
13) TCP_FLAGS: logical OR of TCP flags from packets;
14) FIRST_SWITCHED: timestamp of the first packet;
15) LAST_SWITCHED: timestamp of the last packet.
Since nProbe uses different technologies to analyse pack-

ets, we decided to try two different setups while injecting
programs. First, we attached an additional eBPF program
called Dropper in TC mode while testing nProbe to drop
packets once reached the networking stack, to ensure that
the system does not waste additional computational power.
Then, we tested our fully-adaptive program in TC chained
with the Dropper, to have a mere and fair comparison with
nProbe while dropping packets at the same level. Finally,
to leverage the benefits of early packet processing enabled
by XDP, we tested our program coupled with the Dropper
directly in XDP, to speed up the monitoring lookup-and-drop
pipeline. Fig. 7a and Fig. 7b report the achieved results using
as x-axis the feature ID that corresponds to extracting all
those features with ID lower or equal to the current one under
analysis. For instance, the column referring to the feature ID
7 reports the result obtained while extracting all the features
previously listed with IDs between 1 and 7.

As depicted in Fig. 7a, our fully-adaptive approach always
performs better than nProbe, independently of the operational
mode. In fact, while our program injected in TC achieves
3.34Mpps and 3.03Mpps when extracting one and all fea-
tures respectively, nProbe presents a constant and lower
throughput (1.44Mpps). Moreover, the adaptive program
running in XDP significantly outperforms the other ones,
leading to a maximum of 31.7Mpps when extracting only
one feature, and 7.63Mpps when monitoring all the features.
Clearly, the IPV4_SRC_ADDR feature requires the system
to inspect network packets more in depth by parsing both
the Ethernet and IPv4 layers, significantly affecting the per-
formance of the monitoring pipeline, which has to contin-
uously perform controls and conversions on every packet.
The next heavy features are L4_SRC_PORT, which require
inspecting also the transport layer (TCP in our case), and
LAST_SWITCHED, which forces the program to compute
the timestamp of every packet (potentially the last one of a
TCP connection).

Another advantage of our fully-adaptive methodology,
as depicted in Fig. 7b, consists in the reduced memory
occupancy with respect to nProbe that, on the other hand,
always reserves the maximum amount of space, as it extracts
all the features. In fact, in a hypothetical situation where
only a subset of such features are needed, the fully-adaptive
methodology allows saving up to 16x times the space (when
extracting only 1 feature in our experiment), which becomes
significant in a real scenario with more monitored sessions
and more features extracted.

VI. FUTURE DIRECTIONS
We forced the entire experimental validation of our approach
on a single CPU-core to avoid problems due to concurrent

VOLUME 10, 2022 90789



S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

accesses to shared resources, to have a concrete measurement
of the mere methodology, limiting side effects. We leave
for further developments the validation on a multicore envi-
ronment, leveraging specific data structures called PERCPU
eBPF maps. Those maps allocate an independent memory
area for each CPU core, enabling faster and (kernel-level)
concurrency-free access. We expect that, combined with
Receive Side Scaling (RSS),18 a feature to ensure that the
system handles packets belonging to a specific flow using
the same CPU core, these maps further empower adaptive
network monitoring reaching higher throughput. On the other
hand, the entire metric extraction phase would require more
time due to the aggregation of each array of values (one for
each CPU core), in order to return the final value to the user.

Finally, focusing on specific use cases and adopting the
fully-adaptive network monitoring approach, it would be
interesting to analyse the design and trade-offs of making
monitoring decisions locally to a specific probe (i.e., network
device) or globally to the set of active probe running within an
infrastructure, leveraging either distributed individual moni-
toring entities or a centralised model.

VII. CONCLUSION
This paper proposes the design of a control plane to support
and enable a fully-adaptive network monitoring approach.
The underlying user-defined monitoring pipeline builds upon
extended Berkeley Packet Filter (eBPF), a notable pro-
grammable data plane language and in-kernel virtual machine
that allows to safely modify at runtime the monitoring
logic, while the proposed controller automatically couples the
defined monitoring program, providing access and control
methodologies to interact with it and exporting the defined
metrics.

At first, we discussed the proposed control plane, result-
ing in a highly programmable solution, where not only the
underlying monitoring program can be dynamically changed,
but also many higher-level properties can be activated at
runtime, offering an efficient control of the entire monitoring
pipeline and supporting many types of monitoring granular-
ities (e.g., flow-level, packet-level, time-window, and more).
Moreover, the fully-adaptive approach allows introducing
and extracting new custom (and more complex) features that
were not previously defined, resulting in a continuous integra-
tion of both older and newer requirements, without causing
disruptions to the monitoring process.

We measured, in terms of performance degradation, the
adoption of the monitoring options introduced in the con-
troller, proving that they do not significantly affect the under-
lying monitoring pipeline (0.15% degraded throughput when
frequently retrieving monitoring metrics) and leverage the
most efficient extraction primitives (20x faster execution
time using batch operations). Finally, we compared the fully-
adaptive methodology with nProbe, a NetFlow-compatible

18https://developers.redhat.com/blog/2021/05/13/receive-side-scaling-
rss-with-ebpf-and-cpumap

implementation, and with an adaptive and a non-adaptive
implementation in eBPF. The fully-adaptive approach has
less impact on the system, allowing saving both more than
10x the computational power to process more incoming pack-
ets in XDP (∼2x when deployed in TC) and ∼10x memory
space, with respect to both nProbe and a full-features analysis
scenario of the other approaches in eBPF.

REFERENCES
[1] C. DeCusatis, P. Liengtiraphan, A. Sager, and M. Pinelli, ‘‘Implementing

zero trust cloud networks with transport access control and first packet
authentication,’’ in Proc. IEEE Int. Conf. Smart Cloud (SmartCloud),
Nov. 2016, pp. 5–10, doi: 10.1109/SmartCloud.2016.22.

[2] C. Cassagnes, L. Trestioreanu, C. Joly, and R. State, ‘‘The rise of
eBPF for non-intrusive performance monitoring,’’ in Proc. IEEE/IFIP
Netw. Operations Manage. Symp. (NOMS), Apr. 2020, pp. 1–7, doi:
10.1109/NOMS47738.2020.9110434.

[3] J. Vila-Carbo, J. Tur-Masanet, and E. Hernandez-Orallo, ‘‘An evaluation
of switched Ethernet and Linux traffic control for real-time transmission,’’
in Proc. IEEE Int. Conf. Emerg. Technol. Factory Autom., Sep. 2008,
pp. 400–407, doi: 10.1109/ETFA.2008.4638424.

[4] M. Abranches, O. Michel, E. Keller, and S. Schmid, ‘‘Efficient network
monitoring applications in the kernel with eBPF and XDP,’’ in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2021, pp. 28–34, doi: 10.1109/NFV-SDN53031.2021.9665095.

[5] L. Deri, ‘‘nProbe: An open source NetFlow probe for gigabit networks,’’
in Proc. TERENA Netw. Conf. (TNC), 2003, pp. 1–4.

[6] Y. Liu, J. Sun, R. Sun, and Y. Wen, ‘‘Next generation internet traffic mon-
itoring system based on NetFlow,’’ in Proc. Int. Conf. Intell. Syst. Design
Eng. Appl., Oct. 2010, pp. 1006–1009, doi: 10.1109/ISDEA.2010.337.

[7] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
‘‘Performance implications of packet filtering with Linux eBPF,’’ in
Proc. 30th Int. Teletraffic Congr. (ITC), Sep. 2018, pp. 209–217, doi:
10.1109/ITC30.2018.00039.

[8] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal, ‘‘Creating
complex network services with eBPF: Experience and lessons learned,’’
in Proc. IEEE 19th Int. Conf. High Perform. Switching Routing (HPSR),
Jun. 2018, pp. 1–8, doi: 10.1109/HPSR.2018.8850758.

[9] T. Nam and J. Kim, ‘‘Open-source IO visor eBPF-based packet trac-
ing on multiple network interfaces of Linux boxes,’’ in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2017, pp. 324–326, doi:
10.1109/ICTC.2017.8190996.

[10] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, ‘‘A framework
for eBPF-based network functions in an era of microservices,’’ IEEE
Trans. Netw. Service Manage., vol. 18, no. 1, pp. 133–151, Mar. 2021, doi:
10.1109/TNSM.2021.3055676.

[11] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,
‘‘Securing Linux with a faster and scalable iptables,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 49, no. 3, pp. 2–17, Nov. 2019, doi:
10.1145/3371927.3371929.

[12] S. Rivera, V. K. Gurbani, S. Lagraa, A. K. Iannillo, and R. State, ‘‘Lever-
aging eBPF to preserve user privacy for DNS, DoT, and DoH queries,’’ in
Proc. 15th Int. Conf. Availability, Rel. Secur., Aug. 2020, pp. 1–10, doi:
10.1145/3407023.3407041.

[13] X. Dong and Z. Liu, ‘‘Multi-dimensional detection of Linux network
congestion based on eBPF,’’ in Proc. 14th Int. Conf. Measuring Tech-
nol. Mechatronics Autom. (ICMTMA), Jan. 2022, pp. 925–930, doi:
10.1109/ICMTMA54903.2022.00188.

[14] M. Jadin, Q. De Coninck, L. Navarre, M. Schapira, and O. Bonaventure,
‘‘Leveraging eBPF to make TCP path-aware,’’ IEEE Trans. Netw. Service
Manage., early access, May 10, 2022, doi: 10.1109/TNSM.2022.3174138.

[15] M. Xhonneux and O. Bonaventure, ‘‘Flexible failure detection and fast
reroute using eBPF and SRv6,’’ in Proc. 14th Int. Conf. Netw. Service
Manage. (CNSM), 2018, pp. 408–413.

[16] J. Hong, S. Jeong, J. H. Yoo, and J. W. K. Hong, ‘‘Design and implementa-
tion of eBPF-based virtual TAP for inter-VM traffic monitoring,’’ in Proc.
14th Int. Conf. Netw. Service Manage. (CNSM), 2018, pp. 402–407.

[17] F. Parola, F. Risso, and S. Miano, ‘‘Providing telco-oriented network
services with eBPF: The case for a 5G mobile gateway,’’ in Proc. IEEE
7th Int. Conf. Netw. Softwarization (NetSoft), Jun. 2021, pp. 221–225, doi:
10.1109/NetSoft51509.2021.9492571.

90790 VOLUME 10, 2022

http://dx.doi.org/10.1109/SmartCloud.2016.22
http://dx.doi.org/10.1109/NOMS47738.2020.9110434
http://dx.doi.org/10.1109/ETFA.2008.4638424
http://dx.doi.org/10.1109/NFV-SDN53031.2021.9665095
http://dx.doi.org/10.1109/ISDEA.2010.337
http://dx.doi.org/10.1109/ITC30.2018.00039
http://dx.doi.org/10.1109/HPSR.2018.8850758
http://dx.doi.org/10.1109/ICTC.2017.8190996
http://dx.doi.org/10.1109/TNSM.2021.3055676
http://dx.doi.org/10.1145/3371927.3371929
http://dx.doi.org/10.1145/3407023.3407041
http://dx.doi.org/10.1109/ICMTMA54903.2022.00188
http://dx.doi.org/10.1109/TNSM.2022.3174138
http://dx.doi.org/10.1109/NetSoft51509.2021.9492571


S. Magnani et al.: Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF

[18] J. Yang, L. Chen, and J. Bai, ‘‘Redis automatic performance tun-
ing based on eBPF,’’ in Proc. 14th Int. Conf. Measuring Tech-
nol. Mechatronics Autom. (ICMTMA), Jan. 2022, pp. 671–676, doi:
10.1109/ICMTMA54903.2022.00139.

[19] S.-Y. Wang and J.-C. Chang, ‘‘Design and implementation of an intru-
sion detection system by using extended BPF in the Linux kernel,’’
J. Netw. Comput. Appl., vol. 198, Feb. 2022, Art. no. 103283, doi:
10.1016/j.jnca.2021.103283.

[20] I. Ben-Yair, P. Rogovoy, and N. Zaidenberg, ‘‘AI & eBPF based perfor-
mance anomaly detection system,’’ in Proc. 12th ACM Int. Conf. Syst.
Storage, May 2019, p. 180, doi: 10.1145/3319647.3325842.

[21] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese,
‘‘Introducing SmartNICs in server-based data plane processing: The DDoS
mitigation use case,’’ IEEE Access, vol. 7, pp. 107161–107170, 2019, doi:
10.1109/ACCESS.2019.2933491.

[22] N. Kostopoulos, D. Kalogeras, and V. Maglaris, ‘‘Leveraging on
the XDP framework for the efficient mitigation of water torture
attacks within authoritative DNS servers,’’ in Proc. 6th IEEE
Conf. Netw. Softwarization (NetSoft), Jun. 2020, pp. 287–291,
doi: 10.1109/NetSoft48620.2020.9165454.

[23] T. Weng, W. Yang, G. Yu, P. Chen, J. Cui, and C. Zhang,
‘‘Kmon: An in-kernel transparent monitoring system for
microservice systems with eBPF,’’ in Proc. IEEE/ACM Int.
Workshop Cloud Intell. (CloudIntelligence), May 2021, pp. 25–30,
doi: 10.1109/CloudIntelligence52565.2021.00014.

[24] J. Levin and T. A. Benson, ‘‘ViperProbe: Rethinking microservice observ-
ability with eBPF,’’ in Proc. IEEE 9th Int. Conf. Cloud Netw. (CloudNet),
Nov. 2020, pp. 1–8, doi: 10.1109/CloudNet51028.2020.9335808.

[25] C. Liu, Z. Cai, B. Wang, Z. Tang, and J. Liu, ‘‘A protocol-independent
container network observability analysis system based on eBPF,’’ in
Proc. IEEE 26th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2020,
pp. 697–702, doi: 10.1109/ICPADS51040.2020.00099.

[26] R. Hofstede, P. Celeda, B. Trammell, I. Idilio, R. Sadre, A. Sperotto, and
A. Pras, ‘‘Flowmonitoring explained: From packet capture to data analysis
with NetFlow and IPFIX,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4,
pp. 2037–2064, 4th Quart., 2014, doi: 10.1109/COMST.2014.2321898.

[27] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, ‘‘PayLess: A
low cost network monitoring framework for software defined networks,’’
in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1–9,
doi: 10.1109/NOMS.2014.6838227.

[28] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, ‘‘OpenNetMon:
Network monitoring in OpenFlow software-defined networks,’’ in Proc.
IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1–8, doi:
10.1109/NOMS.2014.6838228.

[29] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, ‘‘DREAM:
Dynamic resource allocation for software-defined measurement,’’
in Proc. ACM Conf. SIGCOMM, Aug. 2014, pp. 419–430, doi:
10.1145/2619239.2626291.

[30] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, ‘‘SCREAM: Sketch
resource allocation for software-defined measurement,’’ in Proc. 11th
ACM Conf. Emerg. Netw. Experiments Technol., Dec. 2015, pp. 1–13, doi:
10.1145/2716281.2836099.

[31] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-
inger, ‘‘Sonata: Query-driven streaming network telemetry,’’ in Proc. Conf.
ACM Special Interest Group Data Commun., Aug. 2018, pp. 357–371, doi:
10.1145/3230543.3230555.

[32] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and
M. Mitzenmacher, ‘‘PINT: Probabilistic in-band network telemetry,’’ in
Proc. Annu. Conf. ACMSpecial Interest GroupData Commun. Appl., Tech-
nol., Architectures, Protocols Comput. Commun., Jul. 2020, pp. 662–680,
doi: 10.1145/3387514.3405894.

[33] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig, ‘‘Elastic sketch: Adaptive and fast network-wide measurements,’’
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 561–575, doi: 10.1145/3230543.3230544.

[34] S. R. Chowdhury, R. Boutaba, and J. François, ‘‘LINT: Accuracy-adaptive
and lightweight in-band network telemetry,’’ inProc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), May 2021, pp. 349–357.

[35] Q. Zheng, S. Tang, B. Chen, and Z. Zhu, ‘‘Highly-efficient and adaptive
network monitoring: When INT meets segment routing,’’ IEEE Trans.
Netw. Service Manage., vol. 18, no. 3, pp. 2587–2597, Sep. 2021, doi:
10.1109/TNSM.2021.3069000.

[36] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, ‘‘Trumpet: Timely
and precise triggers in data centers,’’ in Proc. ACM SIGCOMM Conf.,
Aug. 2016, pp. 129–143, doi: 10.1145/2934872.2934879.

SIMONE MAGNANI (Member, IEEE) was born
in Cesena, Italy, in 1996. He received the B.S.
degree in computer science and engineering from
the Università di Bologna, Italy, in 2018, and the
M.S. degree in computer engineering from the
Politecnico di Torino, Italy, in 2020. He is cur-
rently pursuing the Ph.D. degree in cybersecurity
and reliable artificial intelligence jointly with the
Università di Genova, Italy, and Fondazione Bruno
Kessler, Italy. While working on his M.S. final

thesis, in 2020, he was a Research Assistant of Prof. Fulvio Risso, while
he carried on Toshi, a European project funded by EIT-Digital, and con-
tributed to open source projects such as Polycube, CrownLabs, and BCC. His
research interests include adaptive network traffic monitoring, cybersecurity,
and flexible artificial intelligence methodologies for cyberattack detection
and mitigation.

FULVIO RISSO (Member, IEEE) was born in
Saluzzo, Italy, in 1971. He received the B.S., M.S.,
and Ph.D. degrees in computer engineering from
the Politecnico di Torino, Italy, in 2000. He is cur-
rently an Associate Professor with the Politecnico
di Torino, and responsible for the Network and
Multimedia Laboratory, Department of Control
and Computer Engineering. He startedmany open-
source projects, including WinPcap (the de-facto
standard library for network analysis tools under

the Windows platform), NetBee, Liqo, CrownLabs, and Polycube, which
represent a breakthrough in their respective fields. He has coauthored more
than 100 scientific publications. His research interests include high-speed
and flexible network processing, edge/fog computing, software-defined net-
works, and network functions virtualization.

DOMENICO SIRACUSA received the B.S., M.S.,
and Ph.D. degrees in telecommunication engineer-
ing from the Politecnico di Milano, Italy, in 2012.
He is currently the Head of the Robust and Secure
Distributed Computing (RiSING) Research Unit,
Fondazione Bruno Kessler, Italy. He acted as a
Co-ordinator of the H2020 EU-Korea DECEN-
TER Project, the H2020 EU ACINO Project, and
the EIT Digital Digiflow Project. He coauthored
more than 100 scientific publications appeared in

international peer-reviewed journals and inmajor conferences on networking
and cloud technologies. His current research interests include orchestra-
tion of next generation internet infrastructures, cloud and fog computing,
SDN/NFV and virtualization, security, and robustness.

VOLUME 10, 2022 90791

http://dx.doi.org/10.1109/ICMTMA54903.2022.00139
http://dx.doi.org/10.1016/j.jnca.2021.103283
http://dx.doi.org/10.1145/3319647.3325842
http://dx.doi.org/10.1109/ACCESS.2019.2933491
http://dx.doi.org/10.1109/NetSoft48620.2020.9165454
http://dx.doi.org/10.1109/CloudIntelligence52565.2021.00014
http://dx.doi.org/10.1109/CloudNet51028.2020.9335808
http://dx.doi.org/10.1109/ICPADS51040.2020.00099
http://dx.doi.org/10.1109/COMST.2014.2321898
http://dx.doi.org/10.1109/NOMS.2014.6838227
http://dx.doi.org/10.1109/NOMS.2014.6838228
http://dx.doi.org/10.1145/2619239.2626291
http://dx.doi.org/10.1145/2716281.2836099
http://dx.doi.org/10.1145/3230543.3230555
http://dx.doi.org/10.1145/3387514.3405894
http://dx.doi.org/10.1145/3230543.3230544
http://dx.doi.org/10.1109/TNSM.2021.3069000
http://dx.doi.org/10.1145/2934872.2934879

