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ABSTRACT Deep learning-based image recognition systems have rapidly evolved. Due to the extensive
processing load of the deep neural network (DNN) on graphic processing units (GPUs), the DNN model is
deployed on the cloud server. Images or videos are forwarded from user terminals through the network to the
server. In recent years, edge computing has gained popularity as a means of reducing the data traffic in the
backbone network. However, the last one-mile access network between an edge server and user terminals will
still be congested because a large amount of data such as video/image files must be forwarded. In particular,
when computer vision applications such as image recognition are loaded in the edge network, a large amount
of data is forwarded although the edge server always may not need the high-definition image. This paper
proposes an image compression and progressive retransmission scheme for deep learning-based image
recognition systems to reduce image data traffic and alleviate network congestion. The proposed method
introduces an entropy-based threshold calculated from posterior probabilities from a deep learning model’s
output layer. Entropy is an extremely effectivemetric because it can be used as an indicator independent of the
number of classification labels in the DNN model. The thresholding can control the image retransmission
and reduce traffic while maintaining image recognition accuracy. We implement the proposed scheme on
the edge server and reveal the relationship between the data compression and the recognition accuracy
through simulation evaluation. As a result, we indicate that an entropy-based threshold reduces the overall
ambiguity of the accuracy of image recognition. Moreover, when a higher accuracy recognition model with
more accuracy is combined with a retransmission scheme, it becomes the more effective.

INDEX TERMS Edge computing, computer vision, image recognition, retransmission system.

I. INTRODUCTION
Deep neural network (DNN) has continued improving image
recognition estimation accuracy in recent years. DNN-based
image recognition has been aggressively used on Internet of
things (IoT) applications. In the IoT, User terminals, such as
smartphones and mobile sensors, collect data and send it to
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network servers, i.e., cloud, that analyze them and provide
various services [1], [2]. Although the cloud computing is
now one of the mainstream technologies, there are some
challenges, such as increased latency and load between the
user terminals with increasing IoT applications that require
real-time processing and the number of user terminals. There-
fore, edge computing technologies that relocate processing
resources to the areas near the user terminals have been
studied [3], [4], [5], [6], [7]. Edge computing can provide
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low-latency services because the user terminals and edge
servers terminate all processing without the support of cloud
servers. Note that this paper assumes that the applications of
edge computing networks also include networks in not only
5G/6G networks but also small areas such as shopping cen-
ters, stadiums, etc. In particular, when edge computing pro-
vides computer vision applications such as image recognition
and object detection using DNN, data reduction forwarded
through the network is a critical issue [8], [9] as shown
in Fig. 1. Self-driving cars [10], [11], surveillance camera
analysis [12], [13], and traffic navigation services at tourist
attractions are all examples of computer vision applications.
The use of edge computing will grow in tandem with the
expansion of services.

Furthermore, the amount of data collected from users
increased year after year. The network between the edge
server and user terminals will be congested in the near future.
As a result, our goal is to avoid decreasing throughput,
increasing latency, and network congestion on the edge com-
puting system that supports computer vision applications.
In particular, this study focuses on DNN-based image recog-
nition systems. Popularly, image compression such as JPEG
encoding is a straightforward technique to reduce data traffic.
However, when the image is compressed at a large rate, the
image compression degrades the estimation accuracy of the
DNN [14]. There is a trade-off relationship between image
compression and the DNN estimation accuracy. Moreover,
the proper compression rate depends on images. In addition,
DNN models have significantly evolved, and new models
have been proposed. Therefore, the compression method is
expected to be independent of the DNN model.

This paper proposes an edge-assisted image recognition
method with image compression and progressive retrans-
mission to overcome the above problem. The proposed
method improves the trade-off between network efficiency
and recognition accuracy in edge-assisted image recogni-
tion. The proposed edge estimates the recognition accuracy
and requests the retransmission to the user terminal when
the accuracy is estimated to be low. Then, the user ter-
minal retransmits the higher-quality image. The proposed
method can guarantee the estimation accuracy of image
recognition.

The contribution of this paper is as follows;
• Entropy can be employed as on an indicator of the
retransmission decision. An entropy-oriented decision is
independent of the number of labels of DNN because the
top-k output from the last layer of DNN is not used.Thus,
entropy is the generic indicator.

• The proposed edge-assisted image recognition system
reduces the network traffic. Using progressive JPEG
provides more traffic reduction, and we confirm the
effectivity with the simulation analysis.

• The proposed retransmission scheme processes can
be operated independently of the estimation model of
DNNs, so the proposed scheme can be applied to any
image recognition models based on DNNs.

FIGURE 1. Edge computing based image recognition.

This paper evaluates the estimation accuracy and entropy
of the image recognition by changing the image compres-
sion rate. We compare the proposed scheme with the image
compression systemwithout the retransmission in the entropy
view point and the data size reduction.

This research is an expanded version of our previous work,
which was published in IEEE VTC-Fall 2021 [15]. We
extended the previous work in the following three aspects:
• AlexNet is replaced in IEEE VTC-Fall version with two
major image recognition models, ResNet and Efficient-
Net, which are widely used in practical image recogni-
tion systems.

• The detail of the explanation and the discussion of the
proposed system was extended, and the simulation data
was obtained with the various parameters.

• The entropy was introduced as the retransmission deci-
sion indicator.

In the following chapters, Section II introduces relatedworks,
and Section III describes the proposed method. The exper-
imental evaluations are presented in Section IV. Finally,
we conclude in Section V.

II. RELATED WORK
This section introduces the representative schemes for edge
computing to conduct the DNN and the advantage of our
proposed scheme. Several schemes have been reported on
the edge computing system, with the DNN covering the IoT
applications, to avoid congestion between the edge server and
user terminals. For example, the image compression scheme
is useful before transmitting the image to the edge server at
the user terminals.
J. Ren et al. proposed an image compression scheme for

object detection based on the region of interest (ROI) [16].
The ROI refers to the area that includes the target object to be
recognized. The proposed scheme sets a lower compression
rate for the background region. As part of a related study,
we proposedmultiple ROI transmission schemes and reduced
the number of background images transmissions in a narrow
bandwidth, and high packet loss [17]. Li et al. proposed an
image compression scheme focusing on the difference in the
required image quality of each application [18]. The pro-
posed scheme adaptively selected the JPEG compression rate
between the edge server and the user terminals based on the
argent designed by reinforcement learning. The above works
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employed the traditional compression methods, and the DNN
was used to update the compression rate. In addition, JPEG
encoding may not be optimal for DNN-based image recog-
nition because the compression is tailored to human vision.
Therefore, a method has been proposed to reconfigure JPEG
encoding for DNNs [19].

Besides image compression, a new method called split
computing has been proposed for enabling network-efficient
edge-assisted image recognition [20]. In split computing, the
DNN model is split into a head network and tail network,
deployed to a user terminal and edge server, respectively.
The user terminal inputs its obtained image with the head
network, and the output of the hidden layer is forwarded to
the edge server. Then, the server processes the rest with the
tail network. Split computing can reduce traffic and latency
by introducing a bottleneck architecture to the head network.
Matsubara et al. have studied an efficient way to train the
head network to reduce network traffic without degrading the
model performance [21]. Itahara et al. studied a model tuning
method to improve the model robustness against compression
and network-induced packet losses [22]. However, the user
terminal must have enough computing power to handle the
head network to apply this split computing. In contrast, the
IoT devices such as network cameras and wearable sensors
often do not have such computation power.

The followings are the key features of our proposed
scheme:
• When the estimation model was a classifier, the pro-
posed scheme did not refer to or retrain the DNN
model. The proposed scheme can be carried out even
when the model is updated. The proposed scheme
employs the entropy calculated by the posterior prob-
ability distribution output from the softmax of the DNN
as the image retransmission decision indicator. Any
estimation model can be used as long as the posterior
probability distribution is obtained.

• The proposed scheme does not affect the related work
introduced in this section. As a result, we can employ
both schemes at the same time.

The next section describes the principle of operation of the
proposed scheme in detail.

III. PROPOSED EDGE-ASSISTED IMAGE RECOGNITION
A. OVERVIEW
This section describes the concept of the proposed scheme.
Fig. 2 (a)–(d) shows the candidate for the edge computing
system for traffic reduction. Fig. 2 (a) is the configuration
of the normal image recognition with edge computing. The
user terminal has the original image and sends it to the edge
server. Prior to recognizing the image with the DNN, the edge
server uses a downsampling method to match the image size
with the input size of the DNN. For example, the input size in
ResNet, a popular model of the DNN, is 224 × 224 pixels.
While Fig. 2 indicates only downsampling, the image is
up-sampled when the image size is smaller than the input
size.

FIGURE 2. Candidate for edge computing system for the traffic reduction.

In Fig. 2 (b), the user terminal conducts the downsampling
in advance. We anticipate a reduction in the image size.
Furthermore, the system has no effect on image recognition
accuracy. Meanwhile, the data size is equal to the total num-
ber of pixels multiplied by 24 bits. As a result, we anticipate
greater traffic reduction when the user terminal performs
JPEG encoding before transmission, as shown in Fig. 2 (c).
However, when lossy compression is used, the recognition
accuracy decreases.

Fig. 2 (d) shows the proposed retransmission scheme.
In the proposed scheme, users downsample and compress
images before sending them to an edge server. The edge
server uses the DNN to recognize the images. The edge
server sends the Image-NAK retransmission request message
when the estimation accuracy falls below the predefined
threshold. The Image-NAK-received user terminals reset the
compression rate to a lower value and resend the images to
the edge server. When the edge server achieves sufficient
accuracy, it transmits an acknowledgment message known as
Image-ACK and ends the forwarding process. In addition,
the edge server terminates the process when the number of
image retransmissions reaches a certain threshold. It is worth
noting that ACK and NAK messages of TCP connection
are communicated in the network. The ACK and NAK are
different messages of Image-ACK and Image-NAK.

B. IMAGE COMPRESSION FORMAT
We introduce two types of image compression format; The
first is a baseline JPEG encoding standardized by ISO/IEC
JTC 1/SC 29. The other is a progressive JPEG format. The
progressive JPEG stores the binary data in order, starting
with the image’s lower resolution (frequency) components.
In other words, the image can be opened evenwhen the binary
data is cut from the beginning to the middle. The shorter
the binary data is cut, the coarser the image. Meanwhile, the
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FIGURE 3. Example of progressive JPEG format.

standard JPEG format cannot open the image when the binary
data is cut in the middle. The progressive JPEG embeds
markers in the binary data. The compression rate is calcu-
lated at the marker position. For example, Fig. 3 shows the
highly compressed image with a first marker position from
the beginning of the binary data and the original image with
all binary data. In Fig. 3, we assume that the maximum
number of markers is n. Higher-frequency components are
absent from the highly compressed image. The compression
rate of the proposed scheme is controlled by referring to the
markers. In this paper, the marker number is referred to as the
compression step.

C. OPERATION OF USER TERMINALS
1) BASELINE JPEG CASE
In advance, user terminals perform downsampling and con-
vert the image format into standard JPEG. The user terminal
sets the quality in the range of 0–100% of the JPEG to
compress the image. The level of quality is predetermined.
When the user terminal receives the Image-NAK, it recom-
presses the image using the next designated compression rate.
This phase is repeated until Image-ACK is received or the
retransmission limit is reached.

2) PROGRESSIVE JPEG CASE
User terminals conduct the downsampling and convert the
image format into progressive JPEG in advance. Algorithm 1
shows the operation of the user terminals in the proposed
scheme. The image in the progressive JPEG format is con-
verted to binary data Dorig. The algorithm then reads the
current compression step σc. c is the compression step num-
ber. The initial compression step is assumed to σi. The recep-
tion of Image-NAK suggests that the forwarding process has
already been performed several times. Thus, the algorithm
extracts the binary data Dp at positions from the previous
compression step σc to the currently designated compression
step σf . When the Image-NAK has never been received, and
this is the first time the image is being forwarded, the user
terminals forward the binary data from the beginning of the
data to the initial compression step σi.
While the user terminal continues to send the compressed

image to the edge server until the image recognition is
complete, overlapped data are not forwarded due to the pro-
gressive transmission. From this perspective, the proposed
scheme contributes to the traffic reduction.

Algorithm 1 User Terminals in Progressive Retransmission
Input: Binary data Dorig with or without NAK Nf
Output: Requested partial binary data Dp

Read: Current compression step σc
if Receive NAK Nf ? then
Extract: Binary data Dp between comp. steps σc and σf
in Dorig
Update: σc← σf

else
Extract: Binary data Dp until comp. steps σi in Dorig
Update: σc← σi

end if
return Requested partial binary data Dp

D. OPERATION AT EDGE SERVER SIDE
Algorithm 2 shows the operation of the edge server. The edge
server combines the binary dataDp just received with the data
D has already received and composes the image y. The image
y is input into the prediction model of the DNN. Note again
that we use a pre-trained DNN model, get only the output of
the DNN model, and calculate the posterior probability. That
is, we need not retrain the DNN model. Here, the threshold
was required be set for the retransmission. Entropy and top-k
error are introduced as the decision indicator. The server
calculates the entropy E(y) using the posterior probability
p(xi|y) from the output layer.

E(y) = −
L∑
i=1

p(xi|y) log p(xi|y), (1)

where y is the input image, xi is the i-th label, L is the
total number of labels. In the top-k case, the top-k error is
expressed as,

E(y) = 1−
k∑
i=1

p(xi|y). (2)

Up to k-th the posterior probability are summed. The predic-
tion model is combined with the softmax layer to convert the
logits into pseudoposterior probability.WhenE(y) is less than
the Eth threshold, the edge server requests retransmission to
the user terminal. The entropy threshold is predetermined,
and the maximum number of retransmissions is also limited.

The next section confirms the entropy by varying the com-
pression steps with the ResNet and the EfficientNet, which
are the typical image recognition models.

IV. INVESTIGATION OF ENTROPY AND TOP-K ERROR
PROPERTIES
A. SETUP
The proposed scheme must set the following parameters in
advance to retransmit the compressed images.
• JPEG quality and compression steps in initial transmis-
sion and retransmissions,

• Top-k and entropy threshold for the decision of predic-
tion accuracy.
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Algorithm 2 Edge Server
Input: Binary data Dp
Output: DNN output and image-ACK, or only

image-NAK
Read: The number of data receptions Nr
Read: Entropy threshold Eth
Read: Maximum number of retransmission requests
Nmax
r

Read: Binary data already received D
if Progressive transmission then
Append: D← D+ Dp

else
Update: D← Dp

end if
Reconstruct: Image y from D
DNN-based Recognize: Posterior probability p(xi|y)
Calculate: Entropy E(y)
if E(y) < Eth or Nr ≥ Nmax

r then
Initialize: Nr
return DNN output and image-ACK

else
Update: Nr
return Image-NAK Nf

end if

These parameters depend on the dataset and prediction
model. This paper introduced ImageNet datasets [23]. Ima-
geNet dataset includes 1,200,000 train images, 50,000 valida-
tion images, and 100,000 test images of 1,000 class. We used
the test dataset for the experiment for setting the threshold of
the retransmission and compression step in this section. The
validation dataset was used for the experiment to evaluate
the feasibility of the proposed scheme in the next section.
The reason why we separated the dataset into test and val-
idation was to avoid the overfitting. The applied prediction
models of the DNN were,
• ResNet-50,
• EfficientNet-B7

The input sizes of ResNet-50 and EfficientNet-B7 are 224×
224 pixels and 600 × 600 pixels, respectively. The predic-
tion model is provided by Tensorflow library. We used the
provided and pre-trained model. That is, we conducted no
additional learning and no change in the layer structure.
The proposed scheme conducts the downsampling and JPEG
encoding as preliminary treatment. Thus, this section stud-
ied the relationship of the JPEG quality, compression step,
and data size versus top-1, top-5, and entropy. In addition,
NVIDIA RTX3090 was used for the machine specification,
including 24-GB GPU, and AMD Ryzen 7 3700X. All of the
simulations were carried out on this machine.

B. BASELINE JPEG RESULTS
Fig. 4 (a) shows normalized data size when changing the
JPEG quality. The normalized data size is the total data

TABLE 1. Prediction threshold in baseline JPEG case. There are
12 settings.

size of the compressed images in the test dataset divided
by that of the original images. The solid line and the color
region display the average value and standard deviation,
respectively. The data size changed nonlinearly against the
quality. Fig. 4 (b)–(d) shows the top-1 output, the top-5
output, and the entropy when changing the JPEG quality. The
solid and the dashed lines indicate average andmedian values,
respectively. Both cases of ResNet-50 and EfficientNet-B7
changed the slopes by around 10−20%.We used the mean or
median value as the threshold for the decision of the predic-
tion accuracy. Table 1 summarizes the prediction threshold
values. In addition, we used the values around inflection
points as the threshold of the retransmission.

C. PROGRESSIVE JPEG RESULTS
Fig. 4 (e) shows the normalized average data size changed
by the compression step of the progressive JPEG image.
We converted the baseline JPEG format of the ImageNet test
dataset into the progressive JPEG format and then set the
JPEG quality to 95%. When the compression step is 2, 4,
and 6, the data size was steeply changed. Fig. 4 (f)–(h) shows
top-1 output, top-5 output, and entropy. Fig. 4 (e)–(h) were
changed at the same inflection points. We set the threshold
for the retransmission to mean or median value at compres-
sion step = 10. Table 2 summarizes the prediction threshold
values.

V. EXPERIMENTAL EVALUATION
A. SETUP
We evaluated the proposed scheme. This section used vali-
dation datasets of ImageNet. Table 3 shows the evaluation
items. We prepared ten items. Indexes (1)–(4) used the base-
line JPEG format, and Indexes (5)–(10) used the progressive
JPEG format. We employed a two-pattern threshold of mean
or median as shown in Tables 1 and 2 on the retransmission
decision. In addition, we applied the top-1 error, the top-5
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FIGURE 4. Variations of data size, top-1, top-5, and entropy when changing JPEG quality (above) and compression step (bottom).

TABLE 2. Prediction threshold in progressive JPEG case. There are
12 settings.

error, and the entropy as the criterion for the retransmis-
sion decision. The fourth, fifth, and sixth columns indicate
the JPEG quality or the compression step. The fourth col-
umn shows the case of the initial transmission (indicated as
‘‘Trans.’’). In the initial transmission, images are forwarded
using JPEG quality or step as shown in fourth column of
Table 3. This paper set the maximum number of retransmis-
sions to twice. The fifth and sixth columns mean the first and
second retransmissions cases (indicated as ‘‘1st retrans.’’ and
‘‘2nd retrans.’’), respectively. For example, in the progressive
JPEG case of the index (5), the user terminal forwards the
binary data from zero to one step as the initial transmission.
The binary data from two to four-step is forwarded in the first
retransmission. Finally, in the second retransmission, the user
terminal forwards the data from 5 to σmax .
We prepared the comparison data in the baseline JPEG for-

mat without retransmission. The JPEG quality was changed

from 10% to 95%.We simulated the relationship between the
forwarded data size and the top-1 error, the top-5 error, and
the entropy. If having a smaller data size and a smaller error,
the proposed schemes have an advantage over the baseline
JPEG transmission without the retransmission. The second
experiment evaluated the number of retransmissions for all
indexes, as shown in Table 3. These evaluations employed
ResNet and EfficientNet on the prediction model.

The proposed system is a novel topic for edge computing
systems since it adds only a retransmission process that does
not affect the DNN model. Thus, it is difficult to compare
the proposed system with the related work. To fundamen-
tally evaluate the effectivity, we compared it with the base-
line JPEG. We used the published DNN model without the
change, e.g., retraining or fine-tuning.

This verification assumed the ideal communication chan-
nel. In other words, the channel has no packet loss character-
istics. When considering a practical communication channel,
packet loss and forwarding latency affect the retransmission
delay directly; however, we deal with this problem as a further
study. In this paper, we reveal the prime potential of the
proposed method.

B. RESULTS
1) DATA SIZE VS. ERROR
Fig. 5 shows the result of using ResNet. In Fig. 5 (a)–(c),
we used the top-1 error for the retransmission decision.
(d)–(f) and (g)–(i) used the top-5 error and the entropy,
respectively. The blue line indicates the result of the com-
pression transmission without retransmissions. Variable Q is
the JPEG quality. The red line is the result in the typical
prediction case with ResNet. From Fig. 5, except for (c),
(f), and (i), the points of the proposed scheme were mapped
on the right side against the blue line. It indicates the effec-
tiveness of the proposed system is low. Note that index (9)
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FIGURE 5. ResNet results.

is slightly effective in Fig. 5 (e). Meanwhile, the proposed
scheme is effective in the entropy evaluation. In particular,
all the points with the proposed scheme were mapped on
the left side against the blue line when the entropy criterion
decision was employed, as shown in Fig. 5 (i). Notably,
the results with the proposed scheme were improved than
the typical ResNet result indicated with the red line. The
lower entropy means that it is possible to include the correct
label near the top even when the correct label is out of
top-5.

Fig. 6 shows the results employed EfficientNet. The red
line is the typical EfficientNet results without the additional
compression. The error is more minor because the Efficient-
Net accuracy is better than the ResNet. For this reason, the
proposed scheme was effective in the cases of the top-1 error
and the top-5 error, unlike the ResNet case. The entropy
case was improved than the ResNet case. That is, the better
the accuracy of the model, the more effective the proposed
method is.

2) NUMBER OF RETRANSMISSIONS
Fig. 7 shows the breakdown of the number of retransmis-
sions in all validation data. The horizontal axis is the index,
as shown in Table 3. The vertical axis is the ratio of the
number of retransmissions. For example, the index (1) in
Fig. 7 (a) includes 40% of the validation datasets with the ini-
tial transmission, 20% of those with the first retransmission,
and 40% of those with the second retransmissions. Overall,
the baseline JPEG cases were more likely to be accepted
without the retransmission, while the progressive JPEG cases
were more likely to need the retransmission. In addition, the
EfficientNet case contained around 40% to 50% of the second
retransmission. This is because the EffficientNet accuracy is
better than the ResNet. The ResNet had the larger number of
the second retransmission. While the retransmission scheme
is operated effectively, an increase in the retransmissions
causes an increase in latency. Thus, the number of retrans-
missions should be limited when the proposed scheme is
employed on mission-critical systems.
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FIGURE 6. EfficientNet results.

TABLE 3. Evaluation patterns.

VI. LIMITATION OF PROPOSED SYSTEM
The proposed scheme aims to the system of image clas-
sification. It calculates the entropy from the classification

results and guarantees the accuracy of the classification.
The proposed scheme cannot be directly employed in object
detection from an image, including multiple objects and seg-
mentation. For the object detection [24], as a new method,
we can reset ROI from the accuracy of the detected object
and request to retransmit the image that includes the mini-
mum required pixels. Meanwhile, an indicator by using the
accuracy of object detection is needed. These problems are
future works. For the segmentation, it may be easy to apply
the proposed scheme to a segmentation method using belied
map [25]. We will calculate the entropy from the conditional
random field (CRF). The segmentation using attention [26]
requires an imagewithmultiple size. That is, a high resolution
is needed. Pre-compression on the user terminal side, as in the
proposed method, may not be suitable for the segmentation
scheme. In the future work, we plan to extend the proposed
method to not only these object detection and segmentation,
but also video data.
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FIGURE 7. Breakdown of the number of retransmissions in all test images.

VII. CONCLUSION
This paper proposed edge-assisted image recognition sys-
tems with progressive retransmission to reduce image data
traffic and alleviate network congestion. We introduced a
threshold based on entropy metric calculated from poste-
rior probabilities from a deep learning model’s output layer.
We implemented the proposed scheme on the edge server.
In this paper, we first calculated the practical threshold in the
cased of top-1, top-5, and entropy when using ResNet and
EfficientNet. We simulated the proposed image recognition
system with baseline and progressive JPEG images using
the calculated thresholds. The simulation results revealed the
relationship between the data compression and the recog-
nition accuracy. In the ResNet case, while top-1 and top-5
results were not exceeded the baseline compression method,
the entropy result was drastically improved. Moreover, in the
EfficientNet case, the proposed system indicated an improve-
ment compared with the baseline method. This result implied
that the higher the accuracy of the original DNN model,
the better the proposed method also returns results. Further
studies include employing the proposed scheme on more
advanced computer vision applications such as object detec-
tion and experiments using commercially-supported edge
systems.
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