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ABSTRACT Single-cell RNA sequencing (scRNA-seq) enables quantification of mRNA expression at
the level of individual cells. scRNA-seq uncovers the disparity of cellular heterogeneity giving insights
about the expression profiles of distinct cells revealing cellular differentiation. The rapid advancements
in scRNA-seq technologies enable researchers to exploit questions regarding cancer heterogeneity and
tumor microenvironment. The process of analyzing mainly clustering scRNA-seq data is computationally
challenging due to its noisy high dimensionality nature. In this paper, a computational clustering approach
is proposed to cluster scRNA-seq data based on consensus clustering using swarm intelligent optimization
algorithms to accurately recognize cell subtypes. The proposed approach uses variational auto-encoders
to handle the curse of dimensionality, as it operates to create a latent biologically relevant feature space
representing the original data. The new latent space is then clustered using Particle Swarm Optimization
Algorithm, Multi-Verse Optimization Algorithm and Grey Wolf Optimization Algorithm. A consensus
solution is found using solutions returned by the swarm intelligent algorithms. The proposed approach
automatically derives the number of clusters without any prior knowledge. To evaluate the performance
of the proposed approach a total of four datasets have been used then a comparison against the existing
methods in literature has been performed. Experimental results show that the proposed approach performs
better than widely most used tools, achieving an adjusted rand index of .95, .75, .88,.9 for Biase, Goolam,
Melanoma cancer and Lung cancer datasets respectively.

INDEX TERMS Single-cell RNA-seq, automatic clustering, unsupervised learning, swarm intelligence,
metaheuristic algorithms, consensus clustering.

I. INTRODUCTION quantify expression signatures. Nevertheless, it is inadequate

Single cell RNA Sequencing enables quantification of gene
expression at the cell level unlike Bulk RNA sequencing
that averages the gene expression across a population of
cells [1]. In other words, single cell RNA sequencing attempts
to represent the distribution of expression level within each
subpopulation per transcript for each individual cell in the
sample, while bulk RNA sequencing only measures the aver-
age expression level per gene for a large population of
cells [2].

Accordingly, bulk RNA sequencing utilizes studying com-
parative transcriptomics, disease studies where it could
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for studying complex heterogeneous systems [3]. scRNA-seq
analysis gives insight about cellular heterogeneity by identi-
fying cell types and detecting of rare cell types by studying
cells behavior in its microenvironment which is applied in
fields like cancer treatment, tumors composition, embryonic
development etc. [4].

Single cell RNA sequencing was first introduced by
Tang et al. [2], though it gained its wide popularity around
2014 as the sequencing cost due to new protocols made the
sequencing process easier. Until now there is an urge to do
modifications on existing computational tools and imple-
menting new ones to perform single cell RNA sequencing
analysis in order to study the biological inquiries about a
particular cell type behavior etc. [5].
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Advances in sequencing technologies allows extracting
genetic information from hundreds to thousands of cells,
resulting in what is known by Curse of Dimensionality [6].
Since each cell (Sample) is expressed across hundred thou-
sand of genes (Features), datasets resulting from scRNA-seq
has a large number of genes (features) and each gene has
an expression value in each cell sampled in the scRNA-seq
experiment done. Single cell datasets size ranges from 10°
to 10° cells with increase in size every year. Most single
cell data consists of zeros since RNA molecules amount in
sequenced cells is very low which causes dropout events [7].
However, not all these zeros are insignificant to be neglected
in downstream analysis hence the higher the dropout level the
more difficult it is to process the data. Consequently, more
competent computational tools are required to efficiently per-
form a sequence of tasks such as processing the data, feature
selection or dimensionality reduction and most importantly
clustering the data [8].

In scRNA-seq analysis, clustering is considered the main
step of the downstream analysis; it uses the transcriptomic
relations between cells to group the cells into clusters where
each cluster represents a cell type, or a cell lineage based on
the type of analysis performed [9], [10]. Because of prob-
lems mentioned before such as dropout events and curse of
dimensionality, the high dimensional space makes it difficult
to use distance measures like Euclidean distance, Manhattan
distance and such methods without proper data preprocessing
techniques [11]. Not tackling such problems in scRNA-seq
analysis may cause the problem of overfitting; as several
features may not be important in the analysis. However, the
model is trained in its learning process taking into consid-
eration that these features matter, hence a major step before
performing clustering is to get rid of un-informative genes
(features) to get more robust well-defined clusters.

In this paper a new approach to find better clustering
performance for scRNA-seq data based on consensus clus-
tering using Swarm Intelligence techniques (Particle Swarm
Optimization, Grey Wolf Optimization and Multi-Verse Opti-
mization) is proposed. Each technique iterates to find an
optimal solution in its search space then the solutions intro-
duced by these techniques are fused into a consensus solution
resulting in better clustering performance.

The major contributions of this research are:

o Proposing a new unsupervised clustering approach that
automatically detects the number of clusters k, overcom-
ing shortcomings of other methods that needs k to be
predefined.

« Utilizing variational auto-encoders (VAE) as part of the
proposed model, to create a biologically relevant latent
feature space representing the original feature space.
Yet, the latent features are less in number making it
easier to deal with. Hence, overcoming the curse of
dimensionality of the scRNA seq data.

o Accurately clustering the scRNA seq data in consen-
sus clustering approach using metaheuristic techniques
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Particle Swarm optimization algorithm, Grey Wolf opti-
mization algorithm and Multi-Verse optimization algo-
rithm.

o Achieving an adjusted rand index (ARI) of .95 for Biase
dataset, an ARI of .75 for Goolam dataset, an ARI of
.88 for Melanoma cancer dataset and an ARI of .9 for
Lung cancer dataset, with stable clusters regardless the
number of samples in datasets.

Il. RELATED WORK

Considering the many challenges that faces clustering single
cell data in terms of execution time or clustering accuracy and
stability, many methods have been developed to overcome
these limitations compared to traditional methods. In this
section, a brief background about clustering, its categories
and the mechanism of the used metaheuristic techniques is
presented, then a review of the recently developed tools based
on the challenges is listed.

A. CLUSTERING
Clustering is a process to find natural grouping of data
objects such that each cluster has similar data objects but
simultaneously differs from data objects in other clusters
depending on the similarity measure used [12]. That is why
clustering is considered an unsupervised learning problem
since prior information about the data groups is unavailable
unlike classification problems where labels/groups of data
are already known [13]. Clustering algorithms tries to min-
imize the intra-cluster distance between data objects of the
same cluster and maximize inter-cluster distance between
data objects of different clusters to find accurate grouping of
these objects.

There are numerous algorithms and techniques to solve the
clustering problem, and all can be categorized as follows:

« Hierarchical clustering [14]: it attempts to build a hierar-
chical tree by finding structure among data points using
either agglomerative or divisive approach.

« Partition based clustering [15]: it attempts to partition
the data into k-clusters by identifying the best k-centers;
those centers are either centroids like in K-means algo-
rithm or medoids.

o Graph based clustering [16]: it represents the data points
as nodes in a graph then uses pairwise similarities to
compose the edges between the nodes based on the
similarity measured between those nodes.

o Ensemble clustering [17]: it utilizes finding clusters
using different clustering algorithms then fuses all sug-
gested solutions by these algorithms using consensus
function to find better clusters representation for the
data. Ensemble clustering shows better clustering per-
formance than traditional clustering techniques.

o Search based clustering [18]: it tries to solve the clus-
tering problem automatically by inspiring a natural or
physical phenomena. The advantage of these methods
that it solves the problem of the traditional clustering
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methods that usually converges towards the nearest local
optima. Search based algorithms include evolutionary
algorithms and swarm intelligence algorithms.

The clustering problem also can be introduced as an opti-
mization problem, where the data required to be clustered
form the search space while exploring the optimal grouping
of data points existing in the search space is the solution to
be optimized [19]. Nature inspired Metaheuristic techniques
are part of computational intelligence used in solving opti-
mization problems. Their main concept is exploring a search
space attempting to find the optimal solution for the problem
in the space. These techniques are inspired from natural
theories or natural behavior of intelligent organisms in nature
[20]. Metaheuristics techniques can be categorized as either
single solution-based search (e.g., Simulated annealing, Tabu
search) or population-based search and the later consists
of two subcategories Evolutionary algorithms (e.g., Genetic
Algorithms, Differential Evolution) and Swarm Intelligence
algorithms (e.g., Particle Swarm Optimization, Ant colony
Optimization, Firefly Optimization etc.).

Evolutionary algorithms mimic biological evolution in
nature, they start by initializing a population of random solu-
tions then these solutions are evaluated using a fitness func-
tion and the best solution is chosen through several iterations
of searching the space of solutions and evaluating them till
stability is reached.

On the other hand, Swarm Intelligence algorithms are
inspired by the social and collective intelligent behavior of
organisms in nature for example Cuckoo search algorithm
take after some cuckoo species and their strategy in egg lay-
ing, Ant colony Optimization take after ant and their strategy
in finding the nearest path from a nest to a food source,
etc. [21].

B. METAHEURISTICS TECHNIQUES

1) PARTICLE SWARM OPTIMIZATION

ALGORITHM (PSO) [22]

a meta-heuristic, population-based algorithm that is a part of
the swarm intelligence family of algorithms. PSO mimics a
social behavior of organisms’ swarm, such as a flock of birds
or a species of fish. PSO randomly initializes a population of
particles, where each particle represents a candidate solution
to the optimization problem. Each particle has a velocity that
helps in the movement of the particle that differs from other
particles velocities, and a position in the swarm. The search
space consists of the swarm of particles, and particles move
randomly in that search space according to an update in its
velocities.

2) GREY WOLF OPTIMIZATION ALGORITHM (GWO)

Another meta-heuristic algorithm that inspires its behavior
from grey wolves is Grey Wolf Optimization algorithm, it is
first introduced by Mirjalili et al. [23]. GWO follows the lead-
ership hierarchy of the grey wolves mimicking their hunting
mechanism in nature. The classification of the grey wolves
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are as follows «, B, §, w each representing a position within
the hierarchy of the grey wolves. The o wolves take the
responsibility of deciding during the hunting process, leading
and tracking other wolves to keep up social equality within
their groups. The 8 wolves comes after o wolves in hierarchy
and are considered the advisors of the o wolves. Once «
wolves die or become too old; 8 wolves ascend and become
o wolves. The w wolves may be the children of the group and
are controlled by § wolves. The § wolves are also responsible
for providing information to the @ and § wolves. The hunting
process of grey wolves starts with searching for and tracking
the prey. After that, grey wolves start to surround their prey
until it can no longer move. Lastly, grey wolves start attacking
the pray.

3) MULTI-VERSE OPTIMIZATION ALGORITHM (MVO)

MVO is first introduced by Mirjalili er al. [24], it is a
swarm intelligent optimization algorithm that is inspired from
the theory of multi-verse in astrophysics. The multi-verse
adopts the concept of the multiple universes created by the
big bang. It also adapts the concept of interaction between
these universes which takes place through divergent variety
of holes. These holes are either black, white or worm holes.
A transfer between any two pair of universes happens when a
black and white hole interact through what is called a tunnel.
Worm holes create those tunnels whereas black holes absorb
everything, and white holes emit everything. Each universe
represents a solution to the optimization problem and each
feature represents an object within a universe. The fitness
value per universe is calculated by some objective function
and is known by the inflation rate, which controls the expan-
sion through space. The fitness of the solution depends on
the existence of white holes which leads to better fit solution.
However, the existence of black holes leads to poor solutions.

Many tackled the problem of clustering scRNA-seq data
using different clustering approaches; however, some pro-
posed methods faced limitations.

Xu and Su [25], introduced SNN-Cliq in this approach the
SNN graph is constructed by computing a similarity matrix
that depends on Euclidean distance as a similarity measure
between data points. For each data point, a list of the k-nearest
neighbors is made based on the similarity matrix. The graph
is then constructed by considering each cell to be a data point
and a weighted edge between any two points is created if
the two points have at least one common nearest neighbor.
The maximal quasi-clique per node is found using a greedy
algorithm fed by SNN graph as an input. All possible quasi-
cliques are found then an elimination process is performed to
remove any sub partial existence. Clusters are then identified
by merging quasi-cliques based on overlapping rate. Iterative
merging is later performed until there is no pair of clusters
that have a greater overlapping rate than a certain threshold.
Although this approach succeeds in having a clear definition
of clusters, it all depends on how the single cell data is
represented as a graph when a graph is too sparse it fails to
detect the clusters.
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Guo et al. [26], introduced SINCERA for analyzing single
cell RNA-Sequencing data. In this pipeline, a gene filtering
step is utilized first, as the genes expressed in less than a
certain number of cells are filtered out. Normalization meth-
ods on both gene and cell level are later performed. For
clustering, two-dimensional unsupervised hierarchical clus-
tering is used, since it requires no prior information about the
number of clusters however it faces a high time complexity
limitation. It is worth mentioning that centered Pearson’s cor-
relation is used as the default similarity measure throughout
the pipeline.

Satija et al. [27], introduced Seurat a tool that incorporates
unsupervised clustering algorithm. Seurat combines dimen-
sionality reduction methods with graph based partitioning
techniques. Seurat identifies the set of most variable genes
across the dataset to enhance the dimensionality reduction
methods performance. The gene set is then used as input
to principal component analysis (PCA) followed by graph-
based clustering. Seurat has a low time complexity however
the iterative process may hide small communities.

Yau et al. [28], introduced Pca-Reduce an approach that
projects a gene expression matrix with dimensions (n x d)
representing number of cells and number of expressed genes
across the cell respectively, into a score matrix. At this stage,
K-means clustering is performed as an initial step on the
score projected matrix with k as a large value ensuring all
cell types are seized. Subsets of resulting initial clusters are
then taken, and a probability of merging for all possible
pairs is calculated using multivariate Gaussian with mean
and covariance matrix. Two clusters are merged if the pair
with the highest probability belongs to them, or by sampling
a pair of clusters based on their merged probabilities. The
process of projecting and merging clusters are repeated until
one single cluster remains. Though PcaReduce has a low time
complexity, it is sensitive to outliers.

Kiselev et al. [29], proposed SC3 a single cell data analyz-
ing tool. SC3 takes gene expression matrix with rows repre-
senting the genes and columns representing the cells as input.
Firstly, gene filtering process takes place in which genes
expressed in less than X % of cells are filtered out as well as
genes expressed in (100-X) % of cells. The filtering is done to
remove non informative genes reducing the dimensionality of
the data. A distance matrix is constructed for each similarity
measure using Euclidean distance, Pearson and spearman.
To transform all distance matrices, principal component anal-
ysis or calculating eigenvectors of associated Laplacian graph
is used. K-means clustering algorithm is later performed
on transformed distance matrices according to Hartigan and
Wong algorithm [30]. Then clustering is performed to find
a consensus matrix according to cluster-based similarity par-
titioning algorithm (CSPA) [31]. A binary similarity matrix
is later generated per clustering result with cells being both
dimensions of the new matrix. Two cells have a similarity
of 1 if they belong to the same cluster and O otherwise.
All similarity matrices generated based on the CSPA clus-
tering results are averaged forming a new consensus matrix.
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Hierarchal clustering is then performed on the consensus
matrix using an agglomerative approach. Though SC3 is
scalable to large datasets, it is also sensitive to outliers. SC3
requires the user to determine k.

Lin et al. [32] introduced CIDR, an approach that performs
dimensionality reduction using principal co-ordinate analysis
(PCoA) on a dissimilarity matrix. The number of co-ordinates
is determined based on variation of the scree algorithm. Hier-
archical clustering is applied after determining the number
of clusters according to the Calinski-Harabasz index [33].
CIDR provides hierarchical relationship among datapoints,
but it faces a high time complexity limitation and the clusters
given are not explicit.

Wang et al. [34], introduced a framework named SIMLR.
Given an expression matrix, SIMLR calculates a symmet-
ric matrix that seizes pairwise similarities between cells.
Gaussian kernels with multiple different hyper-parameters
are used by utilizing Euclidean distance between pairs of
cells and K-nearest neighbors. An optimization algorithm
is used to improve some of the hyper parameters. SIMLR
then uses stochastic neighbor embedding (t-sne) method for
dimensionality reduction. K-means is then performed on the
resulting latent data. SIMLR makes no assumption about data
distribution, but it faces computational challenges when it
comes to large datasets.

Gan et al. [35] introduced conCluster, a model that per-
forms consensus clustering. The model performs filtering out
on the gene level to eliminate genes that are either expressed
in 7% of cells or (100-r) % of cells. Such genes hold no
valuable genetic information defined as rare and ubiquitous
genes respectively. A gene set of the most variable genes
across the cells is identified. For dimensionality reduction,
stochastic neighbor embedding (t-sne) is used with a per-
plexity set to 30 to reduce the number of dimensions to two.
K-means is later performed T times utilizing multiple initial
parameters for basic clustering. A binary matrix is generated
per each clustering output using the resulting cluster labels.
The generated binary matrices from the multiple clustering
trials are concatenated into one large binary matrix. K-means
is performed once again on the concatenated binary matrix
using Calinski-Harabaz Index [33] to determine the number
of clusters. The results of clustering trials are fused into a con-
sensus one. Concluster provides robust clustering however it
relies on combining other algorithms for ensemble.

Yang et al. [36] embeds four clustering methods SC3,
Seurat, CIDR and t-sne+K-means. Gene expression matrix is
taken as input after adjusting it to be suitable for all methods.
Clustering using the four methods is performed individually.
The results obtained are later used to construct an overall
hyper graph which combines all hypergraphs resulting from
individual results. For ensemble clustering one of partitioning
algorithms, HGPA, MCLA and CSPA is used. Performance
is evaluated using average normalized mutual information
(ANMI), for ensemble solution and individual ones and the
clustering result with highest ANMI is selected as the final
result.

VOLUME 10, 2022



A. H. A. El-Naga et al.: Consensus Nature Inspired Clustering of Single-Cell RNA-Sequencing Data

IEEE Access

Nguyen et al. introduced MKGA [37], a clustering tech-
nique based on Genetic Algorithm. The chromosome was
separated into two segments, the first portion is made up of
a series of binary numbers ranging from O to 1, indicating
whether the cluster is active or not. The clusters’ cores are
represented in the second part. Three separate objective func-
tions are used to assess the fitness of a chromosome: Sum
of squares with cluster, Davies-Bouldin index, and Silhouette
index. For crossover, randomly selected parents with the same
number of clusters are chosen. For mutation, Gaussian noise
is introduced to the clusters’ centers. The number of clusters
can also be altered by enabling or removing a center. Each
generation is subjected to the K-means operator, which is
applied based on a user-defined probability. 16 illness data
sets and 5 single-cell data sets were used to test the suggested
technique. However, the technique’s accuracy could be inef-
ficient in case of large datasets.

Geddes et al. [38], propose an auto-encoder ensemble
clustering framework. The framework starts with randomly
projecting of single cell data into sub-spaces. Auto-encoders
trains on the sub-spaces to compress the data into a lower
dimensional space. Several experiments were made on dif-
ferent datasets to test the effects and to optimize the hyper
parameters: the projection size, auto-encoder learning rate
and feature space size. To prove the enhancement in clus-
tering performance using the ensemble approach, standard
k-means algorithm and kernel-based clustering algorithm
SIMLR are used on random encoded data and raw data,
then the performance is evaluated showing that ensemble
clustering of encoded data is highly effective for single cell
data. This framework incorporates relation among clusters
however, it is sensitive to the parameters that should be
determined.

Hua et al. [39], introduced LAK a computational pipeline
for single cell data analysis. LAK uses Linnorm [40] to
normalize the gene expression data by default. The number
of clusters k is determined using the Gap statistics [41] but
it also allows users to define k or choose other normalization
methods. LAK does not have a gene filtering step instead;
it uses other quality control measures as mentioned in [42].
LAK utilizes K-means with Euclidean distance as a similar-
ity measure maximizing the between-cluster sum of squares
(BCSS). Lasso and L2 penalty are introduced to the clustering
process according to Sparse K-means. LAK faces a limitation
of slow calculation of k& when the number of cells exceeds
10000.

Vans et al. [43], proposed FEATS a pipeline for clustering
single cell data. To preprocess the original expression data,
lowly and highly expressed genes are filtered then the data is
normalized. Agglomerative hierarchal clustering is later per-
formed on normalized data utilizing Ward linkage criterion.
The step of hierarchical clustering is needed so that ANOVA
test can be applied. ANOVA test is used as a feature selection
step based on the F-value. Genes with higher F-values are
selected, PCA is performed to reduce the dimensionality, then
Gap statics [41] is used to determine the number of clusters.
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A silhouette coefficient is measured to make sure samples
are correctly grouped and only groupings that maximize the
clustering score are kept. FEATS allows fitting to flexible
cluster shapes; however, it suffers from high time complexity.

Cui et al. [44], proposed SCENA an unsupervised method
for clustering single cell data. SCENA takes a gene expres-
sion matrix as input; where rows represent the genes and
columns represent the cells. SCENA performs preprocessing
in three stages: gene filtering, log transformation and normal-
ization. Similarity matrices between cells based on Euclidean
distance and K-nearest neighbors are generated per each
highly variable feature set. For each final similarity matrix,
spectral clustering is performed resulting in a binary matrix
that indicates whether two cells belong to the same cluster
or not. A consensus matrix is generated from the binary
matrices and spectral clustering is used again to perform
consensus clustering. A strength point of SCENA is it makes
no prior assumption about data distribution; however, spectral
clustering is computationally intensive for large datasets.

It can be concluded that clustering single cell data is
a challenging computational problem that needs further
exploration. Methods that follow partitioning clustering and
methods using neural networks or affinity propagation are
sensitive to outliers. Other methods like hierarchical cluster-
ing suffer from high time complexity. While density-based
clustering suffers from both back draws, ensemble-based
clustering shows robust clustering performance as it inte-
grates multiple methods.

lll. PROPOSED METHODOLOGY

The proposed system preserves the same workflow of
scRNA-seq analysis with the following steps: First, datasets
are preprocessed in two steps; gene filtering and matrix nor-
malization. Secondly, a variational auto-encoder (VAE) is
used for dimensionality reduction followed by a clustering
step. In the clustering step, cells are clustered into groups
where each cluster represents a unique type of cells. In the
clustering step, the latest feature space resulting from dimen-
sionality reduction step is used as input to three different
algorithms (PSO, GWO, MVO). The best solutions resulting
from these algorithms are used to generate a binary matrix
that is clustered again by GWO, and the consensus solution is
returned. Fig.1 illustrates the workflow of the proposed CNIC
approach.

A. DATA PREPROCESSING

The proposed approach takes an expression matrix of dimen-
sions (n x m); where n represents the number of cells
(samples), and m represents the number of genes/transcripts
(features). Firstly, the genes (features) are filtered out to
eliminate non-informative genes. The elimination process is
required to handle the dropout problem. Dropout is a term
used to indicate an expression of zero of a certain gene in a
cell. This happens since RNA amounts extracted during the
sequencing from the cells is almost insignificant. The elimi-
nation is decided upon the zero ratio; a gene is eliminated if
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Pre-processing
(Filtering +Normalization)

m Genes f Genes

n Cells
n Cells

Dimensionality
Reduction

FIGURE 1. Proposed CNIC clustering workflow.

it has zero expression in all cells. Genes expressed in number
of cells less than a certain threshold are also eliminated. The
threshold is set that a gene must be expressed in more than g%
of cells and no more than (100-q) % of cells. The threshold ¢
is set here to 6 based on experiment of different values for g,
best results are acquired when g is equal to 6.

After the elimination process, the new expression matrix is
normalized according to equation (1).

Qo — d
(drrgax _ dgﬂn) 48

where d,;,, is the original gene m expression at cell n,
dmn. dme are the minimum and maximum gene m expres-
sion amidst all cells respectively. § is a relatively insignificant
number as 1071 to avoid dividing null values.

Single cell RNA sequencing data suffer from the
curse of dimensionality since the number of features
(genes/transcripts) exceeds the number of samples (cells).
The process of clustering single cell sequencing data is com-
putationally expensive. Hence, dimensionality reduction is a
must to save both time and memory. Many dimensionality
reduction methods were introduced to the single cell sequenc-
ing data analysis like principal component analysis (PCA),
principal co-ordinate analysis (PcoA), stochastic embedding
neighbor (t-SNE), uniform manifold approximation and pro-
jection (UMAP), etc [45]. However, such methods, for exam-
ple PCA, assumes the linearity of the data which might not be
the case. Instead, in the proposed approach a variational auto-
encoder (VAE) structure is presented to encode the data into
a latent feature space. VAEs compress the high dimensional
space into a latent space of fewer features however, the latent
feature space preserves the biological information of the
original space. VAEs differ from normal reduction methods
that it can uncover nonlinear features. VAEs also differ from
regular auto-encoders in its stochastic nature. Instead of just
deterministically encoding and decoding the data based on
the construction error like the case of auto-encoders, VAEs
assimilate the distribution of features over samples through
learning mean and variance of data. Kullback-libler diver-
gence is added to the reconstruction loss so that the latent
features match a Gaussian distribution. VAEs use re- param-
eterization trick to grant back propagated gradient so that

dprocessed,,,, =

ey
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representation is learnt simultaneously. VAE consists of an
encoding phase and a decoding phase; the encoding phase
is responsible for compression of the data. During decoding
phase, the data is reconstructed into its original shape and a
loss value is calculated. The aim of decoding in this approach
is to ensure the compressed latent space correctly represents
the data. Accordingly, VAE in this context could be summa-
rized to an input layer, an encoding phase and a decoding
phase as follows:

1. Input layer holds the input shape of the single cell
sequencing data after preprocessing; a normalized
expression matrix of dimensions (m) representing the
samples (cells) number and (p) representing the fea-
tures (genes/transcripts) number after the filtering pro-
cess.

2. Encoding phase consists of a dense layer, a batch
normalization layer, an activation layer, another dense
layer followed by another batch normalization layer
and finally an activation layer. The result from the
encoding phase is an expression matrix of dimensions
(m x I) where m represents the samples (cells) number
and (/) represents the latent features after compression.

3. Decoding phase is a single layer of sigmoid activation.

Fig. 2 shows the architecture of the VAE used.

B. CLUSTERING
Given a dataset

S=1{51,82,........ , S} 2)

where each instance needs to be assigned to only one of non-
overlapping clusters. Suppose a set of subsets representing
the clusters

C={C1,Co,............... , Cr} 3)
such that
s=11, ¢ @
and
CinCj=¢ 4)
while i # j.
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FIGURE 2. VAE architecture.

Three different algorithms are used in this approach to
solve the clustering problem Particle Swarm Optimization
algorithm, Multi-Verse Optimization algorithm and Grey
Wolf Optimization algorithm. Each algorithm starts with a
random initialization of a population of size X where each
individual represents a solution to the clustering problem. The
individuals’ structure is shown in fig.3 where each individual
consists of k centroids with f features.

8131 CGF | GF GR | GR | GR | GR | o

FIGURE 3. Individuals structure.

A binary matrix of the best solutions per algorithm accord-
ing to the fitness function is then constructed. Then, the
binary matrix is fed to the Grey Wolf algorithm once again
to be clustered to find a better solution. The fitness function
used by all algorithms is Silhouette Coefficient (SC) [46]
calculated as mentioned in equations (6,7).

B 1 p bs(i) — ds(i)
SCK =5 Zi=1 max(bs(i), ds(i)) ©
1 K|
SC = c Zi:l SCK (7

Such that: s(i) represents an instance in cluster i where i =
1,2,3,...., k. bs(i) represents the average distance between
instance s(i) and all remaining instances in the exact cluster.
ds(i) represents the minimum distance between instance s(i)
and all other instances in all clusters. K, P represent the
number of clusters and the number of all instances in a given
cluster respectively.

The SC value is maximized to find better solution however,
in the proposed approach the SC value is normalized, and a
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reversed value of SC is used as mentioned in equation (8).
SCrev = 1 — Norm (SC) ®)

Phase 1 (Finding Optimal Number of Clusters k Automat-
ically): To determine the optimal number of clusters without
any prior knowledge, three methods are used Bayesian Infor-
mation Criterion score (BIC) [47], Calinski—Harabasz(CH)
[48], and Gap Statistic [41]. A median value of the three
methods’ results is calculated and used as the number of
clusters.

Phase 2 (Clustering With Individual Algorithms):

1) CLUSTERING WITH PARTICLE SWARM OPTIMIZATION
(PSO) ALGORITHM

PSO solves the clustering problem through the movement of
the particles in the search space.

The goal of each particle’s movement is to gain optimum
velocity according to its local best (Plocal_best) value, and
its neighbor’s global best (Pglobal_best). A particle’s posi-
tion changes according to its current position, its current
velocity, its distance from the (Plocal_est), and its distance
from (Pglobal_best). All particles update their positions and
velocities based on equations (9) and (10) respectively.

Pit+1) =Pi(t) +vi(t+ 1) ©)]
Vi(t+ 1) = Wvi (t) +ajr; (PLocal_best () —P; (t))
+ a21'2(Pglobal_best () — Pi(0) (10)

where Pi (t) , V; (t) indicates the particle’s position and veloc-
ity at iteration ¢ respectively. The terms ay, a; are acceleration
coefficients while w is the inertia weight and ry, r, are random
numbers.

2) CLUSTERING WITH GREY WOLF OPTIMIZATION
ALGORITHM (GWO)

The mathematical model of the GWO in this approach is as
follows: The « wolf represents the fittest solution while S
and & wolves represent the second and third best solutions,
respectively. All other solutions represent the w wolves who
follow the «, B, § wolves leading the hunting process. Search
agents known by the grey wolves, not including the fittest
ones, encircle the pray according to equations (11), (12).

Pt+1)=Xp®) —AxD (11)
D =[CxXp(t) — P(t) (12)

where D represents the distance between position of the
prey Xp and position of the search agent P at iteration ¢.
Fittest grey wolves represented by «, 8, § wolves adjust their
positions according to the prey’s position according to the
search agents’ positions to start the hunting process modeled
by equations (13-21).

A=2xaxrl—a (13)
C=2x12 (14)
D = |Cl x Pa — P| (15)
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FIGURE 4. Consensus clustering process.

= |C2 x P8 — P| (16)
D = |C3 x P§ —P| (17)

X1 = Pa — Al x Da (18)

X2 = P — A2 x DB (19)

X3 = P§ — A3 x DS (20)
P(t+1):x1+>§z+x3 o

where D represents the distance between the fittest grey
wolves and best search agents, A and C are control coeffi-
cients to maintain exploration, r; and r, are random numbers
in range [0, 1].

3) CLUSTERING USING MULTI-VERSE OPTIMIZATION (MVO)
ALGORITHM

The MVO solves the clustering problem by forming universes
such that each universe represents a solution to the clustering
problem. Each solution consists of clusters centroids.

Ui = {cj1, Cizpervv--- ,Cik }» and each centroid’s dimensions
are the features of the dataset initialized randomly. Then, for
each universe the fitness of the universe known by inflation
rate is calculated using an objective function. The best solu-
tion according to the objective function is obtained, and all
universes are updated to move towards the best solution. The
inflation rate is recalculated per universe, and the parameters
maintaining the exploitation around the best solution are
updated. The process is iteratively repeated until it reaches
max number of iterations. Finally, the best universe and
the cluster labels according to that universe formation is
returned.

Phase 3 (Consensus Clustering): Last phase in the cluster-
ing process is finding a consensus solution that outperforms
other solutions found by the clustering algorithms.

In this phase, the best solutions returned by the three clus-
tering algorithms are used to generate a binary matrix. The
binary matrix is of dimensions N x T such that N represents
the number of cells to be clustered and T represents the cluster
labels that resulted from the clustering algorithm per run.
Since the optimization algorithms are run multiple times to
ensure its performance; best solutions according to the fitness
function are returned and the cluster labels results are used to
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generate a binary matrix per best solution. The matrix consists
of all cells (samples) in the dataset as rows and the number
of columns in the matrix is equal to the number of clusters k.
All entries per row are zeros except for the cluster number
that the cell (sample) belongs to is indicated by 1. All binary
matrices are concatenated into one matrix. The new binary
matrix is used as input to the GWO algorithm once again to
be clustered and the final solution is found. Fig.4 illustrates
the consensus clustering process.

C. EVALUATION MEASURES

To assess the performance of the clustering process, dif-
ferent evaluation measures are used to further prove the
superiority of consensus nature inspired approach to other
existing approaches in literature. Since the true labels and
number of clusters are publicly available by the original
authors of the datasets; evaluation measures such as Adjusted
Rand Index, Completeness score, Homogeneity score and
V-measure score are used.

1) ADJUSTED RAND INDEX (ARI) [49]
ARI is a measure that evaluate the similarity of two clus-
tering results the ground truth and the predicted labels.
ARI values range from —1 to 1 such that lower values
specify poor clustering results while higher values closer
to 1 specifies similar clustering result to the ground truth.
1.0 indicates perfect matching score between the predicted
results and the ground truth. ARI makes no prior assump-
tions on the cluster structure hence it could be used to com-
pare different algorithms. ARI is calculated according to
equation (22).
RI — E[RI]
ARlI= ——— (22)
max (RI) —E[RI]

Such that R/ is the Rand Index, E[RI] is the Expected Rand
Index and max (RI) is the maximum Rand Index. Rand Index
is calculated according to equation (23) as follows:

Zp,t (%)

(3)

RI = (23)
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TABLE 1. Datasets description.

Dataset Source Accession #Cells  #Features REF
number

Biase NCBI GSE7249 90 25737 3

Goolam ArrayExpress I;I;TAB_ 124 41480 5

Melanoma GSE72056 4645 23686 2/7%

cancer

T cells in

NSCLC NCBI GSE99254 12346 23458 16

TABLE 2. Estimation of k by CNIC versus other methods.

Dataset Ref  CNIC SC3 SINCERA SNN-Cliq
Biase 3 3 3 5 6
Goolam 5 5 6 4 21

3500
— loss

- val_loss

3000 +

2500 4

VAE Loss

2000 A

1500 A

Epochs

FIGURE 5. Loss Vs. Val_loss for Biase dataset.

Expected Rand Index and maximum Rand Index are cal-
culated using equations (24), (25) respectively,

ERI) = E (Zp’t (%)) 24)
mxir = 5| 27 (%) + X0 (5)] @9

where p represents the predicted clusters, ¢ represents the true
clusters and 7 is the number of data points.

2) COMPLETENESS, HOMOGENEITY, AND V-MEASURE

All three measures are used as intuitive metrics that uses
conditional entropy analysis, on condition of having prior
knowledge of the ground truth assignments.

a: HOMOGENEITY SCORE (HS)

Homogeneity indicates that each cluster includes only points
(samples) of a single class. It is bounded by 0.0 and 1.0, where
0 specifies random clustering and 1 specifies perfect score.
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FIGURE 6. Loss Vs. Val_loss for Goolam dataset.
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FIGURE 7. Loss Vs. Val_loss for Melanoma cancer dataset.
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FIGURE 8. Loss Vs. Val_loss for Lung cancer dataset.
HS is calculated using equation (26):
H(T|P)
HS=1- —~ (26)
H (T)

b: COMPLETENESS SCORE (CS)

Completeness means that all members of a certain class are
allocated to the same cluster. This score is also bounded
by 0.0 and 1.0 such that O indicates random clustering and
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FIGURE 9. Performance comparison of CNIC and other six tools. Comparisons are based on ARI values.
« SEURAT operates on datasets with more than 100 cells.
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FIGURE 10. Comparison of ARI scores of all implemented algorithms.
1 indicates perfect score. CS is calculated using equation (27): c: V-MEASURE (VM)
H(P|T) A harmonic mean that makes no assumption on the clus-
CS=1- HE) (27)  ter structure. It is also used to qualitatively interpret the
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FIGURE 12. Comparison of CS scores of all implemented algorithms.
clustering results. VM is calculated as mentioned in equa- Such that H(P) is the cluster entropy, H(P|T) is the
tion (28): clusters conditional entropy, H(7T) is the ground truth
HS.CS entropy and H(T|P) is the ground truth conditional
VM =2.——— (28)  entropy.

"HS + CS
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FIGURE 14. Execution Time of all implemented algorithms.
IV. EXPERIMENTS AND RESULTS discussed. Description of the datasets used for validation is

In this section, the experimental configuration and parameter given in this section, as well as the discussion and comparison
settings to evaluate the performance of the proposed approach of the results of the proposed approach with results from
for the task of clustering single cell sequencing data are literature.
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A. DATASET

Two benchmark datasets with golden standards (Biase [50]
and Goolam [51]) are used for the experimentation and
evaluation of the CNIC clustering approach. The melanoma
cancer dataset is used to decipher the cellular composition
of the heterogeneous complex ecosystem of the tumor [52].
The lung cancer dataset [53] discusses the complexity of T
cells in non-small-cell-lung cancer (NSCLC) considered the
main reason of cancer mortality accounting for 85% of lung
cancers [54].

All datasets are free to access using NCBI (National
Center for Biotechnology Information) and Array Express.
Table 1 summarizes the datasets used, their dimensions
and the number of clusters according to the authors of the
datasets.

B. SYSTEM CONFIGURATION AND PARAMETER SETTINGS
Experiments were executed using a 2.00 GHz Intel(R) Core
(TM) 17-3537U- processor with 8 GB memory on Windows
10 operating system. The entire workflow was implemented
in Python using Spyder, Google colab and Kaggle Notebooks.

C. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed approach is applied to the four public men-
tioned datasets, and results are compared to recent used tools
for clustering Single cell data. Table 2 shows the number of
clusters computed by the proposed approach and other tools
against the ground truth mentioned by the original authors on
benchmark datasets with golden standards.

1) VAE TRAINING AND TESTING
To train and evaluate the VAE model, the data is split into
a training set and a testing set with percentages (70%-30%)
respectively. The 70%-30% was chosen in order to have
enough data for the training to result in better performance.
Also, the error estimation is more accurate with enough
data for testing. Other train-test split criteria were used
(80%-20%,90%-10%) but the results were not accurate. The
loss value is evaluated on both the training set and the testing
set. For the hyper parameters such as learning rate, number
of epochs and batch size, many experiments were conducted
with different values for each parameter. Eventually, Adam
optimizer is used with a learning rate of.001 chosen from
values (.01,.005,.0001,.1) since it achieved better results.
A batch size of 50 and 100 epochs are used out of many
suggested values for both parameters based on better perfor-
mance.

Fig. (5-8) shows the reconstruction loss and validation
loss calculated by mean square error as the loss function per
dataset.

D. CLUSTERING PHASE

In the experiments, PSO, GWO, MVO and consensus clus-
tering had a maximum of 100 runs, a maximum iteration of
100 and a population size of 50. Experiments were replicated
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TABLE 3. Comparison of CNIC with PSO, GWO and MVO over 100
independent runs.

Fitness Function (Silhouette Coefficient)

Dataset Algorithm
Mean StdDev
PSO 0.3633 0.004726
MVO 0.3634 0.004969
Biase
GWO 0.3625 0.004578
Consensus  0.03 7.31x10°8
PSO 0.3763 0.013000
MVO 0.3833 0.013108
Goolam
GWO 0.3771 0.014654
Consensus 0.11 1.463 x10"7
PSO 0.354 0.005477
Melanoma MVO 0.352 0.0083666
Cancer GWO 0354 0015166
Consensus 0.0608  1.59 x10"7
PSO 0.468 0.008367
Lung MVO 0.484 0.008944272
Cancer GWO 0.474 0.011402
Consensus 0.33 0.000113

for all datasets used with the same settings. Four datasets
were used to assess the performance of the proposed approach
against competing approaches.

Standard deviation is used as a descriptive statistic to detail
the computed solutions obtained by the proposed clustering
approach. The average objective function for all 100 runs of
the algorithm is calculated and reported as well as the average
execution time needed to find the clustering solutions by all
algorithms.

Table 3 shows the mean and standard deviation of the
fitness function (Silhouette Coefficient) of each algorithm
across all runs on all datasets.

1) BENCHMARKING
To evaluate the clustering accuracy, the performance of the
proposed CNIC is compared to currently most used methods
in clustering Single cell data using their default parameters
as mentioned by the authors. These methods are SNN-Cliq,
SC3, CIDR, PcaReduce, SEURAT and t-SNE+k-means. All
approaches were applied to Biase, Goolam and melanoma
cancer datasets. The results were evaluated by ARL

Fig.9 demonstrates the ARI values obtained by the pro-
posed clustering approach against the other methods. It is
shown that the proposed CNIC approach achieves better
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TABLE 4. Top 20 Signature genes of predicted cluster for lung cancer T cells dataset.

Cluster .
number Signature genes
Cluster 1 CCR7, RPS6, SELL, RPL3, RPL13, EEF1G, TXK, RPL32, RPL5, RPS14,
RPL11, TCF7, RPS13,RPS4X, LEF1, RPL19, PRKCQ-AS1, RPL18, RPL31, RPS12
Cluster 2 LTB, KLF2, AES, BIRC3, GPR183, RPLPO, GIMAP7, RPSAP58, GSTK 1, ICAM?2,
u TRADD, RPL17, SERINC5, SORL1, NOP53, PTGER2, ADD3, RNASET2, FLT3LG, RASA3
Cluster 3 NKG7, GZMH, GNLY, PRF1, FGFBP2, GZMB, CCL5, TARP, CX3CR1, KLRGI,
uste PLEK, CTSW, A2M, ADGRG1, FCRL6, ZEB2, HLA-DPB1, LITAF, PLACS, MYOM2
Cluster 4 FOS, CD69, DUSP1, FOSB, CCR6, SLC2A3, OCIAD2, LOC100130476, PDCD4, NABPI,
uste GZMK, GZMA, CST7, CCL4, CCL4L1, CD27, CCL3L3, DTHDI, F2R, CD27-AS1
Cluster 5 CXCR6, HLA-DRBS5, HLA-DRB1, HLA-DRB6, ALOX5AP, CAPG, LGALS3, ADAM19, JAML, CXCR3,
uste ITGAE, HLA-DRA, FAM129A, CD2, ANXA2, HLA-DQB1, SH3BGRL3, CKLF, CKLF-CMTM1, ANXA2P2
Cluster 6 CXCL13, SRGN, RGS1, GAPDH, CTLA4, TNFRSF18, DUSP4, RBPJ, NR3C1, RNF19A,
uste PDCDI, TIGIT, BHLHE40-AS1, TNFRSF4, TOX, ITM2A, SNX9, CDK6, SLA, DNPH
Cluster 7 NAP1L4, OAS3, TNFAIP3, ENTPD1, SRGAP3, APOBEC3C, BATF, CD7, SH2D2A, GNG3,
uste PDE4D, SUSD6, SEM1, MAF, VMP1, AHR, GALNT2, SLC1AS5, ANXAS, MIR497THG
Cluster 8 TXNIP, GIMAP7, SIPR1, RPL13, CD52, RPS3, UBXN11, LINC00861, RPS6, RPS1S,
RPS14, GIMAP4, AES, RPL3, GIMAP1-GIMAPS, RPLP2, RPL32, RPL13A, RPS14P3, RPL19
Cluster 9 TNFRSF18, CCR8, CXCR6, CD7, IL1R2, CTSC, TNFRSF9, DUSP4, SH2D2A, GAPDH,
uster TNFRSF4, BATF, CREM , RGS1, ID2, ICOS, TNFAIP3, IL2RB, CTLA4, PHTF2
Cluster 10 CCR7, SELL, LEF1, TCF7, RPL13, RPS6, TXK, RPL4, LDHB, NOSIP,
u RPL3, EEF1G, RPL32, EEF1AL, RPL5, LDLRAPI, RPL19, SERINC5, LRRC75A-AS1, RPS4X
Cluster 11 IL7R, CD28, LYAR, TNFSF8, MCUB, GPR183, DUSP2, SESN1, MALATI, EPB41, ATP2BI,
u CYBS561, ZFP36L2, IL10RA, HELB, PATJ, UPP1, JUNB, PTGER2, MYBL1
Cluster 12 FGFBP2, CX3CR1, FCGR3A, ADGRG1, PLEK, FCGR3B, KLRDI1, SIPR1, LITAF, GZMH,
uste FCRL6, GNLY, KLRG1, NKG7, SIPRS, PRF1, PLACS, A2M, ZEB2, FGR
Cluster 13 GZMK, CCLAL1, ITM2C, CD74, CCL4, AOAH, CXCR4, DTHD1, CCL3L3, CCL3L1,
uste CLDNDI, CD44, SH2D1A, TRATI, EOMES, CCL5, F2R, TC2N, FAM102A, PVRIG,
Cluster 14 ZNF683, CAPG, ITGAL, STK17B, JUN, ADAM19, CKLE-CMTM1, CKLF, CXCR3, XCL1,
uste PELO, CTSA, PLTP, VIM, PLP2, SUSD3, CD69, GLUL, S100A11, ZYX
Cluster 15 HAVCR2, SIRPG, GAPDH, ITGAE, GZMB, CCL3, TIGIT, ENTPD1, PDCD1, RBPJ,
u RGS1, CXCR6, CD63, SAMSN1, CD82, CCND2, ENTPD1-AS1, HLA-DRA, FKBP1A-SDCBP2, COTLI
Cluster 16 KLRBI, SLC4A10, NCR3, LST1, LTB, CCR6, DPP4, SPOCK2, SLAMF1, JAML,

DUSP1, RORA, TNFRSF25, CTSH, ERNI1, IFNGR1, MAF, ILI8RAP, MPZL3, ZBTB16

performance than most of the mentioned tools for all datasets.
For Biase dataset, CNIC achieved better ARI value of .95
than SNN-Cliq, CIDR, PcaReduce, SEURAT and t-SNE+k-
means. For Goolam dataset, CNIC achieved an ARI value of
.75 higher than all methods. For Melanoma cancer dataset,
CNIC got an ARI value of .88 higher than all mentioned
methods.

It is also shown that the proposed CNIC reaches high ARI
values regardless the size of the dataset samples (the number
of cells).

2) CNIC CLUSTERING STABILITY

A comparison between solutions of the used metaheuristic
algorithms and the consensus solution found in terms of ARI
is performed. The ARI values shown are the average of the
100 runs of each algorithm.

Fig. 10 shows a comparison between the ARI values of
the best solutions resulting per algorithm and the consen-
sus solution. As shown, the CNIC approach achieves .95
for Biase dataset,.75 for Goolam dataset, .88 for melanoma
cancer and.9 for lung cancer respectively. The results indicate
the efficiency of the proposed CNIC approach.
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For assessing the clustering stability, all implemented
algorithms as well as the consensus solution were evalu-
ated in terms of homogeneity score, completeness score and
V-measure.

Fig.11, Fig.12 and Fig.13 show the homogeneity score,
completeness score and V-measure score of the proposed
approach and other implemented algorithms respectively. Itis
noticed that CNIC achieves better scores indicating clustering
stability even in cases of large datasets.

Fig.14 shows the average running time for 100 runs for
each algorithm. Results show that it takes seconds to cluster
small datasets and a reasonable time in case of large datasets.

As shown above, all experimental results show that the
proposed CNIC approach performs better s in terms of ARI,
CS, HS and VS indicating clustering stability. Also, perfor-
mance of the proposed CNIC approach is not affected by the
number of samples (cells) as it can perform stably whether
the number of samples (cells) is small or large in a feasible
running time.

FINDING MARKER GENES
For further analysis of the lung cancer T cells; ANOVA [55]
test is performed to identify the signature genes of each
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cluster. ANOVA test is known as an analysis of variance used
to determine the differentially expressed genes. Table 4 shows
only top 20 signature genes of each cluster in case it has more
than 20 signature genes of the main 16 predicted clusters
according to the adjusted p-values.

V. CONCLUSION

In this paper, a new unsupervised consensus clustering
approach based on swarm intelligence optimization algo-
rithms is proposed to cluster sScRNA-seq data. The proposed
approach automatically and accurately computes the num-
ber of clusters, k, overcoming the shortcomings of other
methods that require that k¥ must be known. The proposed
CNIC approach takes VAE as a dimensionality reduction
method to project the original feature space into a lower
dimension space, yet the created latent feature space is bio-
logically relevant. For clustering, proposed CNIC utilizes
metaheuristic algorithms PSO, GWO and MVO to cluster
single cell data and returns best solutions found in the search
space. Best solutions are concatenated into a binary matrix,
and consensus clustering is performed fusing the solutions
of the PSO, GWO and MVO into one consensus solution.
The proposed CNIC approach achieves higher ARI values
compared to other widely used methods indicating better
clustering accuracy. The results of evaluation measures CS
score, HS score and V-measure score verify the stability of
the clustering results.
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