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ABSTRACT Swarm intelligence has been applied to replicate numerous natural processes and relatively
simple species to achieve excellent performance in a variety of disciplines. An autonomous approach
employing deep reinforcement learning is presented in this study for swarm navigation. In this approach,
complex 3D environments with static and dynamic obstacles and resistive forces such as linear drag, angular
drag, and gravity are modeled to track multiple dynamic targets. In this regard, a novel island policy
optimization model is introduced to tackle multiple dynamic targets simultaneously and thus make the
swarm more dynamic. Moreover, new reward functions for robust swarm formation and target tracking
are devised to learn complex swarm behaviors. Since the number of agents is not fixed and has only
the partial observance of the environment, swarm formation and navigation become challenging. In this
regard, the proposed strategy consists of four main components to tackle the aforementioned challenges:
1) Island policy-based optimization framework with multiple targets tracking 2) Novel reward functions
for multiple dynamic target tracking 3) Improved policy and critic-based framework for the dynamic swarm
management 4) Memory. The dynamic swarm management phase translates basic sensory input to high-level
commands and thus enhances swarm navigation and decentralized setup while maintaining the swarm’s
size fluctuations. While in the island model, the swarm can split into individual sub-swarms according
to the number of targets, thus allowing it to track multiple targets that are far apart. Also, when multiple
targets come close to each other, these sub-swarms have the ability to rejoin and thus form a single
swarm surrounding all the targets. Customized state-of-the-art policy-based deep reinforcement learning
neuro-architectures are employed to achieve policy optimization. The results show that the proposed strategy
enhances swarm navigation by achieving a high cumulative reward and a low policy loss. The simulations
show that the proposed framework can efficiently track multiple static and dynamic targets in complex
environments.
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I. INTRODUCTION

Deep reinforcement learning exploits the ideas of deep learn-
ing [1], [2] and reinforcement learning [3]. It has been used
for learning advantageous behaviors for agent training [4].
The technique of integrating simple activities in such a man-
ner that helps in developing a more sophisticated behavior
is known as swarm intelligence [5], [6]. It has allowed us
to replicate numerous natural processes by relatively sim-
ple species cooperating and completing complex tasks to
achieve excellent results in a variety of disciplines while
ostensibly conducting simple activities. As a result of its
utility, engineering artificial multi-agent systems with swarm
intelligence has become a burgeoning research field. Swarm
intelligence has a wide range of uses [7], [8], including
high-level monitoring of dynamic networks, adaptive routing
in telecommunications, distributed sensing technology [9],
surveillance [10], data processing, cluster analysis, search
and rescue missions [11], [12],advertisement, and drone used
as a delivery bot [13]. This is especially important in current
times of pandemic, and there are also potential applications
such as using nanobots within the body of a cancer patient to
kill tumors [14]. Swarm intelligence is also being employed
by NASA in planetary imaging [15]. Swarm intelligence is
a natural phenomenon in which the activities of numerous
dispersed and simple self-organized organisms combine to
produce ““intelligent” global behavior. Swarm awareness can
be observed in nature in several subtle and awe-inspiring
ways, such as when simple species acting independently
interact to generate complex global behavior. Bee colonies,
schools of fish, flocks of birds, ant colonies, hawks hunting,
animal herding, and bacterial growth are all examples of
swarm intelligence [16]. To fulfill common objectives like
foraging, group coercion, and alignment control, these swarm
systems employ the notions of “quantity” and ‘“‘coordina-
tion” [17], [18]. Swarm robotics [19], [20] is a technique
for coordinating many robots as part of a larger structure
made up mostly of basic physical robots [21]. It is expected
that robot-robot interactions and their interactions with the
environment result in intended reciprocal behavior [22]. Arti-
ficial swarm intelligence, as well as biological observations
of flies, ants, and other natural systems that display swarm
behavior, inspired this work. However, most artificial swarm
systems find it challenging to represent such a mix of behav-
iors displayed by natural swarms since doing so adds to
the problem’s complexity [23], [24]. When the drones are
controlled manually, an operator must be present to operate
them. Furthermore, traditional machine learning [25], [26]
requires manual feature engineering, which is tedious and
less flexible. This research work addresses the problem of the
development of an end-to-end model for detecting targets in
various settings and autonomous navigation [27] of drones
tracking the targets while avoiding obstacles and maintaining
stable agent formations.
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This research aims to create artificial swarms for the
purpose of navigation in unseen environments and tracking
targets. Five key swarm behaviors are modeled: (1) swarm
formation and organization, (2) dynamic obstacle avoid-
ance, (3) locating single and multiple targets, (4) Navigation
towards the target using the shortest path while sustaining
swarm formation, and (5) tracking multiple targets by divid-
ing the swarm into sub-swarms and tracking each target with
a single sub-swarm. The research is particularly focused on
finding multiple targets in complex environments resembling
real-world scenarios by training swarm agents using Unity
3D. The proposed framework is shown in Fig.1. To sum up,
this work has the following contributions:

1) A policy-based deep reinforcement learning frame-
work named Island policy-based optimization frame-
work (IPOF) is proposed, enabling the drone swarm
to navigate autonomously while avoiding obstacles and
tracking multiple targets. To prepare the drone swarm
for real-life situations [28], complex 3D environments
with dynamic obstacles having distinct morphology are
created. In addition, resistive forces like linear drag,
angular drag, and gravity are added to make the envi-
ronments more realistic and complicated.

2) Novel reward functions have been introduced that
allow the swarm to avoid barriers and track multiple tar-
gets while traversing the shortest path and maintaining
a stable swarm structure. Both static and mobile targets
can be efficiently tracked.

3) Improved policy and critic-based framework for the
dynamic swarm management is introduced, thus
increasing swarm efficiency.

4) To improve swarm navigation and decentralized setup
while preserving the swarm’s size variations, a mech-
anism that converts basic sensory input to high-level
commands is employed. The concept of memory is also
added to aid drone swarms in remembering the best
paths.

Il. RELATED WORK

Researchers have long been interested in extracting and
implementing the principles that regulate these amazing bio-
logical swarm systems since their performance regularly sur-
passes individual biological organisms’. Swarm simulations
and manual inspections have previously achieved substantial
results [29], [30], [31], [32]. Mimicking the swarm behavior
of animals manually has been studied extensively, for exam-
ple, in [33] the laws that control enormous prey recovery in
insects were employed to explain the realization of swarm
behavior in robots. Minaeian et al. [34] developed SLAM
algorithms for a set of unmanned ground and aerial vehicles
to map and monitor crowds. Pheromone-based localization
of dispersed targets by a swarm of virtual agents operating
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FIGURE 1. Drone swarm navigation and tracking, (a) Island policy-based optimization framework (b) Drone swarm navigation and tracking block diagram
(c) Flow Diagram representing major components, their relationship and arrangement.

in a simulated discretized environment was studied in [35].
In their research, mini-UAVs are viewed as swarm agents,
and they may have imperfections while detecting targets.
Swarm behaviors, such as aggregation, foraging, creation,
and monitoring, were studied in [36] and algorithms were
developed to replicate such behavior.

When the problem’s complexity grows exponentially, the
time and effort required to solve it also grows dramati-
cally. So, the time and effort spent inspecting, formulat-
ing, and solving a problem must be reduced. Q-Learning
was developed by Watkins et al. [37] in 1992 as a strategy
for iteratively training agents to behave optimally to maxi-
mize reward. With sufficient samples, Q-Learning converges
to produce optimum action-value pairings in Markovian
domains with a probability of one. Google Deep Mind built
the first deep learning model based on Q-Learning (DQN) in
2013 [38], it could play a variety of Atari 2600 games using
only pixels as feedback. However, in the Q-Learning algo-
rithm, state space is continuous, but action space is discrete,
so it can’t be used in problem domains where action space
also needs to be continuous.

To handle the problem of continuous action space,
Lillicrap et al. [39] proposed a deep deterministic policy
gradient-based actor-critic algorithm (DDPG) that borrows
heavily from DQN in terms of simple architecture, including
mini-batch updates and the Ornstein-Uhlenbeck process [40]
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as exploratory noise. Swarm formation and mutual localiza-
tion was explored in [41], [42], with a few modifications,
they utilized the DDPG [43] algorithm. Actor-network and
critic-network input was adapted to make the swarm machine
work. A novel technique was utilized in which they gave the
critic network entire state data while only giving the actor
network partial state data. As a result, the critic network
uses global state data to modify the parameters of the actor
network, whereas the actor network simply uses local state
data.

In the technique proposed by Akhloufi et al., a deep learn-
ing method is provided to anticipate the behavior of agents
tracking a travelling drone [44]. A single agent was trained
by [45] to maneuver in a dynamic maze-like environment
using deep reinforcement learning. In their research, informa-
tion from location sensing devices was employed as feedback
to train the model with memory. Not only they used a single
drone but also they worked on the navigation problem so there
was no target involved at all.

An iterative technique called Trust Region Policy Opti-
mization (TRPO) [46] was introduced that operated similarly
to natural policy gradient methods and could optimize large
non-linear policies. Thus, it could be effectively used for
neural networks but required second-order derivative cal-
culations. Proximal Policy Optimization (PPO) [47] from
Google Deep Mind became a state-of-the-art solution to train
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FIGURE 3. Actor-Critic along with simulation environment.

agents because of its sample reliability. It largely followed
the concept behind TRPO but reduced calculations from
second-order derivative to the first-order derivative. It used a
stochastic gradient ascent to optimize a “‘surrogate” clipped
objective function. In the Atari domain, the PPO algorithm
out-performed Advantage Actor Critic (A2C) [48]and Actor
Critic with Experience Replay (ACER) [49]. PPO algorithms
were used to measure the efficiency of OpenAl Gym on high-
dimensional controls, such as humanoid running and steering.
In [50] code level optimizations for the PPO algorithm to
work properly were summarized. A variant of the PPO algo-
rithm named IEM-PPO [51] was presented with improved
sample efficiency, better stability, and robustness, yielding
comparatively higher cumulative reward, but took more time
to train. PPO algorithm along with incremental curriculum
learning [52] and long-short-term memory (LSTM) [53][55]
was utilized to implement an adaptable navigation algorithm.
The Truly Proximal Policy Optimization (TPPO) [54] modi-
fies the PPO algorithm to perform slightly better in terms of
stability and sample efficiency. Himildinen et al. [55] argued
that in PPO, the variance of exploration prematurely shrinks,
which makes progress slower, and proposes PPO-CMA to
dynamically increase or decrease the variance of exploration.
A new surrogate learning objective featuring an adaptive
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clipping mechanism named as PPO-A is introduced in [56].
It iteratively improves policies based on a theoretical goal
for adaptive policy change. PPO algorithm was employed
in [57] to create drone swarms using multiple sensors per
agent to reach target information while avoiding obstacles.
Wang et al. [58] worked on an autonomous multi-agent [59]
target reinforcement model using UAVs for searching and
tracking. Camera, IMU, and GPS were used as sensors.
Since their work was based on patrol, they only consid-
ered a constrained environment. Qu et al. [60] leveraged
the concept of association for multiple target tracking. Their
research centered on intelligent sensors that can distinguish
readings based on targets using Grideye, an infrared sen-
sor with the ability to calculate target location and surface
temperature. Multi-target tracking on MOT15 and MOT16
datasets is performed by Ren et al. [61]. Although they were
challenging datasets but the work was based on tracking
humans.

PPO, despite having good performance suffered from sam-
ple efficiency. It showed good performance On small sample
spaces, however low sample efficiency caused a lot of prob-
lems on large sample spaces. TPPO enhanced sample effi-
ciency but improvements were still limited. To counter this
problem, an off-policy method known as Soft Actor-Critic
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FIGURE 5. (a) Agent with its sensing area (b) Three levels of danger identified by agent, “Green” represents slight danger; no immediate action required,
“Brown” represents intermediate danger; try to minimize it without sacrificing goal; “Red” represents extreme danger; prioritize safety (c) Agent's
interaction with obstacles (d) all agents maintaining safe distance with each other.

(SAC) was introduced in [62] that focused on maximizing
reward with maximum possible entropy, which is the mea-
sure of randomness. SAC required extensive hyperparameter
tuning in some cases but achieved state-of-the-art results.

lll. METHODOLOGY

Due to the complexity of the current world and the compar-
atively poor sample efficiency of algorithms in the field of
deep reinforcement learning, it is difficult to directly create
a real-life model. Furthermore, explicitly training our model
in the real world might result in mishaps. Thus, models are
trained using simulations, utilizing Unity3D engine since it
provides the required tools needed to construct complex 3D
environments. Another reason is that it includes the ml-agents
library, which allows Python to be used as a back-end for deep
learning tasks. Architecture components for the training mod-
ule are represented in Fig. 2 while general Actor-Critic along
with rewards and relation with the learning environment and
different scenarios that can occur during tracking targets is
shown in Figs. 3 and 4.

A. SIMULATION ENVIRONMENT

It is crucial to design environments that support agents’ abil-
ity to train successfully and efficiently. Therefore, a variety
of scenarios are constructed for training the drone swarm
to determine the best conditions. Agents with their sensing
area and different levels of danger identification by agents
are visualized in Fig. 5. Basic environments are visualized
in Fig. 6(a) whereas agents within environment is given in
Fig. 6(b). Several settings are used during training to extend
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TABLE 1. Single target environments.

Length
Volume in | of each Number of | Length of obstacles | Obstacle
units3 axis in obstacles in units positions
units
1,000,000 | 100 100 Rang‘“ﬁ) ble(;‘”een "'| Random
500,000 | 50 60 Ranging between | andom
100,000 | 10 30 Ranging between 1| Random

our model and assess the efficacy of different training cir-
cumstances. All models include a 3D environment with a
variable number of obstacles that cover various cubical vol-
umes, as indicated in Table 1. Obstacle locations are chosen at
random to make our method adaptable to changing surround-
ings. The number of multi-agent training targets varies across
simulations, ranging from two to sixteen. Table 2 lists the
environments utilized for multi-target training. A summary
of actions that can be taken by agents is listed in Table 3.

The drawback of using only static targets throughout the
training period caused the model to memorize their locations
resulting in the loss of generalization. Counteracting this,
the position of targets in the environment is also randomized
by employing the random tick, which involves changing the
positions of target points every 100 ticks to introduce time-
decoupled uncertainty. To generate ticks, a random floating-
point value is generated at each time-step. The threshold for
ticks being considered is 0.85.
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TABLE 2. Multi-target environments.

Volume | Axis | No.of | Obstacles’ | Obstacle | No of | Target
in units® | Length| obstacles Sizes positions | Targets | Type
Ranging
1,000,000{ 100 20 between 1 Static 2 Static
to 10
Ranging
500,000 50 50 between 1 | Random 2 Dynamic
to5
Ranging
100,000 10 30 between 1 | Random 4 Static
to7
Ranging
100,000 10 10 between 2 Static 8 Dynamic
to 8
Ranging
700,000 70 100 between 5 | Random 16 Static
to 10
Ranging
1000,000 | 100 200 between 1 | Random 16 Dynamic
to 10
TABLE 3. Allowed actions of agents.
Action Possibilities
. 9 Directions (up, down, right, left, forward,
Motion backward, pitch, roll, yaw)
Rotation [0-360)
Hover over target Yes/No

Agents must also begin each simulation in a random place,
which necessitated the creation of a position randomizer.
It generates a random position in the environment from all
available places. Obstacles, targets, and drone agents that
have already been created are all eliminated from prospective
locations. Each agent utilizes distance sensors in a circular
pattern around them to detect and avoid obstacles. Proposed
model is faster and uses fewer resources because these sen-
sors eliminate the need for significant processing, which is
common in camera-based techniques.

Every agent has knowledge about the targets and their
immediate surroundings. At each time-step, the positions of
the targets are assumed to be known. A sigmoid of the normal-
ized geodesic distance between the targets’ and the agents’
positions is taken to generate a compact representation of the
targets’ locations. For ease of use, all agents and targets have
an aligned coordinate system. Also, their rotational character-
istics are locked. The following formulae are used to calculate
the relative orientation standardized vector P as shown in (1).
The distance between target locations i and agent y are then
computed by taking their sigmoid as shown in (2).

P—< Si — Sy ) n
— \1ISi = Syl

v ISi— Syl ) )
Tbi = <1+||si—sy|| @

where §; and Sy denote the target points and agent y’s location,
respectively. The location information related to all agents
present in the nearby zone and obstacle sensor outputs are
included in the information state vector. As agent numbers
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in a neighborhood might fluctuate and deep neural networks
(DNN5s) have finite input capacity, feeding location data from
nearby agents directly into the network can be difficult.
To address this problem, a 3D histogram approach is pro-
posed. In the first step, vectors are computed by subtracting
the position of agent y from all agents surrounding it, and then
these vectors are mapped into J bins in each axis. Then the
axes are concatenated into a single vector and given to DNN
as input. Vector component <k> histogram computation for
every agent is calculated using an algorithm called VCH
presented as follows:

Algorithm 1 VCH
Hisj<K > «0,j=1,2,3,...J (Initialize)
Input:
x: number of agents; D.:Communication Radius
Output:
Vector Component Histograms
For x=1 to W do

) <K >; +D,
== - < ~ 9 e 9 9
J D x 2 g€ fx,yz
1—0}+ D,
x jo<K> _ 7y
Dsfbnyc HlSj = W <3
Otherwise 0

where x denotes all agents except agent y, the difference in k
components of position vectors of agents x and y is referred
toas < k >§, . Distance between agent x and y is denoted
by b}; Dy is safe distance parameter while D, represents a
communication area. Obstacle detection sensors denoted by
(Dygen) are considered time-of-flight (7oF’) sensors. Output of
all sensors is Ti represented by (3).

i , if if an obstacle is sensed by “i”
T,' =1- Dyey (3)

0, otherwise

After that, the data from all the sensors are aggregated and
submitted to the DNN.

B. ACTION GENERATION

A delta vector u composed of three variables, representing
3D coordinates, is generated. The vector u and the agent’s
present position vector S; is then summed to get new position
S/ as shown in (4).

S, =Sy +u “)

This action generation strategy shown in Fig. 7 broadens the
applications of the proposed approach.

C. PERFORMANCE METRICS
The performance metrics for assessing successful training of
the model are explained in this section.

Mean Cumulative Reward (MCR) is an assessment of
total reward which indicates an increasing trend during effec-
tive training.
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(a) (b)

FIGURE 6. Environment visualization: grey box represents outer boundary
(a) obstacles are blue colored while target is represented by a red colored
capsule (b) Agents with their obstacle lines (green in color) are visualized.

Value Loss (VL) is the performance indicator for assessing
policy change, registers a declining trend during effective
training.

Policy Loss (PL) is an accurate state value prediction
which exhibits growing trend until the reward is stable, then
it starts to drop during effective training.

Entropy (E) represents the unpredictability of the model’s
decisions and exhibits a diminishing trend during effective
training.

D. MODELING REWARDS

Training data is acquired by running multiple simulations
in parallel and then optimizing our novel reward function
using PPO, TPPO, and SAC. R, in (5) is the navigation
reward that allows a swarm of drones to calculate the shortest
path between the target and the swarm in real-time, even
if the target is behind a large obstacle with no direct path
to it. The shortest path is determined at each time-step,
while the target is moving and drones are in flight so that
drones may surround the target as quickly as possible. R,
in (6) denotes the reward for assisting in the construction
and organization of drone agents. It enables them to form
swarms in real-time while remaining at a safe distance yet
close enough to communicate. With the assistance of R;, the
swarm can avoid obstacles (7). In addition, if an agent leaves
the environment or if the agent is destroyed, then a negative
reward as punishment is generated, and the destroyed agent
is respawned at some random place inside the environment.
Total reward by a single swarm is represented using RS in (8)
which is a combination of individual rewards like R,,, R,, R;.
Ryus (9) rewards all swarms that are present in the environment
and are cooperating. Swarm divides into sub-swarms and
similarly multiple swarms combine to form a single swarm.
The number of targets determines how the swarm subdivision
is done. If there is one target with a swarm tracking it, and
another target is introduced, the swarm will split to track both
targets. Similarly, increasing the number of targets increases
the number of swarm sub-divisions. Also, if two swarms are
tracking two targets and one of the targets is eliminated, the
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TABLE 4. Simulation hyperparameters (PPO, TPPO and SAC).

S.No. Hyperparameter Value
01 Simulation Instances 28
02 Agent Quantity in Simulations (S) 23
03 Number of steps per episode 900 steps
04 Radius for Communicating (D) 9 units
05 Histogram Bins per Axis (K) 32
06 Obstacle Sensors per Agent (J) 18
07 Sensor Range (Dsen) 7 units
08 Safe Region (D) 3 units

TABLE 5. Training hyperparameters (PPO and TPPO).

S.No. Hyperparameter Value
01 Total steps 55 millions
02 Time Horizon 512 steps
03 Size of Batch 1024
04 Buffer Size 10,240 steps
05 Rate of Learning 0.0007
06 Policy update penalty (beta) 0.007
07 Clipping Value 0.3
08 Lambda 0.96
09 Epochs 2
10 Learning Rate Decay Linear

TABLE 6. Training hyperparameters (SAC).

S.No. Hyperparameter Value
01 Total steps 55 millions
02 Time Horizon 512 steps
03 Size of Batch 256
04 Buffer Size 10,240 steps
05 Rate of Learning 0.0007
06 Policy update penalty (beta) 0.007
07 Clipping Value 0.3
08 Lambda 0.96
09 Epochs 2
10 Buffer Initial Steps 12
11 Initial Entropy Coefficient 0.9
12 Save Replay Buffer True
13 Tau 0.005
14 Steps per Update 3
15 Reward Signal Number Update 3

two swarms merge to form a single swarm.

=0 (bl =Dy). if by €Dy, 00)

1, otherwise
X [1-o(t-n))
R, = T xx3 lf b; € [Dy, D.) (6)
=1 -1, otherwise
P
Ry=1-0|> U, 7
p=1
RS =R, + R, + R ®
N
_1 RS
R = —Z"—]; - ©)

E. HYPERPARAMETERS

The policy and critic networks, each with two dense layers of
64 neurons, are employed by the PPO, TPPO and SAC with
simulation hyperparameters given in Table 4 while training
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Standardized Vector, Sigmoid of Geodesic Distance, Vector Component Histogram (VCH), and Normalized Distance to Obstacles.

hyperparameters given in Table 5 and Table 6. Architectures
are optimized to facilitate faster convergence at about 10 mil-
lion steps. Moreover, only two epochs were used to further
cut down on training time.

IV. RESULTS AND DISCUSSION
Performance curves for PPO, TPPO and SAC are obtained
for 55 million training steps.

Comparative Cumulative Reward (CR) is provided in
Fig. 8(a). The increasing trend shows successful training.
SAC performs best due to it being sample efficient, while
PPO and TPPO have comparable results. Policy Loss (PL)
and Value Loss (VL) curves are given in Fig. 8(b) and
Fig. 8(c), the performance of SAC can be visually veri-
fied. In Fig. 8(d), Entropy, change in policy during training,
is shown. Entropy shows decreasing trend which correlates to
successful learning.

A. RESULTS

Spheres indicate the agents, while target is represented by
black and sometimes red color. Everything else is included in
obstacles. When two or more agents are in each other’s com-
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munication zone, a green-colored edge forms between them
to visually demonstrate communication. The drone agents
not only effectively form formations in the demos, but they
are also able to navigate the complicated terrain, avoiding
different sized and shaped obstacles while maintaining a
swarm-like structure.

Furthermore, it successfully reaches and surrounds the
targets. Even if the target is constantly moving, the swarm
continues to encircle it. When several dynamic targets are
traveling in various directions, the swarm splits into sub-
swarms, with each sub-swarm having the same number of
agents following a single target object. Sub-swarms merge
to form a bigger swarm when targets approach closer to one
another.

A visual assessment of the swarm’s activity is required
to demonstrate the feasibility of our strategy. The visual
depictions of several aspects of a swarm’s activity are
given in experiment section (Demonstrations can be accessed
herel).

Lwww. youtube.com/playlist?list=PLq0872kWvROVqTcnWDrudsDRE
LvtFY7w
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FIGURE 8. Comparison of SAC, PPO and TPPO in terms of (a) Mean cumulative reward (MCR) (b) The value loss (y-axis) against 55 million training
steps (x-axis) (c) Policy loss.

FIGURE 9. Swarm formation, organisation, maintenance while surrounding the target and tracking the moving target in obstacle-free environment.

V. EXPERIMENTS AND DISCUSSION

Experiments are carried out to test and develop our mod-
els. The complexity of the environment is gradually raised,
and model improvements are made through gaining insights
from the model’s undesirable actions. Experiment summary
is given in Table 7. Single target localization and tracking can
be done by single drone although not efficiently. Furthermore,
swarm is needed in case there are multiple targets. As shown
in demonstrations, complex swarm behaviors are learnt auto-
matically.

VOLUME 10, 2022

A. EXPERIMENT 1: SWARM ORGANIZATION AND
OBSTACLE AVOIDANCE
For evaluation of swarm formation and observe swarm-like
behavior, a 1000units® obstacle-free environment is created
as shown in Fig.9(a). Drones successfully formed a swarm
and surrounded the black target visualized in Fig 9(b). It is
important to observe that the target was a static object in these
cases.

In the next experiment, target was made mobile with a
constant speed while keeping all other factors the same as
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(a) (b) (© (d)
(e) ®

FIGURE 10. Swarm organization and obstacle avoidance.

before, swarm again surrounded the moving target as shown
in Fig.9(d). Swarm kept hovering over the target by virtue of
each drone trying to minimize distance between itself and the
target while avoiding collisions with other drones and also the
target.

In the next experiment, three large green obstacles, a black
target and 18 blue colored drones are placed in the environ-
ment in such a way that drones can travel through a small
opening at the top or moving all the way to the other side and
then entering from there but travelling this way will have the
effect of covering more distance for the swarm. Drones form
a swarm first and then use the shortest available path, that is,
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(2 ()
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FIGURE 11. Target surrounded by obstacles by three sides, swarm has only one path traversable that can lead to target.

from the top hole successfully surround the target visualized
in Fig.10(a) and 10(b), respectively. Also, the reason behind
relocation of target behind an obstacle was to further evalu-
ate the obstacle avoidance mechanism of swarm as seen in
Fig.10(c).

Swarm’s ability to avoid obstacles while maintaining
swarm formation, surrounding the target and tracking
dynamic target can been observed in Fig.10(d-h).

B. EXPERIMENT 2: TARGET SURROUNDED BY OBSTACLES
In this experiment, the target object was placed behind a
series of obstacles (transparent green in color) and given
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FIGURE 12. Target behind an obstacle with no visible path using Euclidean distance, swarm can’t reach the target.

(a) (®) (©) (d
(e ® (€3]

(h)
FIGURE 13. Target behind an obstacle with no visible path using Geodesic distance, swarm can reach the target by passing through one side of
the obstacle.

(b) ()

(e) () (® (h)
FIGURE 14. Swarm traversing through a hole in single file.

a single convoluted path to transverse in order to reach demonstrates intelligent activity. The swarm body moves
the target shown in Fig.11(a-b). The swarm’s trajectory around obstacles trying to find an opening and when found,

VOLUME 10, 2022 91083
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FIGURE 15. Multiple Priority-based targets’ tracking in complex environment.
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FIGURE 16. Multiple alternating Priority-based targets’ tracking in complex environment.

swarm quickly surrounds the target visualized in Fig.11(c)
and 11(d-h), respectively.

C. EXPERIMENT 3: TARGET BEHIND AN OBSTACLE

In this experiment, drones’ robustness is tested if they can
find a target hidden completely behind an obstacle. The first
experiment failed to provide ideal results since the swarm
was unable to reach the destination as shown in Fig.12.
The issue was that the swarm was using Euclidean distance,
which does not account for obstructions or alternative path-
ways. So, geodesic distance was introduced which calculates
shortest distance along the manifold. Same experiment was
re-performed with geodesic distance successfully (Fig.13).
As seen in Fig.13(c-f), swarm moves around the wall to reach
the target while traversing shortest possible distance.

D. EXPERIMENT 4: SWARM TRAVERSING THROUGH A
HOLE IN SINGLE FILE

In this experiment, a hole was added in the wall which was
present in the previous experiment. As the path through the
whole has become the shortest path, the idea is to check if
the model would make the swarm pass through the hole or
if it would still let the drone swarm pass through the nearest
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corner of the object. To further increase the difficulty, hole
was made small enough so that only one drone can pass
through it at a time. Target was placed on one side of the wall
(Fig.14(a) and drones were allowed to converge around it and
form a swarm (Fig.14(b-c)). Then target was moved to other
side of the hole (Fig.14(d)). Swarm started to move through
the hole, one drone at a time, and surrounded the target on the
other side (Fig.14(e-h)).

E. EXPERIMENT 5: MULTIPLE TARGETS

Two targets were given distinct priorities in this experiment.
Targets were visually distinguished based on colour; a black
coloured square had a greater priority (level one) than a blue
coloured square (level two). The swarm swiftly approached
the higher priority target, as seen in Fig.15, while the lower
priority target was ignored since advancing towards it would
deprive the swarm of the higher priority target reward. Mov-
ing away from the objective also adds a negative reward,
which is additional motivation to stick to the higher priority
target.

In the next iteration of this experiment, priority between
targets was altered after a certain time as seen in Fig.16, the
swarm always abandoned the lower priority target and went
towards the higher priority target.
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FIGURE 17. Multiple targets’ tracking with same priority in simple environment.
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FIGURE 18. Single swarm surrounding multiple static targets.

When both objectives were assigned the same priority in shown in Fig.17. This was due to the fact that advancing
the third iteration, the swarm got confused, especially when towards one goal resulted in positive reward, while moving
the majority of the drones were between the two targets, away from the other target resulted in negative reward. As a
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FIGURE 19. Dynamic swarm tracking multiple mobile targets in a complex environment.

(a) (b) (© (@
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FIGURE 20. Simulating Environmental Factors like Gravity, Linear and Angular drag and their effect on drone swarm.

result, swarm performed poorly in this scenario. The notion (Fig.18(a)). For visual reasons, the size of the targets was
of sub-swarms was established to address these concerns. enhanced, but, for our swarm, they were simply dots in

three-dimensional space in all experiments so 1 unit out of
F. EXPERIMENT 5: MULTIPLE SWARMS AND TARGETS 1000,000,000 units. Swarm was successful in locating both
In this experiment, two static targets were placed close to  targets and surrounding them (Fig.18(b-f)). To visualize the
each other in the environment whose volume is 1000units3 concepts of large single swarm (Huge Swarm composed
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FIGURE 21. Dynamic Obstacles with Fast Moving Target, drone swarm shows impressive evasion properties.

ﬁ_ ih‘g .

FIGURE 22. Complex Environment containing multiple dynamic targets in a cluttered environment while
environmental factors like gravity, linear and angular drag are in effect.

of many sub-swarms), dividing that into small swarms and
vice versa, distance between the two targets was increased
(Fig.18(g)). Swarm was able to divide itself into two smaller
swarms (Fig.18(h-1)). To recreate a single swarm by com-
bining these sub-swarms, targets were brought close together
(Fig.18(j)). Sub-swarms tailing targets got close to each other
and as a result a single swarm was formed (Fig.18(k-1)).
As shown in Fig.19, two dynamic targets were added to the
environment and, after the swarm localized them, they were
made to move away from each other. The swarm divided itself
into smaller swarms to track both targets going in different
directions. Then, both targets were moved closer to each

VOLUME 10, 2022

other. This caused the sub-swarms to gradually merge again
to form a single swarm.

G. EXPERIMENT 6: MULTIPLE TARGETS IN A COMPLEX
ENVIRONMENT WITH DYNAMIC OBSTACLES AND
ENVIRONMENTAL FACTORS

In this experiment, to check our model’s robustness against
environmental factors. Factors like gravity, linear drag, and
angular drag were modeled in this study. Gravity was mod-
eled at a value of 9.81m/s> to mimic the earth’s surface
environment. Linear and angular drag values were set at
0.25N and 0.15Nm, respectively. Detailed dynamics will
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FIGURE 23. Comparison between existing state-of-the-art and our
customized models.

be addressed in future work. Despite the addition of these
factors, our model navigated the environment successfully
with minimal difference compared to its absence as shown
in Fig.20.

Dynamic obstacles were introduced as shown in Fig.21(a).
Ground layer here was only present to make visualization
better and doesn’t have colliders. Target velocity was set as
very high and even obstacle movement velocity was identical
to the velocity of drone swarm in order to observe behavior
in chaotic environments. Drones still exhibited swarm-like
formation and behavior (Fig.21(f-g)), tried to track target but
didn’t have a lot of success due to high velocity of target.
Interestingly drones avoided collisions most of the time using
backward movement (Fig.21(e)) and even moving away from
incoming obstacles when necessary (Fig.21(f)).

Furthermore, the number of obstacles and targets is
increased, object morphology is changed, and some addi-
tional environmental factors are added to validate the
scalability of the proposed approach, as seen in Fig.22.
Gravitational value is kept at 9.81 m/s>, but the linear and
angular drag force is increased to a value of 0.37N and
0.25Nm, respectively. Swarm slowed down at drag values
exceeding 0.5.0ur model was robust enough to tackle this
complex environment and found targets and tracked them
successfully.

Vi. COMPARATIVE ANALYSIS

Comparison between PPO, TPPO, and SAC original archi-
tectures and with our customized architectures is presented in
Table 8. The number of layers and neurons in each layer are
increased to deal with the complexity of the training environ-
ment while other hyper-parameters are optimized for training
efficiency. SAC is highly dependent on hyper-parameters,
so a number of different arrangements were tested, and the
best was selected for the final experiments. Furthermore,
LSTM is leveraged to help the swarm remember the best
paths and aid in obstacle avoidance which slightly improves
the overall approach. Also, comparative results shown in
Fig 23 show that our technique performs better than existing
techniques.
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TABLE 7. Experiments summary.

S.No. Experiments Description
Swarm behavior and Forrr?ing-aASWéhlrm Qrganizqtion and
0l —a N maintaining it while locating the
target localization .
target object.
01—b| Obstacle avoidance Agents avoid corpplex obstacles in
a 3D environment.
Obstacles surround the target object
02 Target surrounded by from five sides. Only one path is
obstacles available for drone agents to reach
the target object.
Navigation through a Drone agents passing through a
03 .
small hole hole single-file.
. The target object is behind a wall
04 Targe]tjbehind an and drone agents must find the
obstacle shortest path to reach it.
Multiple targets Siing_le swarm, multiple targets,
05—a (Priority-based) priority based, one target is given
higher priority then the other.
Single swarm, multiple targets,
05— b Multiple targets priority based, similar to last
(Alternating Priority) | experiment but priority is changed
between target after certain time.
. Instead of assigning differing
Multiple targets (Same L .o
05—c Prioti priority-based targets, same priority
riority) L
is given to all targets.
Multiple targets are present, drone
06 —a Multiple targets swarm needs to surround all of
them.
Swarm divides itself into smaller
swarms known as sub-swarms in
06 — b Swarm Subdivision | other to track multiple targets going
and Combination in different directions and
sub-swarms can combine again
when they come close to each other.
Targets are all moving, drone
07 —a Multiple Dynamic swarm not only needs to surround
Target objects but must keep surrounding it while
they are on the move.
Drone agents’ robustness to
07 — b | Environmental Factors | environmental factors like gravity,
linear drag, angular drag
Drone swarm shows impressive
evasion properties even when
obstacles are moving at high speeds
07 — ¢ | Fast moving obstacles and still manages to maintain
somewhat of a formation while
trying to track extremely fast
moving target
Dynamic multiple target tracking
but in a complex environment with
Multiple target objects 2 lot of obstacles and .
07 —d in a complex environmental factors adde(_l in.
environment The number of obstacles is
increased along with target objects
to check the scalability of our
proposed methodology.

TABLE 8. Performance comparison with Existing algorithms.

Algorithm MCR No. of Neurons
Layers
PPO 1348 2 64
TPPO 1327 2 128
Customized-PPO 1448 3 128
SAC 1223 2 256
Customized-SAC 1550 2 128

VII. CONCLUSION

An efficient methodology to train homogeneous swarm
agents is presented for obstacle avoidance and naviga-
tion towards multiple targets in complex dynamic 3D
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environments. A compact vector representation is proposed
for presenting state data to our network. This generalizes
the behaviors of our drones independent of their proxim-
ity to other drones. Furthermore, an appropriate incentive
mechanism employing reward functions was developed to
carefully design collision-free navigation while maintaining
the swarm’s connection. Also, the problem of multi-target
tracking, where our swarm can track multiple targets while
maintaining formation and communication within the swarm,
was tackled. The concept of dynamic swarms was introduced,
where a swarm can be divided to track more than one target
simultaneously, and also if targets are removed, sub-swarms
can combine to form a single larger swarm. Also, even when
there are multiple targets in the environment in close prox-
imity to each other, sub-swarms can combine into a single
swarm for that duration. When targets move away, the swarm
can again sub-divide. The results demonstrate the approach’s
universality by testing it in various situations that a swarm
may face. Our framework achieves an improvement in the
cumulative reward (as compared to the existing techniques
considered for comparison) from 1100-1300 to 1500-1600
range. Furthermore, we also incorporated multi-target track-
ing as a featured part of our framework. This strategy can be
scaled up to be employed for real-world swarm applications.
It can find multiple uses, for example, in search and rescue,
food delivery, etc. It can also be used against terrorists, for
instance, tracking their vehicles and autonomous bombard-
ment of their bases. Similarly, it finds both constructive uses,
such as food and medicine delivery, etc., and destructive uses
in war, such as aerial poison bombing. It can also be used as
a hovering swarm to either protect an entity or hinder it from
making any movements.
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