
Received 24 June 2022, accepted 18 August 2022, date of publication 26 August 2022, date of current version 8 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3202222

Clickable Object Detection Network for a Wide
Range of Mobile Screen Resolutions
BOSEON KANG 1, MINSEOK JO2, AND CHANG-SUNG JEONG3, (Member, IEEE)
1Visual Information Processing Department, Korea University, Seoul 02841, South Korea
2Front Image Recognition Logic Cell, Hyundai Mobis, Yongin-si, Gyeonggi-do 16891, South Korea
3Department of Electrical Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Chang-Sung Jeong (csjeong@korea.ac.kr)

This work was supported in part by the Artificial Intelligence Industrial Convergence Cluster Development Project Funded by the Ministry
of Science and ICT (MSIT), South Korea; and in part by the Gwangju Metropolitan City and the Brain Korea 21 FOUR Project, in 2021.

ABSTRACT Recently, as the development cycle of applications has been shortened, it is important to develop
rapid and accurate application testing technology. Since application testing requires a lot of cost, mobile GUI
component detection technology using deep learning is essential to prevent the use of expensive human
resources. In this paper, we shall propose a Clickable Object Detection Network (CODNet) for mobile
component detection in a wide range of mobile screen resolutions. CODNet consists of three modules:
feature extraction, deconvolution and prediction modules in order to provide performance improvement and
scalability. Feature extraction module uses squeeze and excitation blocks to efficiently extract features by
changing the ratio of the input image to 1:2 most close to that of mobile screen. Deconvolution module
provides feature map of various sizes by upsampling feature map through top-down pathway and lateral
connections. Predictionmodule selects an anchor sizemost suitable for themobile environment usingAnchor
Transfer block among the set of anchor candidates obtained through the analysis of mobile dataset.Moreover,
we shall show that our model achieves competitive performance in mean average precision on our dataset
compared to the other models, and object detection performance is improved by building a newmobile screen
dataset which consists of data collected from various resolutions and operating systems.

INDEX TERMS Object detection, computer vision, mobile screen, deep neural networks.

I. INTRODUCTION
The development and release of applications have been
greatly shortened as the cycle of technology development has
accelerated, it becomes essential to find a methodology for
accurately and quickly testing applications. Application test
is to check if all the functions in the application are working
normally by clicking the clickable object. It requires a lot of
time, money and human resources to verify all the functions
in the application. In order to prevent the use of expensive
human resources and time, it is important to develop a deep
learning model for detecting mobile GUI component during
application testing [1], [2], [3], [4], [5]. Several deep learning
methods have been proposed for more accurate component
analysis. Redraw [6] proposed accurate prototyping of GUIs
through three phases: detection, classification, and assembly.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma .

In the classification stage, AlexNet [7] based CNN [8]
is used to classify the detected GUI components into an
appropriate class. They classified Android GUI components
into 15 classes through Redraw. Zhang et al. [9] created iOS
APP screen dataset which consists of 77,637 screen data
from 4,068 iPhone applications to detect GUI components
in the iOS environment. They used SSD model [10] with
MobileNetV1 [11] as the backbone to run the detectionmodel
on-device. Zhu et al. [12] used widget recognition technol-
ogy based on image matching for detecting GUI components.
They improved detection accuracy by predicting the intent
of the components on deep learning model which combines
VGG-16 model [13] and short-term memory (LSTM) [14]
for extracting features from images and text processing
respectively.

However, the previous researches have several problems
which make it difficult to detect mobile GUI components in
mobile environment on deep learningmodels as follows: even

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 115051

https://orcid.org/0000-0002-0898-6455
https://orcid.org/0000-0001-8822-7362

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

though the height is longer than the width in themobile screen
while the contrary occurs usually in the clickable objects, the
ratio between the width and height for the image is resized to
the fixed ratio on deep learning model, resulting in informa-
tion loss. In addition, they did not efficiently deal with click-
able objects with various aspect ratio, since the anchor aspect
ratios is fixed.Moreover, the previous researches trained deep
learning model using dataset for one operating system, and
hence there does not exist sufficient dataset which can be
used for the detection model on various operating systems.
In this paper, we shall present Clickable Object Detection
Network (CODNet) for efficiently detecting clickable objects
in a wide range of mobile screen resolutions. Also, we build
a new mobile screen dataset which consists of data collected
from various resolutions and operating systems, achieves
competitive performance in mean average precision on our
dataset compared to the other models. Existing deep learn-
ing models are difficult to accurately detect objects due to
the characteristics of the mobile device, where the height is
longer than the width. Our model not only solves the ratio
gap problem by setting the aspect ratio of the input image
to that most close to the mobile screen, but also extends
the input resolution to that of the mobile screen in order to
minimize the loss of feature. We generate a set of aspect
ratio candidates suitable for the mobile environments through
mobile dataset analysis. Among them, themost proper anchor
size is selected for clickable objects with various aspect ratios
in Prediction module. As a result, the model can flexibly
adapt to objects of different sizes, and cover a wide range of
resolutions from Video Graphics Array (VGA) to Ultra High
Definition (UHD). We build datasets by grouping clickable
objects essential for testing application. We collect data from
as many mobile devices as possible, such as Android, iOS,
and car navigation, in order to detect clickable objects in
various mobile environments. Therefore, our model is OS
independent regardless of Android, iOS and so on.

The contributions of our study are summarized as
follows:

1) We propose a new deep learning model which provides
performance improvement and scalability by designing
a deep learning network which consists of three mod-
ules: Feature extraction module, Deconvolution mod-
ule and Prediction module.

2) We demonstrate that the accuracy can be improved by
changing the resolution of the input image to the aspect
ratio closest to the mobile screen.

3) We propose a new scheme for finding the most proper
anchor aspect ratio in a mobile environment for effi-
ciently dealing with clickable objects with various
aspect ratios.

4) We build a new mobile dataset which can be used in a
variety of mobile environments by collecting data from
various resolutions and operating systems.

5) We demonstrate that our model achieves significant
performance improvements over previous deep learn-
ing models.

The remainder of this paper comprises four sections.
In section 2, we introduce related works. In section 3,
we present the overall architecture for our model.
In section 4, we describe about the experimental results, and
finally in section 5 concludes with our results.

II. RELATED WORK
A. OBJECT DETECTION METHOD
Object detection method is largely divided into multi-stage
method and one-stage method. In the multi-stage method,
region proposal for finding the location of an object and
classification for finding the type of object are sequen-
tially performed. Among the multi-stage method, we deal
with Faster R-CNN [15], Cascade R-CNN [16] and Detec-
toRS [17] which demonstrate excellent performance using
CNN. On the other hand, in the case of the one-stage
method, region proposal and classification are performed
simultaneously. We deal with YOLO series, SSD, FASF [18],
FCOS [19], CornerNet [20] and CentripetalNet [21] each of
which demonstrates excellent performance among one-stage
method.

Faster R-CNN is a model which improves the slow speed
of R-CNN [22]. In R-CNN, the step which takes the longest
is the selective search, since the selective search is computed
in the CPU. To solve this problem, Faster R-CNN introduces
Region Proposal Network (RPN) instead of selective search
to enable computation on GPU. RPN receives the feature map
from the previous CNN as input. A 256-dimension vector
is obtained using a sliding window on the received feature
map. At this time, the anchor to be used as the window is set
in advance. In Faster R-CNN, 9 anchors with various width,
height, ratio and size are used. By using 256-dimension vector
obtained in this way the class and location are calculated
through two layers.

Cascade R-CNN proposes a method for solving two prob-
lemswhich occur with the increase of Intersection over Union
(IoU) thresholds. As the IoU thresholds increase, the posi-
tive samples disappear exponentially, resulting in overfitting
during training. In addition, if the IoU set during training
and the IoU set at inference are inconsistent, the accuracy
will be lowered. Cascade R-CNN consists of a sequence
of detectors with different IoU thresholds set. Detectors are
connected sequentially, and use the output from the previous
step as input for the next step. As a result, all detectors have
the positive set of examples of equivalent size to solve the
overfitting problem. It shows that performance is improved
through the process of gradual training using the proposals of
the learned detectors at low IoU.

DetectoRS proposes a backbone design utilizing a see
and think mechanism. At the macro level, they propose a
method for building Recursive Feature Pyramid using addi-
tional feedback connections to the existing Feature Pyramid
Network (FPN) [23]. At themicro level, they propose Switch-
able Atrous Convolution which collects features extracted at
various atrous rates through a switch function.

115052 VOLUME 10, 2022

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

YOLO [24], a real-time object detector proposed by Red-
mon Joseph al., is created for high-speed purposes. R-CNN,
a two-stage model, detects one image by dividing it into two
stages. In the region proposal step, classification is performed
2000 times, since 2000 candidate areas are extracted per
image. On the other hand, YOLO finds the location and class
through a single network pass. YOLO achieves 45 FPS,which
is significantly faster than 5 FPS when using Faster R-CNN.
YOLO divides the input image into S× S grids. The grid cell
closest to the center of the object is responsible for detecting
the object. Each grid cell predicts B bounding boxes, con-
fidence scores of the corresponding bounding boxes and C
conditional class probabilities. The dimension of the final
feature map is S × S × (B × 5 + C). YOLO has a limitation
in which the performance is slightly lowered due to the
small difference in IoU values for small objects. Since then,
improvement models such as YOLOf [25], YOLOx [26],
YOLOv4 [27], and YOLOv5 [28] are proposed to solve the
limitations.

YOLO improves its speed by using the one-stage structure,
but its accuracy is relatively low, since it is necessary to
find objects of various sizes in one image. SSD proposed by
Wei Liu et al. improves the accuracy by solving the problem
of finding objects of various sizes in one image through a
method of performing object detection across multiple layers.
YOLO divides the image into S × S grids, whereas SSD
efficiently detects both large and small objects by dividing
the image into grids of various sizes across 6 feature maps.
The SSD is constructed using 6 additional convolution layers
on the 5th convolution layer of VGG-16.

FSAF is a single-shot object detector based on Reti-
naNet [29]. They improved the performance by solving
the problems of the existing anchor-based model by using
multi-level anchor-free branches. During training, anchor-
free branches attached to each level of the FPN select the
most appropriate feature level for training. The selected fea-
ture level effectively represents the instance. As a result of
training, the model outperforms existing one-stage detectors
in detecting small objects.

FCOS is a one-stage object detector which detects objects
in a per-pixel prediction fashion. FCOS is anchor box free,
and completely eliminates the complex calculations associ-
ated with anchor boxes such as calculating overlapping dur-
ing training. In addition, they use centerness to suppressmany
bounding boxes generated at locations far from the center
of an object. Centerness reduces the influence of predicted
values at locations far from the center of the object using the
center of the bounding box, left-top and right-bottom corner
pairs.

CornerNet predicts object bounding boxes by using a pair
of keypoints instead of anchors. Keypoints are the top-left
and top-right corners of the target object. Keypoint estima-
tion is based on feature points, so anchor boxes are not
used. Centripetalnet is a keypoint-based detector uses cen-
tripetal shift to create a pair of corner keypoints from the
same object.

B. MOBILE SCREEN IMAGE DATASET
Rico [30] dataset consists of 27 classes, and contains 9.7k
data on Android app design. Rico was created to support five
classes of data-driven applications: design search, UI layout
generation, UI code generation, user interaction modeling
and user perception prediction. It provides visual, textual,
structural, and interactive design properties for more than
72k unique UI screens. Chen et al. [31] build a mobile screen
dataset to solve the label missing problem according to the
analysis results of 10,408 Android apps. The dataset consists
of 15 classes and a total of 52,524 GUI images. They used
App Explorer to collect GUIs from 15,087 applications. The
collected dataset consists of 13,145 screenshots containing
ImageView and ImageButton from 7,594 apps excluding
duplicate screens. ICONINTENT [32] is an app analysis
framework which combines program analysis with icon clas-
sification to identify UI widgets in Android apps. They down-
load each category icon using Google Image Search, and
manually label the icon. As a result, they collect 1576 icons
for 8 classes. Redraw [6] dataset consists of 15 classes and
191,300 components, but the number of components in the
classes are unbalanced. In case of textview, there are 99,200
components, but in case of spinner, there are only 20 compo-
nents. To address data imbalances, they create amobile screen
by generating randomly sample components until there are at
least 5000 components.

III. MODEL ARCHITECTURE
In this section, we shall describe about the architecture
of our model for detecting clickable objects in the mobile
environment. Our model consists of three modules: Fea-
ture extraction, Deconvolution and Prediction module. Fea-
ture extraction module is used as the backbone in the
model. It uses Squeeze-and-excitation Networks(Squeeze
Net) [33], which adds a Squeeze-and-excitation block to
the ResNet [34]. High-quality features are extracted with
little computation during feature extraction process compared
to ResNet. In each step of feature extraction module, the
extracted features are sent to Predictionmodule andDeconvo-
lutionmodule. Input resolution ofmost existing deep learning
models does not greatly deviate from the aspect ratio of 1:1.
However, in the case of mobile screens which our model is
trying to detect, the height of the screen image is longer than
the width. In order to solve the problem arising from the
ratio gap of the mobile screen, the ratio of the input image
in feature extraction module is changed to 1:2 most close
to that of mobile screen. Deconvolution module connects
feature extraction module and prediction module. It produces
different feature maps with various size at each layer through
decovolution, and sends the feature maps to five prediction
modules. Prediction module derives the final result. Five
prediction modules attached to Deconvolution module and
one prediction module attached to feature extraction module
are used for object detection. Since the six predictionmodules
are based on feature maps of different sizes, it can effectively

VOLUME 10, 2022 115053

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

FIGURE 1. The network architecture of CODNet.

find objects of various sizes. In most cases, the width of a
clickable object on a mobile screen is longer than its height.
Especially, such objects as text, navigation bar and status bar
have much longer width with an aspect ratio of up to 17:1.
The anchor aspect ratios used in the previous papers do not
efficiently deal with clickable objects with such aspect ratios
of longer width. In this paper, we shall propose a new scheme
which finds, for each of clickable objects with various aspect
ratios, the most proper anchor size in Prediction module by
generating a set of candidates for aspect ratio suitable for the
mobile environment through the analysis of mobile dataset
and then mapping it onto one of them. It can also adapt to
the various size of clickable objects on a mobile screen in a
flexible way.

The following subsections detail the modules used in the
model.

A. FEATURE EXTRACTION MODULE
Feature extraction module is a backbone of CODNet. It uses
the Squeeze and Excitation block to extract features as shown
in Figure 2. Squeeze and Excitation block performs feature
recalibration using Squeeze and Excitation operation with-
out significantly increasing model complexity and computa-
tional time. The squeeze operation compresses global spatial
information through Global Average Pooling (GAP) [35].
The excitation operation is responsible for recalibrating the
compressed information. The recalibrating process is simply
calculated through two Fully Connected layer(FC) [36] and
Rectified Linear Unit (ReLU) [37], and node dependencies
are also calculated. In FC, the input layer consists of C nodes,
and the nodes in the middle layer are reduced by the reduction
ratio r. Output layer consists of C nodes. We set the reduction
ratio r = 16. Unlike other models, CODNet focuses on the
input resolution most close to that of the mobile screen in
order to reflect the characteristics of the mobile environment.

FIGURE 2. The Squeeze and excitation block of feature extraction
module.

Most mobile screen resolutions have an aspect ratio of 1:2.
However, since the aspect ratio of the input resolution of the
existing deep learning model is 1:1, information loss occurs
due to the ratio gap. Feature extraction module changes the
input resolution to 512 × 1024 or 1080 × 1920 to solve the
problem arising by the ratio gap.

B. DECONVOLUTION MODULE
Deconvolution module is a top-down pathway with lateral
connections. The top-down pathway of Deconvolution mod-
ule generates a high-resolution feature map by upsampling.
Each lateral connection merges the feature maps of the

115054 VOLUME 10, 2022

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

FIGURE 3. Deconvolution module.

same size from Feature extraction module and Deconvolution
module using element-wise product. By using both feature
maps of two different layers, it is possible to efficiently
extract high-context information, thus improving accuracy.
In Deconvolution module, we reduce the inference time by
using a learned deconvolution layer rather than a commonly
performed bilinear upsampling layer. Batch normalization is
performed after each convolution operation. Its structure is
shown in Figure 3.

C. PREDICTION MODULE
A total of six prediction modules attached to feature extrac-
tion and deconvolution modules are used for object detection
in each image, improving detection accuracy by working
on the feature maps of various sizes. Prediction module is
designed so that it can improve the overall performance by not
only exploiting the residual block in ResNet, but also espe-
cially creating anchor transfer block as shown in Figure 4.

Anchor Transfer block consists of three units: RARC
(Representative Anchor aspect Ratio Candidates) Generator,
RARC Converter and IoU Checker. RARC Generator pro-
duces a set of candidates for representative aspect ratios suit-
able for the mobile environment through k-means clustering
from mobile dataset. RARC Converter changes the anchor
aspect ratio in the predicted region into each of RARC for the
mobile environment. IoU Checker finds, for each converted
candidate in RARC, its IoU score with respect to ground
truth bounding box, and then generates location by using
anchor information of the candidate with the highest IoU
score. RARC is obtained by RARC generator as follows:

FIGURE 4. Prediction module.

First, we extract the bounding boxes for all the objects in the
mobile dataset. Let the width and height of the bounding box
be x and y respectively. We plot each bounding box (x, y)
onto two-dimensional plane. The plotted bounding boxes
are clustered through the k-means clustering algorithm, and
then RARC is generated by calculating the centroids of each
cluster. Table 1 shows RARC generated from our mobile
dataset for different k .

The class output is used to predict the class of the object
included in the image through the Cross-Entropy loss func-
tion [38]. Let p be the predicted probability of our model
for the object region, and t the true probability of the object
region respectively. Then, the class loss function is defined as
follows:

Lcls = −
n∑
i=1

t(i) log p(i) (1)

The location output is used to predict the regression of
objects included in the image through the Box regression loss
function [39]. Let pk = (pkx , p

k
y , p

k
w, p

k
h) be a tuple which

consists of predicted bounding box information. Let g =
(gx , gy, gw, gh) be a tuple which represents a ground truth
for class k . Then, the box regression loss function is defined
as follows:

Lloc(pk , g) =
∑

i∈{x,y,w,h}

SmoothL1 (p
k
i − gi) (2)

SmoothL1 (x) =

x2

2
if |x| < 1

|x| −
1
2

otherwise
(3)

VOLUME 10, 2022 115055

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

TABLE 1. Average aspect ratio of each cluster.

TABLE 2. Annotation data for each category and class.

TABLE 3. Top-1 and Top-5 error rates for CODNet-SE and CODNet-W.

The final loss value of our model is defined by the average
of the above two loss functions.

L =
1
2
(Lcls + Lloc) (4)

IV. EXPERIMENTS
In this section, we show describe about the experimental
results for our model CODNet. Our experimental environ-
ment consists of one CPU with AMD EPYC Processor with
92 single-cores, GPU with 8 units each NVIDIA A100 40GB
and 1.7TB RAM.

This section is organized as follows: Section 4.1 describes
in detail the dataset used in the experiments. Section 4.2 shows
the performance of eachmodule. Section 4.3 analyzes the loss
value andmAP for each input resolution. Section 4.4 analyzes
the mAP for each aspect ratio of anchor. Section 4.5 shows
the performance of CODNet for each class on our dataset.
Finally, section 4.6 compares the performance of our model
over the existing deep learning models.

A. DATASET
We build our mobile screen dataset by focusing on clickable
objects. It comprises a total of 1,261 images with a wide
range of resolutions and 24,937 annotation data. The dataset
is classified into three groups: training, validation and testing.
The training set is about 80% of the entire dataset, and each of
the validation and test set is about 10% of the entire dataset.
Clickable objects are classified into 7 classes: Text, Image,
Button, Region, Status bar, Navigation bar and Edit text. Our
dataset format follows VOC [40].

TABLE 4. mAP of CODNet for the number of clusters k .

Table 2 shows the number of annotation for various classes
of each category. Text class has the maximum number of
8,462 data, since it appears most frequently on the screen,
Image class has the second largest number of 7,705 data.
Region class is a component with clear boundary which
contains Text or Image objects. Edit test class is a text area
which can be edited. Status bar is a status window at the
top of the mobile screen. Navigation bar is a navigation area
with system buttons at the bottom. As a data augmentation
method for preventing overfitting, we randomly change color,
saturation and brightness, and use vertical and horizontal flips
instead of expansion augmentation trick.

B. MODULE PERFORMANCE
1) FEATURE EXTRACTION MODULE
We investigate the performance of Squeeze-and-Excitation
Block (SEBlock) attached to Feature extraction module

115056 VOLUME 10, 2022

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

TABLE 5. Comparison between existing deep learning models.

by comparing the performance of the model for two
cases: CODNet-SE with SEBlock and CODNet-W with-
out SEBlock respectively. Experiments are conducted for
top-1 and top-5 error by changing the size of three back-
bone, ResNet-50, ResNet-101 and ResNet-151. As shown in
Table 3, the top-1 and top-5 error rates are become lower
when using Squeeze-and-Excitation Block, and ResNet-151
has the smallest top-1 and top-5 errors.

2) DECONVOLUTION MODULE
We check the performance of Deconvolution module by
comparing the performance of the model for two cases:
CODNet with and without Deconvolution module respec-
tively. Experiments are conducted for mAP. CODNet with-
out Deconvolution module has a mAP 77.1. CODNet
with Deconvolution module has a mAP of 86.5, which is
9.4 higher than that of CODNet without Deconvolution
module.

C. MODEL PERFORMANCE
We investigate the performance of our model in terms of
input resolution and aspect ratio on two backbones ResNet-50
and ResNet-101 as shown in Table 4. First, we compare
the performance of CODNet for two different resolutions,
that is, CODNet-512 with input resolution 512 × 1024 and
CODNet-1080 with input resolution 1080× 1920. As shown
in Table 4, as the resolution increases, the performance
of our model also increases. When the input resolution is
1080 × 1920, CODNet achieves the highest performance.

FIGURE 5. Confusion matrix of CODNet-1080.

Next, we investigate the performance of our model for each
aspect ratio candidate generated through mobile dataset anal-
ysis. Table 4 shows the accuracy for each aspect ratio
candidate obtained through k-means clusters on ReNet-50
and ReNet-101. For the aspect ratio candidate when using
5-means clusters, CODNet achieves the best performance for
all cases of resolution and backbone. The result shows that
the accuracy does not necessarily increase in proportional to
k . Therefore, we use RARC with k = 5 as the aspect anchor
ratio for our model.

VOLUME 10, 2022 115057

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

FIGURE 6. Inference result of CODNet and existing deep learning models.

D. CLASS PERFORMANCE
We compare the detection accuracy of each class by
using the confusion matrix after training our model with
dataset. Figure 4 shows the accuracy of each class on the
CODNet-1080 model when using ResNet-101 as a back-
bone. According to the confusion matrix, CODNet-1080 has
significantly higher accuracy for Status bar and Navigation
bar. Those two components are not difficult to detect, since
their features are clear. Components which change the mobile
screen by clicking like text, image and buttons are generally
well detected. However, in the case of regions, false positives
occur frequently, since they are similar to the background.
In particular, the edit text class is one of the most difficult
to detect among the clickable object classes, since it is
usually made up of only one word or one line, and hence

their characteristics are not clear. The accuracy for edit text
class on YOLOv3 is 40%, while the accuracy for edit text
class on CODNet is 54%, resulting in clear performance
improvement.

E. COMPARISON TO OTHER DEEP LEARNING MODEL
We compare the mAP of CODNet and with the other models.
As shown in Table 5, we compare mAP according to the size
of the object: small, medium and large. For all the cases,
CODNet-1080 achieves the highest performance. Among the
models excluding CODNet, DetectoRS with ResNet-101 as
the backbone has the highest performance. CODNet-1080
has higher mAP of 0.08, 0.122 and 0.096 for small, medium
and large sized objects respectively than those of DetectoRS
with ResNet-101 as backbone. Among models excluding

115058 VOLUME 10, 2022

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

CODNet, SSD300 has the lowest mAP of 0.407, while Detec-
toRS with ResNet-101 as a backbone has the highest mAP
of 0.784. As a one-stage model, YOLOv5 has the highest
mAP of 0.742. CODNet-1080 achieves the highest mAP of
0.865. It also shows the best performance among the one-
stage models.

V. CONCLUSION
In this paper, we have proposed CODNet, a new deep learning
neural network for detecting clickable objects in a wide range
of mobile screen resolutions. CODNet provides performance
improvement and scalability by designing a deep learning
network which consists of three modules: Feature extrac-
tion module, Deconvolution module and Prediction module.
Feature extraction module shows performance improvement
through minimizing feature loss by extending the resolution
of input image to 1080 × 1920. Deconvolution module pro-
vides feature map of various sizes by upsampling feature
map through top-down paths and lateral connections. Predic-
tion module improves the performance by using the Anchor
Transfer block which selects the most suitable for the mobile
environment among the set of anchor candidates obtained
through mobile data set analysis. Moreover, we improve
the object detection performance by building a new mobile
screen dataset which consists of data collected from vari-
ous resolutions and operating systems. The performance of
CODNet is confirmed through various experiments. Feature
extraction module achieves the lowest error rate compared to
other models. CODNet with Deconvolution module achieves
a mAP of 0.865, which is 9.4 higher than CODNet with-
out Deconvolution module. CODNet achieves higher per-
formance as the resolution increases. For the aspect ratio
candidatewhen using 5-means clusters, CODNet achieves the
best performance for all cases of resolution and backbone.
CODNet-1080 achieves the highest mAP of 0.865.

For future works, we shall work on the details of CODNet
such as the number of layers for each module, activation
function and hyperparameters, and continue to work on the
test for a wide range of smart devices in the real environment
to further improve our model.

REFERENCES

[1] G. Bae, G. Rothermel, and D.-H. Bae, ‘‘Comparing model-based and
dynamic event-extraction based GUI testing techniques: An empirical
study,’’ J. Syst. Softw., vol. 97, pp. 15–46, Nov. 2014.

[2] S. R. Choudhary, A. Gorla, and A. Orso, ‘‘Automated test input generation
for Android: Are we there yet? (E),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2015, pp. 429–440.

[3] W.Muangsiri and S. Takada, ‘‘RandomGUI testing of Android application
using behavioral model,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 27, nos. 9–
10, pp. 1603–1612, Nov. 2017.

[4] A. C. R. Paiva, J. M. E. P. Gouveia, J.-D. Elizabeth, and M. E. Delamaro,
‘‘Testing when mobile apps go to background and come back to fore-
ground,’’ in Proc. IEEE Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Apr. 2019, pp. 102–111.

[5] T. A. Nguyen and C. Csallner, ‘‘Reverse engineering mobile application
user interfaces with REMAUI (T),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2015, pp. 248–259.

[6] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshyvanyk,
‘‘Machine learning-based prototyping of graphical user interfaces for
mobile apps,’’ IEEE Trans. Softw. Eng., vol. 46, no. 2, pp. 196–221,
Feb. 2020.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), vol. 25, Dec. 2012, pp. 1097–1105.

[8] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, ‘‘Convolutional
neural networks: An overview and application in radiology,’’ Insights
Imag., vol. 9, pp. 611–629, Jun. 2018.

[9] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray, L. Yu, Q. Shan,
J. Nichols, J. Wu, C. Fleizach, A. Everitt, and J. P. Bigham, ‘‘Screen
recognition: Creating accessibility metadata for mobile applications from
pixels,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst., May 2021,
pp. 1–15.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Computer Vision—ECCV
2016. Cham, Switzerland: Springer, 2016, pp. 21–37.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[12] P. Zhu, Y. Li, T. Li, W. Yang, and Y. Xu, ‘‘Gui widget detection
and intent generation via image understanding,’’ IEEE Access, vol. 9,
pp. 160697–160707, 2021.

[13] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[14] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[15] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, 2015, pp. 91–99.

[16] Z. Cai and N. Vasconcelos, ‘‘Cascade R-CNN: Delving into high quality
object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 6154–6162.

[17] S. Qiao, L.-C. Chen, and A. Yuille, ‘‘DetectoRS: Detecting objects with
recursive feature pyramid and switchable atrous convolution,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 10213–10224.

[18] C. Zhu, Y. He, and M. Savvides, ‘‘Feature selective anchor-free module
for single-shot object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 840–849.

[19] Z. Tian, C. Shen, H. Chen, and T. He, ‘‘FCOS: Fully convolutional one-
stage object detection,’’ inProc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9627–9636.

[20] H. Law and J. Deng, ‘‘CornerNet: Detecting objects as paired keypoints,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 734–750.

[21] Z. Dong, G. Li, Y. Liao, F. Wang, P. Ren, and C. Qian, ‘‘Centripetal-
Net: Pursuing high-quality keypoint pairs for object detection,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10519–10528.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[23] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S.
Belongie, ‘‘Feature pyramid networks for object detection,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2117–2125.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[25] Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, and J. Sun, ‘‘You only
look one-level feature,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 13039–13048.

[26] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding YOLO
series in 2021,’’ 2021, arXiv:2107.08430.

[27] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4:
Optimal speed and accuracy of object detection,’’ 2020,
arXiv:2004.10934.

[28] G. Jocher et al., ‘‘ultralytics/yolov5: v6.2—YOLOv5 Classification Mod-
els, Apple M1, Reproducibility, ClearML and Deci.ai integrations, v6.2,’’
Zenodo, Aug. 2022, doi: 10.5281/zenodo.7002879.

[29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980–2988.

VOLUME 10, 2022 115059

http://dx.doi.org/10.5281/zenodo.7002879

B. Kang et al.: Clickable Object Detection Network for a Wide Range of Mobile Screen Resolutions

[30] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, ‘‘RICO: A mobile app dataset for building
data-driven design applications,’’ in Proc. 30th Annu. ACM Symp. User
Interface Softw. Technol., Oct. 2017, pp. 845–854.

[31] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li, ‘‘Object
detection for graphical user interface: Old fashioned or deep learning or
a combination?’’ in Proc. 28th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., Nov. 2020, pp. 1202–1214.

[32] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, ‘‘ICONINTENT: Auto-
matic identification of sensitive UI widgets based on icon classification
for Android apps,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
May 2019, pp. 257–268.

[33] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5 MB model size,’’ 2016, arXiv:1602.07360.

[34] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[35] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,
arXiv:1312.4400.

[36] S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, ‘‘Impact of
fully connected layers on performance of convolutional neural networks for
image classification,’’ Neurocomputing, vol. 378, pp. 112–119, Feb. 2020.

[37] A. FredAgarap, ‘‘Deep learning using rectified linear units (ReLU),’’ 2018,
arXiv:1803.08375.

[38] Z. Zhang and M. Sabuncu, ‘‘Generalized cross entropy loss for training
deep neural networks with noisy labels,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 31, 2018, pp. 1–11.

[39] Y. He, C. Zhu, J.Wang,M. Savvides, andX. Zhang, ‘‘Bounding box regres-
sion with uncertainty for accurate object detection,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2888–2897.

[40] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andW. Zisserman,
‘‘The PASCAL visual object classes (VOC) challenge,’’ Int. J. Comput.
Vis., vol. 88, no. 2, pp. 303–338, Sep. 2010.

BOSEON KANG is currently pursuing the inte-
grated M.S./Ph.D. degree with the Visual Infor-
mation Processing Department, Korea University,
Seoul, South Korea. His research interests include
deep learning and image processing.

MINSEOK JO received the M.S. degree from
the Department of Electrical Engineering, Korea
University, in 2022. He is currently a Research
Engineer at Hyundai Mobis. His research inter-
ests include deep learning and distributed parallel
processing.

CHANG-SUNG JEONG (Member, IEEE) received
the B.S. degree from Seoul National Univer-
sity, in 1981, and the M.S. and Ph.D. degrees
from Northwestern University, in 1985 and
1987, respectively. He was a Professor with
POSTECH, from 1982 to 1992. He was an Asso-
ciate Researcher with UCSC, from 1998 to 1999.
He is currently a Professor with the Department of
Electrical and Computer Engineering, Korea Uni-
versity. His research interests include distributed

parallel computing, grid computing, ubiquitous computing, networked vir-
tual computing, and development of highly intensive applications, such as
stereo image processing and 3-D visualization on collaborative grid and
ubiquitous computing environment.

115060 VOLUME 10, 2022

