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ABSTRACT Single-cell RNA sequencing (scRNA-seq) enables quantification of mRNA expression at
the level of individual cells. scRNA-seq uncovers the disparity of cellular heterogeneity giving insights
about the expression profiles of distinct cells revealing cellular differentiation. The rapid advancements
in scRNA-seq technologies enable researchers to exploit questions regarding cancer heterogeneity and
tumor microenvironment. The process of analyzing mainly clustering scRNA-seq data is computationally
challenging due to its noisy high dimensionality nature. In this paper, a computational clustering approach
is proposed to cluster scRNA-seq data based on consensus clustering using swarm intelligent optimization
algorithms to accurately recognize cell subtypes. The proposed approach uses variational auto-encoders
to handle the curse of dimensionality, as it operates to create a latent biologically relevant feature space
representing the original data. The new latent space is then clustered using Particle Swarm Optimization
Algorithm, Multi-Verse Optimization Algorithm and Grey Wolf Optimization Algorithm. A consensus
solution is found using solutions returned by the swarm intelligent algorithms. The proposed approach
automatically derives the number of clusters without any prior knowledge. To evaluate the performance
of the proposed approach a total of four datasets have been used then a comparison against the existing
methods in literature has been performed. Experimental results show that the proposed approach performs
better than widely most used tools, achieving an adjusted rand index of .95, .75, .88,.9 for Biase, Goolam,
Melanoma cancer and Lung cancer datasets respectively.
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INDEX TERMS Single-cell RNA-seq, automatic clustering, unsupervised learning, swarm intelligence,
metaheuristic algorithms, consensus clustering.

I. INTRODUCTION20

Single cell RNA Sequencing enables quantification of gene21

expression at the cell level unlike Bulk RNA sequencing22

that averages the gene expression across a population of23

cells [1]. In other words, single cell RNA sequencing attempts24

to represent the distribution of expression level within each25

subpopulation per transcript for each individual cell in the26

sample, while bulk RNA sequencing only measures the aver-27

age expression level per gene for a large population of28

cells [2].29

Accordingly, bulk RNA sequencing utilizes studying com-30

parative transcriptomics, disease studies where it could31

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

quantify expression signatures. Nevertheless, it is inadequate 32

for studying complex heterogeneous systems [3]. scRNA-seq 33

analysis gives insight about cellular heterogeneity by identi- 34

fying cell types and detecting of rare cell types by studying 35

cells behavior in its microenvironment which is applied in 36

fields like cancer treatment, tumors composition, embryonic 37

development etc. [4]. 38

Single cell RNA sequencing was first introduced by 39

Tang et al. [2], though it gained its wide popularity around 40

2014 as the sequencing cost due to new protocols made the 41

sequencing process easier. Until now there is an urge to do 42

modifications on existing computational tools and imple- 43

menting new ones to perform single cell RNA sequencing 44

analysis in order to study the biological inquiries about a 45

particular cell type behavior etc. [5]. 46
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Advances in sequencing technologies allows extracting47

genetic information from hundreds to thousands of cells,48

resulting in what is known by Curse of Dimensionality [6].49

Since each cell (Sample) is expressed across hundred thou-50

sand of genes (Features), datasets resulting from scRNA-seq51

has a large number of genes (features) and each gene has52

an expression value in each cell sampled in the scRNA-seq53

experiment done. Single cell datasets size ranges from 10254

to 106 cells with increase in size every year. Most single55

cell data consists of zeros since RNA molecules amount in56

sequenced cells is very low which causes dropout events [7].57

However, not all these zeros are insignificant to be neglected58

in downstream analysis hence the higher the dropout level the59

more difficult it is to process the data. Consequently, more60

competent computational tools are required to efficiently per-61

form a sequence of tasks such as processing the data, feature62

selection or dimensionality reduction and most importantly63

clustering the data [8].64

In scRNA-seq analysis, clustering is considered the main65

step of the downstream analysis; it uses the transcriptomic66

relations between cells to group the cells into clusters where67

each cluster represents a cell type, or a cell lineage based on68

the type of analysis performed [9], [10]. Because of prob-69

lems mentioned before such as dropout events and curse of70

dimensionality, the high dimensional space makes it difficult71

to use distance measures like Euclidean distance, Manhattan72

distance and such methods without proper data preprocessing73

techniques [11]. Not tackling such problems in scRNA-seq74

analysis may cause the problem of overfitting; as several75

features may not be important in the analysis. However, the76

model is trained in its learning process taking into consid-77

eration that these features matter, hence a major step before78

performing clustering is to get rid of un-informative genes79

(features) to get more robust well-defined clusters.80

In this paper a new approach to find better clustering81

performance for scRNA-seq data based on consensus clus-82

tering using Swarm Intelligence techniques (Particle Swarm83

Optimization, GreyWolf Optimization andMulti-Verse Opti-84

mization) is proposed. Each technique iterates to find an85

optimal solution in its search space then the solutions intro-86

duced by these techniques are fused into a consensus solution87

resulting in better clustering performance.88

The major contributions of this research are:89

• Proposing a new unsupervised clustering approach that90

automatically detects the number of clusters k , overcom-91

ing shortcomings of other methods that needs k to be92

predefined.93

• Utilizing variational auto-encoders (VAE) as part of the94

proposed model, to create a biologically relevant latent95

feature space representing the original feature space.96

Yet, the latent features are less in number making it97

easier to deal with. Hence, overcoming the curse of98

dimensionality of the scRNA seq data.99

• Accurately clustering the scRNA seq data in consen-100

sus clustering approach using metaheuristic techniques101

Particle Swarm optimization algorithm, Grey Wolf opti- 102

mization algorithm and Multi-Verse optimization algo- 103

rithm. 104

• Achieving an adjusted rand index (ARI) of .95 for Biase 105

dataset, an ARI of .75 for Goolam dataset, an ARI of 106

.88 for Melanoma cancer dataset and an ARI of .9 for 107

Lung cancer dataset, with stable clusters regardless the 108

number of samples in datasets. 109

II. RELATED WORK 110

Considering the many challenges that faces clustering single 111

cell data in terms of execution time or clustering accuracy and 112

stability, many methods have been developed to overcome 113

these limitations compared to traditional methods. In this 114

section, a brief background about clustering, its categories 115

and the mechanism of the used metaheuristic techniques is 116

presented, then a review of the recently developed tools based 117

on the challenges is listed. 118

A. CLUSTERING 119

Clustering is a process to find natural grouping of data 120

objects such that each cluster has similar data objects but 121

simultaneously differs from data objects in other clusters 122

depending on the similarity measure used [12]. That is why 123

clustering is considered an unsupervised learning problem 124

since prior information about the data groups is unavailable 125

unlike classification problems where labels/groups of data 126

are already known [13]. Clustering algorithms tries to min- 127

imize the intra-cluster distance between data objects of the 128

same cluster and maximize inter-cluster distance between 129

data objects of different clusters to find accurate grouping of 130

these objects. 131

There are numerous algorithms and techniques to solve the 132

clustering problem, and all can be categorized as follows: 133

• Hierarchical clustering [14]: it attempts to build a hierar- 134

chical tree by finding structure among data points using 135

either agglomerative or divisive approach. 136

• Partition based clustering [15]: it attempts to partition 137

the data into k-clusters by identifying the best k-centers; 138

those centers are either centroids like in K-means algo- 139

rithm or medoids. 140

• Graph based clustering [16]: it represents the data points 141

as nodes in a graph then uses pairwise similarities to 142

compose the edges between the nodes based on the 143

similarity measured between those nodes. 144

• Ensemble clustering [17]: it utilizes finding clusters 145

using different clustering algorithms then fuses all sug- 146

gested solutions by these algorithms using consensus 147

function to find better clusters representation for the 148

data. Ensemble clustering shows better clustering per- 149

formance than traditional clustering techniques. 150

• Search based clustering [18]: it tries to solve the clus- 151

tering problem automatically by inspiring a natural or 152

physical phenomena. The advantage of these methods 153

that it solves the problem of the traditional clustering 154
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methods that usually converges towards the nearest local155

optima. Search based algorithms include evolutionary156

algorithms and swarm intelligence algorithms.157

The clustering problem also can be introduced as an opti-158

mization problem, where the data required to be clustered159

form the search space while exploring the optimal grouping160

of data points existing in the search space is the solution to161

be optimized [19]. Nature inspired Metaheuristic techniques162

are part of computational intelligence used in solving opti-163

mization problems. Their main concept is exploring a search164

space attempting to find the optimal solution for the problem165

in the space. These techniques are inspired from natural166

theories or natural behavior of intelligent organisms in nature167

[20]. Metaheuristics techniques can be categorized as either168

single solution-based search (e.g., Simulated annealing, Tabu169

search) or population-based search and the later consists170

of two subcategories Evolutionary algorithms (e.g., Genetic171

Algorithms, Differential Evolution) and Swarm Intelligence172

algorithms (e.g., Particle Swarm Optimization, Ant colony173

Optimization, Firefly Optimization etc.).174

Evolutionary algorithms mimic biological evolution in175

nature, they start by initializing a population of random solu-176

tions then these solutions are evaluated using a fitness func-177

tion and the best solution is chosen through several iterations178

of searching the space of solutions and evaluating them till179

stability is reached.180

On the other hand, Swarm Intelligence algorithms are181

inspired by the social and collective intelligent behavior of182

organisms in nature for example Cuckoo search algorithm183

take after some cuckoo species and their strategy in egg lay-184

ing, Ant colony Optimization take after ant and their strategy185

in finding the nearest path from a nest to a food source,186

etc. [21].187

B. METAHEURISTICS TECHNIQUES188

1) PARTICLE SWARM OPTIMIZATION189

ALGORITHM (PSO) [22]190

a meta-heuristic, population-based algorithm that is a part of191

the swarm intelligence family of algorithms. PSO mimics a192

social behavior of organisms’ swarm, such as a flock of birds193

or a species of fish. PSO randomly initializes a population of194

particles, where each particle represents a candidate solution195

to the optimization problem. Each particle has a velocity that196

helps in the movement of the particle that differs from other197

particles velocities, and a position in the swarm. The search198

space consists of the swarm of particles, and particles move199

randomly in that search space according to an update in its200

velocities.201

2) GREY WOLF OPTIMIZATION ALGORITHM (GWO)202

Another meta-heuristic algorithm that inspires its behavior203

from grey wolves is Grey Wolf Optimization algorithm, it is204

first introduced byMirjalili et al. [23]. GWO follows the lead-205

ership hierarchy of the grey wolves mimicking their hunting206

mechanism in nature. The classification of the grey wolves207

are as follows α, β, δ, ω each representing a position within 208

the hierarchy of the grey wolves. The α wolves take the 209

responsibility of deciding during the hunting process, leading 210

and tracking other wolves to keep up social equality within 211

their groups. The β wolves comes after α wolves in hierarchy 212

and are considered the advisors of the α wolves. Once α 213

wolves die or become too old; β wolves ascend and become 214

α wolves. The ω wolves may be the children of the group and 215

are controlled by δ wolves. The δ wolves are also responsible 216

for providing information to the α and β wolves. The hunting 217

process of grey wolves starts with searching for and tracking 218

the prey. After that, grey wolves start to surround their prey 219

until it can no longer move. Lastly, grey wolves start attacking 220

the pray. 221

3) MULTI-VERSE OPTIMIZATION ALGORITHM (MVO) 222

MVO is first introduced by Mirjalili et al. [24], it is a 223

swarm intelligent optimization algorithm that is inspired from 224

the theory of multi-verse in astrophysics. The multi-verse 225

adopts the concept of the multiple universes created by the 226

big bang. It also adapts the concept of interaction between 227

these universes which takes place through divergent variety 228

of holes. These holes are either black, white or worm holes. 229

A transfer between any two pair of universes happens when a 230

black and white hole interact through what is called a tunnel. 231

Worm holes create those tunnels whereas black holes absorb 232

everything, and white holes emit everything. Each universe 233

represents a solution to the optimization problem and each 234

feature represents an object within a universe. The fitness 235

value per universe is calculated by some objective function 236

and is known by the inflation rate, which controls the expan- 237

sion through space. The fitness of the solution depends on 238

the existence of white holes which leads to better fit solution. 239

However, the existence of black holes leads to poor solutions. 240

Many tackled the problem of clustering scRNA-seq data 241

using different clustering approaches; however, some pro- 242

posed methods faced limitations. 243

Xu and Su [25], introduced SNN-Cliq in this approach the 244

SNN graph is constructed by computing a similarity matrix 245

that depends on Euclidean distance as a similarity measure 246

between data points. For each data point, a list of the k-nearest 247

neighbors is made based on the similarity matrix. The graph 248

is then constructed by considering each cell to be a data point 249

and a weighted edge between any two points is created if 250

the two points have at least one common nearest neighbor. 251

The maximal quasi-clique per node is found using a greedy 252

algorithm fed by SNN graph as an input. All possible quasi- 253

cliques are found then an elimination process is performed to 254

remove any sub partial existence. Clusters are then identified 255

by merging quasi-cliques based on overlapping rate. Iterative 256

merging is later performed until there is no pair of clusters 257

that have a greater overlapping rate than a certain threshold. 258

Although this approach succeeds in having a clear definition 259

of clusters, it all depends on how the single cell data is 260

represented as a graph when a graph is too sparse it fails to 261

detect the clusters. 262
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Guo et al. [26], introduced SINCERA for analyzing single263

cell RNA-Sequencing data. In this pipeline, a gene filtering264

step is utilized first, as the genes expressed in less than a265

certain number of cells are filtered out. Normalization meth-266

ods on both gene and cell level are later performed. For267

clustering, two-dimensional unsupervised hierarchical clus-268

tering is used, since it requires no prior information about the269

number of clusters however it faces a high time complexity270

limitation. It is worth mentioning that centered Pearson’s cor-271

relation is used as the default similarity measure throughout272

the pipeline.273

Satija et al. [27], introduced Seurat a tool that incorporates274

unsupervised clustering algorithm. Seurat combines dimen-275

sionality reduction methods with graph based partitioning276

techniques. Seurat identifies the set of most variable genes277

across the dataset to enhance the dimensionality reduction278

methods performance. The gene set is then used as input279

to principal component analysis (PCA) followed by graph-280

based clustering. Seurat has a low time complexity however281

the iterative process may hide small communities.282

Yau et al. [28], introduced Pca-Reduce an approach that283

projects a gene expression matrix with dimensions (n × d)284

representing number of cells and number of expressed genes285

across the cell respectively, into a score matrix. At this stage,286

K-means clustering is performed as an initial step on the287

score projected matrix with k as a large value ensuring all288

cell types are seized. Subsets of resulting initial clusters are289

then taken, and a probability of merging for all possible290

pairs is calculated using multivariate Gaussian with mean291

and covariance matrix. Two clusters are merged if the pair292

with the highest probability belongs to them, or by sampling293

a pair of clusters based on their merged probabilities. The294

process of projecting and merging clusters are repeated until295

one single cluster remains. Though PcaReduce has a low time296

complexity, it is sensitive to outliers.297

Kiselev et al. [29], proposed SC3 a single cell data analyz-298

ing tool. SC3 takes gene expression matrix with rows repre-299

senting the genes and columns representing the cells as input.300

Firstly, gene filtering process takes place in which genes301

expressed in less than X% of cells are filtered out as well as302

genes expressed in (100-X ) % of cells. The filtering is done to303

remove non informative genes reducing the dimensionality of304

the data. A distance matrix is constructed for each similarity305

measure using Euclidean distance, Pearson and spearman.306

To transform all distance matrices, principal component anal-307

ysis or calculating eigenvectors of associated Laplacian graph308

is used. K-means clustering algorithm is later performed309

on transformed distance matrices according to Hartigan and310

Wong algorithm [30]. Then clustering is performed to find311

a consensus matrix according to cluster-based similarity par-312

titioning algorithm (CSPA) [31]. A binary similarity matrix313

is later generated per clustering result with cells being both314

dimensions of the new matrix. Two cells have a similarity315

of 1 if they belong to the same cluster and 0 otherwise.316

All similarity matrices generated based on the CSPA clus-317

tering results are averaged forming a new consensus matrix.318

Hierarchal clustering is then performed on the consensus 319

matrix using an agglomerative approach. Though SC3 is 320

scalable to large datasets, it is also sensitive to outliers. SC3 321

requires the user to determine k . 322

Lin et al. [32] introduced CIDR, an approach that performs 323

dimensionality reduction using principal co-ordinate analysis 324

(PCoA) on a dissimilaritymatrix. The number of co-ordinates 325

is determined based on variation of the scree algorithm. Hier- 326

archical clustering is applied after determining the number 327

of clusters according to the Calinski–Harabasz index [33]. 328

CIDR provides hierarchical relationship among datapoints, 329

but it faces a high time complexity limitation and the clusters 330

given are not explicit. 331

Wang et al. [34], introduced a framework named SIMLR. 332

Given an expression matrix, SIMLR calculates a symmet- 333

ric matrix that seizes pairwise similarities between cells. 334

Gaussian kernels with multiple different hyper-parameters 335

are used by utilizing Euclidean distance between pairs of 336

cells and K-nearest neighbors. An optimization algorithm 337

is used to improve some of the hyper parameters. SIMLR 338

then uses stochastic neighbor embedding (t-sne) method for 339

dimensionality reduction. K-means is then performed on the 340

resulting latent data. SIMLRmakes no assumption about data 341

distribution, but it faces computational challenges when it 342

comes to large datasets. 343

Gan et al. [35] introduced conCluster, a model that per- 344

forms consensus clustering. The model performs filtering out 345

on the gene level to eliminate genes that are either expressed 346

in r% of cells or (100-r) % of cells. Such genes hold no 347

valuable genetic information defined as rare and ubiquitous 348

genes respectively. A gene set of the most variable genes 349

across the cells is identified. For dimensionality reduction, 350

stochastic neighbor embedding (t-sne) is used with a per- 351

plexity set to 30 to reduce the number of dimensions to two. 352

K-means is later performed T times utilizing multiple initial 353

parameters for basic clustering. A binary matrix is generated 354

per each clustering output using the resulting cluster labels. 355

The generated binary matrices from the multiple clustering 356

trials are concatenated into one large binary matrix. K-means 357

is performed once again on the concatenated binary matrix 358

using Calinski-Harabaz Index [33] to determine the number 359

of clusters. The results of clustering trials are fused into a con- 360

sensus one. Concluster provides robust clustering however it 361

relies on combining other algorithms for ensemble. 362

Yang et al. [36] embeds four clustering methods SC3, 363

Seurat, CIDR and t-sne+K-means. Gene expression matrix is 364

taken as input after adjusting it to be suitable for all methods. 365

Clustering using the four methods is performed individually. 366

The results obtained are later used to construct an overall 367

hyper graph which combines all hypergraphs resulting from 368

individual results. For ensemble clustering one of partitioning 369

algorithms, HGPA, MCLA and CSPA is used. Performance 370

is evaluated using average normalized mutual information 371

(ANMI), for ensemble solution and individual ones and the 372

clustering result with highest ANMI is selected as the final 373

result. 374
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Nguyen et al. introduced MKGA [37], a clustering tech-375

nique based on Genetic Algorithm. The chromosome was376

separated into two segments, the first portion is made up of377

a series of binary numbers ranging from 0 to 1, indicating378

whether the cluster is active or not. The clusters’ cores are379

represented in the second part. Three separate objective func-380

tions are used to assess the fitness of a chromosome: Sum381

of squares with cluster, Davies-Bouldin index, and Silhouette382

index. For crossover, randomly selected parents with the same383

number of clusters are chosen. For mutation, Gaussian noise384

is introduced to the clusters’ centers. The number of clusters385

can also be altered by enabling or removing a center. Each386

generation is subjected to the K-means operator, which is387

applied based on a user-defined probability. 16 illness data388

sets and 5 single-cell data sets were used to test the suggested389

technique. However, the technique’s accuracy could be inef-390

ficient in case of large datasets.391

Geddes et al. [38], propose an auto-encoder ensemble392

clustering framework. The framework starts with randomly393

projecting of single cell data into sub-spaces. Auto-encoders394

trains on the sub-spaces to compress the data into a lower395

dimensional space. Several experiments were made on dif-396

ferent datasets to test the effects and to optimize the hyper397

parameters: the projection size, auto-encoder learning rate398

and feature space size. To prove the enhancement in clus-399

tering performance using the ensemble approach, standard400

k-means algorithm and kernel-based clustering algorithm401

SIMLR are used on random encoded data and raw data,402

then the performance is evaluated showing that ensemble403

clustering of encoded data is highly effective for single cell404

data. This framework incorporates relation among clusters405

however, it is sensitive to the parameters that should be406

determined.407

Hua et al. [39], introduced LAK a computational pipeline408

for single cell data analysis. LAK uses Linnorm [40] to409

normalize the gene expression data by default. The number410

of clusters k is determined using the Gap statistics [41] but411

it also allows users to define k or choose other normalization412

methods. LAK does not have a gene filtering step instead;413

it uses other quality control measures as mentioned in [42].414

LAK utilizes K-means with Euclidean distance as a similar-415

ity measure maximizing the between-cluster sum of squares416

(BCSS). Lasso and L2 penalty are introduced to the clustering417

process according to Sparse K-means. LAK faces a limitation418

of slow calculation of k when the number of cells exceeds419

10000.420

Vans et al. [43], proposed FEATS a pipeline for clustering421

single cell data. To preprocess the original expression data,422

lowly and highly expressed genes are filtered then the data is423

normalized. Agglomerative hierarchal clustering is later per-424

formed on normalized data utilizing Ward linkage criterion.425

The step of hierarchical clustering is needed so that ANOVA426

test can be applied. ANOVA test is used as a feature selection427

step based on the F-value. Genes with higher F-values are428

selected, PCA is performed to reduce the dimensionality, then429

Gap statics [41] is used to determine the number of clusters.430

A silhouette coefficient is measured to make sure samples 431

are correctly grouped and only groupings that maximize the 432

clustering score are kept. FEATS allows fitting to flexible 433

cluster shapes; however, it suffers from high time complexity. 434

Cui et al. [44], proposed SCENA an unsupervised method 435

for clustering single cell data. SCENA takes a gene expres- 436

sion matrix as input; where rows represent the genes and 437

columns represent the cells. SCENA performs preprocessing 438

in three stages: gene filtering, log transformation and normal- 439

ization. Similarity matrices between cells based on Euclidean 440

distance and K-nearest neighbors are generated per each 441

highly variable feature set. For each final similarity matrix, 442

spectral clustering is performed resulting in a binary matrix 443

that indicates whether two cells belong to the same cluster 444

or not. A consensus matrix is generated from the binary 445

matrices and spectral clustering is used again to perform 446

consensus clustering. A strength point of SCENA is it makes 447

no prior assumption about data distribution; however, spectral 448

clustering is computationally intensive for large datasets. 449

It can be concluded that clustering single cell data is 450

a challenging computational problem that needs further 451

exploration. Methods that follow partitioning clustering and 452

methods using neural networks or affinity propagation are 453

sensitive to outliers. Other methods like hierarchical cluster- 454

ing suffer from high time complexity. While density-based 455

clustering suffers from both back draws, ensemble-based 456

clustering shows robust clustering performance as it inte- 457

grates multiple methods. 458

III. PROPOSED METHODOLOGY 459

The proposed system preserves the same workflow of 460

scRNA-seq analysis with the following steps: First, datasets 461

are preprocessed in two steps; gene filtering and matrix nor- 462

malization. Secondly, a variational auto-encoder (VAE) is 463

used for dimensionality reduction followed by a clustering 464

step. In the clustering step, cells are clustered into groups 465

where each cluster represents a unique type of cells. In the 466

clustering step, the latest feature space resulting from dimen- 467

sionality reduction step is used as input to three different 468

algorithms (PSO, GWO, MVO). The best solutions resulting 469

from these algorithms are used to generate a binary matrix 470

that is clustered again by GWO, and the consensus solution is 471

returned. Fig.1 illustrates the workflow of the proposed CNIC 472

approach. 473

A. DATA PREPROCESSING 474

The proposed approach takes an expression matrix of dimen- 475

sions (n × m); where n represents the number of cells 476

(samples), and m represents the number of genes/transcripts 477

(features). Firstly, the genes (features) are filtered out to 478

eliminate non-informative genes. The elimination process is 479

required to handle the dropout problem. Dropout is a term 480

used to indicate an expression of zero of a certain gene in a 481

cell. This happens since RNA amounts extracted during the 482

sequencing from the cells is almost insignificant. The elimi- 483

nation is decided upon the zero ratio; a gene is eliminated if 484
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FIGURE 1. Proposed CNIC clustering workflow.

it has zero expression in all cells. Genes expressed in number485

of cells less than a certain threshold are also eliminated. The486

threshold is set that a genemust be expressed inmore than q%487

of cells and no more than (100-q) % of cells. The threshold q488

is set here to 6 based on experiment of different values for q,489

best results are acquired when q is equal to 6.490

After the elimination process, the new expression matrix is491

normalized according to equation (1).492

dprocessednm =
dnm − dmin

m(
dmax
m − dmin

n
)
+ δ

(1)493

where dnm is the original gene m expression at cell n,494

dminm , dmaxm are the minimum and maximum gene m expres-495

sion amidst all cells respectively. δ is a relatively insignificant496

number as 10−10 to avoid dividing null values.497

Single cell RNA sequencing data suffer from the498

curse of dimensionality since the number of features499

(genes/transcripts) exceeds the number of samples (cells).500

The process of clustering single cell sequencing data is com-501

putationally expensive. Hence, dimensionality reduction is a502

must to save both time and memory. Many dimensionality503

reductionmethods were introduced to the single cell sequenc-504

ing data analysis like principal component analysis (PCA),505

principal co-ordinate analysis (PcoA), stochastic embedding506

neighbor (t-SNE), uniform manifold approximation and pro-507

jection (UMAP), etc [45]. However, such methods, for exam-508

ple PCA, assumes the linearity of the data which might not be509

the case. Instead, in the proposed approach a variational auto-510

encoder (VAE) structure is presented to encode the data into511

a latent feature space. VAEs compress the high dimensional512

space into a latent space of fewer features however, the latent513

feature space preserves the biological information of the514

original space. VAEs differ from normal reduction methods515

that it can uncover nonlinear features. VAEs also differ from516

regular auto-encoders in its stochastic nature. Instead of just517

deterministically encoding and decoding the data based on518

the construction error like the case of auto-encoders, VAEs519

assimilate the distribution of features over samples through520

learning mean and variance of data. Kullback-libler diver-521

gence is added to the reconstruction loss so that the latent522

features match a Gaussian distribution. VAEs use re- param-523

eterization trick to grant back propagated gradient so that524

representation is learnt simultaneously. VAE consists of an 525

encoding phase and a decoding phase; the encoding phase 526

is responsible for compression of the data. During decoding 527

phase, the data is reconstructed into its original shape and a 528

loss value is calculated. The aim of decoding in this approach 529

is to ensure the compressed latent space correctly represents 530

the data. Accordingly, VAE in this context could be summa- 531

rized to an input layer, an encoding phase and a decoding 532

phase as follows: 533

1. Input layer holds the input shape of the single cell 534

sequencing data after preprocessing; a normalized 535

expression matrix of dimensions (m) representing the 536

samples (cells) number and (p) representing the fea- 537

tures (genes/transcripts) number after the filtering pro- 538

cess. 539

2. Encoding phase consists of a dense layer, a batch 540

normalization layer, an activation layer, another dense 541

layer followed by another batch normalization layer 542

and finally an activation layer. The result from the 543

encoding phase is an expression matrix of dimensions 544

(m× l) where m represents the samples (cells) number 545

and (l) represents the latent features after compression. 546

3. Decoding phase is a single layer of sigmoid activation. 547

Fig. 2 shows the architecture of the VAE used. 548

B. CLUSTERING 549

Given a dataset 550

S = {S1,S2, . . . . . . ..,Sn} (2) 551

where each instance needs to be assigned to only one of non- 552

overlapping clusters. Suppose a set of subsets representing 553

the clusters 554

C = {C1,C2, . . . . . . . . . . . . . . . ,Ck} (3) 555

such that 556

S =
∐k

i=1
C i (4) 557

and 558

C i ∩ C j = ϕ (5) 559

while i 6= j. 560
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FIGURE 2. VAE architecture.

Three different algorithms are used in this approach to561

solve the clustering problem Particle Swarm Optimization562

algorithm, Multi-Verse Optimization algorithm and Grey563

Wolf Optimization algorithm. Each algorithm starts with a564

random initialization of a population of size X where each565

individual represents a solution to the clustering problem. The566

individuals’ structure is shown in fig.3 where each individual567

consists of k centroids with f features.568

FIGURE 3. Individuals structure.

A binary matrix of the best solutions per algorithm accord-569

ing to the fitness function is then constructed. Then, the570

binary matrix is fed to the Grey Wolf algorithm once again571

to be clustered to find a better solution. The fitness function572

used by all algorithms is Silhouette Coefficient (SC) [46]573

calculated as mentioned in equations (6,7).574

SCK =
1
P

∑P

i=1

bs(i)− ds(i)
max(bs(i), ds(i))

(6)575

SC =
1
k

∑|K |

i=1
SCK (7)576

Such that: s(i) represents an instance in cluster i where i =577

1, 2, 3, . . . ., k . bs(i) represents the average distance between578

instance s(i) and all remaining instances in the exact cluster.579

ds(i) represents the minimum distance between instance s(i)580

and all other instances in all clusters. K, P represent the581

number of clusters and the number of all instances in a given582

cluster respectively.583

The SC value is maximized to find better solution however,584

in the proposed approach the SC value is normalized, and a585

reversed value of SC is used as mentioned in equation (8). 586

SCrev = 1− Norm (SC) (8) 587

Phase 1 (Finding Optimal Number of Clusters k Automat- 588

ically): To determine the optimal number of clusters without 589

any prior knowledge, three methods are used Bayesian Infor- 590

mation Criterion score (BIC) [47], Calinski–Harabasz(CH) 591

[48], and Gap Statistic [41]. A median value of the three 592

methods’ results is calculated and used as the number of 593

clusters. 594

Phase 2 (Clustering With Individual Algorithms): 595

1) CLUSTERING WITH PARTICLE SWARM OPTIMIZATION 596

(PSO) ALGORITHM 597

PSO solves the clustering problem through the movement of 598

the particles in the search space. 599

The goal of each particle’s movement is to gain optimum 600

velocity according to its local best (Plocal_best) value, and 601

its neighbor’s global best (Pglobal_best). A particle’s posi- 602

tion changes according to its current position, its current 603

velocity, its distance from the (Plocal_est), and its distance 604

from (Pglobal_best). All particles update their positions and 605

velocities based on equations (9) and (10) respectively. 606

Pi (t+ 1) = Pi (t)+ vi(t+ 1) (9) 607

Vi (t+ 1) = Wvi (t)+ a1r1
(
PLocal_best (t)− Pi (t)

)
608

+ a2r2(Pglobal_best (t)− Pi(t)) (10) 609

where Pi (t) ,Vi (t) indicates the particle’s position and veloc- 610

ity at iteration t respectively. The terms a1, a2 are acceleration 611

coefficients whilew is the inertia weight and r1, r2 are random 612

numbers. 613

2) CLUSTERING WITH GREY WOLF OPTIMIZATION 614

ALGORITHM (GWO) 615

The mathematical model of the GWO in this approach is as 616

follows: The α wolf represents the fittest solution while β 617

and δ wolves represent the second and third best solutions, 618

respectively. All other solutions represent the ω wolves who 619

follow the α, β, δ wolves leading the hunting process. Search 620

agents known by the grey wolves, not including the fittest 621

ones, encircle the pray according to equations (11), (12). 622

P (t+ 1) = Xp (t)− A× D (11) 623

D = |C× Xp (t)− P (t)| (12) 624

where D represents the distance between position of the 625

prey Xp and position of the search agent P at iteration t . 626

Fittest grey wolves represented by α, β, δ wolves adjust their 627

positions according to the prey’s position according to the 628

search agents’ positions to start the hunting process modeled 629

by equations (13-21). 630

A = 2× a× r1− a (13) 631

C = 2× r2 (14) 632

D = |C1× Pα − P| (15) 633
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FIGURE 4. Consensus clustering process.

D = |C2× Pβ − P| (16)634

D = |C3× Pδ − P| (17)635

X1 = Pα − A1× Dα (18)636

X2 = Pβ − A2× Dβ (19)637

X3 = Pδ − A3× Dδ (20)638

P (t+ 1) =
X1+ X2+ X3

3
(21)639

where D represents the distance between the fittest grey640

wolves and best search agents, A and C are control coeffi-641

cients to maintain exploration, r1 and r2 are random numbers642

in range [0, 1].643

3) CLUSTERING USING MULTI-VERSE OPTIMIZATION (MVO)644

ALGORITHM645

TheMVO solves the clustering problem by forming universes646

such that each universe represents a solution to the clustering647

problem. Each solution consists of clusters centroids.648

Ui = {ci1, ci2,. . . . . . .,cik}, and each centroid’s dimensions649

are the features of the dataset initialized randomly. Then, for650

each universe the fitness of the universe known by inflation651

rate is calculated using an objective function. The best solu-652

tion according to the objective function is obtained, and all653

universes are updated to move towards the best solution. The654

inflation rate is recalculated per universe, and the parameters655

maintaining the exploitation around the best solution are656

updated. The process is iteratively repeated until it reaches657

max number of iterations. Finally, the best universe and658

the cluster labels according to that universe formation is659

returned.660

Phase 3 (Consensus Clustering): Last phase in the cluster-661

ing process is finding a consensus solution that outperforms662

other solutions found by the clustering algorithms.663

In this phase, the best solutions returned by the three clus-664

tering algorithms are used to generate a binary matrix. The665

binary matrix is of dimensions N × T such that N represents666

the number of cells to be clustered and T represents the cluster667

labels that resulted from the clustering algorithm per run.668

Since the optimization algorithms are run multiple times to669

ensure its performance; best solutions according to the fitness670

function are returned and the cluster labels results are used to671

generate a binarymatrix per best solution. Thematrix consists 672

of all cells (samples) in the dataset as rows and the number 673

of columns in the matrix is equal to the number of clusters k . 674

All entries per row are zeros except for the cluster number 675

that the cell (sample) belongs to is indicated by 1. All binary 676

matrices are concatenated into one matrix. The new binary 677

matrix is used as input to the GWO algorithm once again to 678

be clustered and the final solution is found. Fig.4 illustrates 679

the consensus clustering process. 680

C. EVALUATION MEASURES 681

To assess the performance of the clustering process, dif- 682

ferent evaluation measures are used to further prove the 683

superiority of consensus nature inspired approach to other 684

existing approaches in literature. Since the true labels and 685

number of clusters are publicly available by the original 686

authors of the datasets; evaluation measures such as Adjusted 687

Rand Index, Completeness score, Homogeneity score and 688

V-measure score are used. 689

1) ADJUSTED RAND INDEX (ARI) [49] 690

ARI is a measure that evaluate the similarity of two clus- 691

tering results the ground truth and the predicted labels. 692

ARI values range from −1 to 1 such that lower values 693

specify poor clustering results while higher values closer 694

to 1 specifies similar clustering result to the ground truth. 695

1.0 indicates perfect matching score between the predicted 696

results and the ground truth. ARI makes no prior assump- 697

tions on the cluster structure hence it could be used to com- 698

pare different algorithms. ARI is calculated according to 699

equation (22). 700

ARI =
RI− E[RI]

max (RI)−E[RI]
(22) 701

Such that RI is the Rand Index, E[RI] is the Expected Rand 702

Index and max (RI) is the maximum Rand Index. Rand Index 703

is calculated according to equation (23) as follows: 704

RI =

∑
p,t
( npt

2

)(
N
2

) (23) 705
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TABLE 1. Datasets description.

TABLE 2. Estimation of k by CNIC versus other methods.

FIGURE 5. Loss Vs. Val_loss for Biase dataset.

Expected Rand Index and maximum Rand Index are cal-706

culated using equations (24), (25) respectively,707

E (RI) = E
(∑

p,t

(npt
2

))
(24)708

max [RI] =
1
2

[∑|p|

p=1

(npt
2

)
+

∑|T|

t=1

(nt
2

)]
(25)709

where p represents the predicted clusters, t represents the true710

clusters and n is the number of data points.711

2) COMPLETENESS, HOMOGENEITY, AND V-MEASURE712

All three measures are used as intuitive metrics that uses713

conditional entropy analysis, on condition of having prior714

knowledge of the ground truth assignments.715

a: HOMOGENEITY SCORE (HS)716

Homogeneity indicates that each cluster includes only points717

(samples) of a single class. It is bounded by 0.0 and 1.0, where718

0 specifies random clustering and 1 specifies perfect score.719

FIGURE 6. Loss Vs. Val_loss for Goolam dataset.

FIGURE 7. Loss Vs. Val_loss for Melanoma cancer dataset.

FIGURE 8. Loss Vs. Val_loss for Lung cancer dataset.

HS is calculated using equation (26): 720

HS = 1−
H (T |P)
H (T)

(26) 721

b: COMPLETENESS SCORE (CS) 722

Completeness means that all members of a certain class are 723

allocated to the same cluster. This score is also bounded 724

by 0.0 and 1.0 such that 0 indicates random clustering and 725
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FIGURE 9. Performance comparison of CNIC and other six tools. Comparisons are based on ARI values.
∗ SEURAT operates on datasets with more than 100 cells.

FIGURE 10. Comparison of ARI scores of all implemented algorithms.

1 indicates perfect score. CS is calculated using equation (27):726

CS = 1−
H (P |T)
H (P)

(27)727

c: V-MEASURE (VM) 728

A harmonic mean that makes no assumption on the clus- 729

ter structure. It is also used to qualitatively interpret the 730
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FIGURE 11. Comparison of HS scores of all implemented algorithms.

FIGURE 12. Comparison of CS scores of all implemented algorithms.

clustering results. VM is calculated as mentioned in equa-731

tion (28):732

VM = 2.
HS.CS
HS+ CS

(28)733

Such that H(P) is the cluster entropy, H(P|T) is the 734

clusters conditional entropy, H(T) is the ground truth 735

entropy and H(T|P) is the ground truth conditional 736

entropy. 737
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FIGURE 13. Comparison of V-measure scores of all implemented algorithms.

FIGURE 14. Execution Time of all implemented algorithms.

IV. EXPERIMENTS AND RESULTS738

In this section, the experimental configuration and parameter739

settings to evaluate the performance of the proposed approach740

for the task of clustering single cell sequencing data are741

discussed. Description of the datasets used for validation is 742

given in this section, as well as the discussion and comparison 743

of the results of the proposed approach with results from 744

literature. 745
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A. DATASET746

Two benchmark datasets with golden standards (Biase [50]747

and Goolam [51]) are used for the experimentation and748

evaluation of the CNIC clustering approach. The melanoma749

cancer dataset is used to decipher the cellular composition750

of the heterogeneous complex ecosystem of the tumor [52].751

The lung cancer dataset [53] discusses the complexity of T752

cells in non-small-cell-lung cancer (NSCLC) considered the753

main reason of cancer mortality accounting for 85% of lung754

cancers [54].755

All datasets are free to access using NCBI (National756

Center for Biotechnology Information) and Array Express.757

Table 1 summarizes the datasets used, their dimensions758

and the number of clusters according to the authors of the759

datasets.760

B. SYSTEM CONFIGURATION AND PARAMETER SETTINGS761

Experiments were executed using a 2.00 GHz Intel(R) Core762

(TM) i7-3537U- processor with 8 GB memory on Windows763

10 operating system. The entire workflow was implemented764

in Python using Spyder, Google colab andKaggleNotebooks.765

C. EXPERIMENTAL RESULTS AND DISCUSSION766

The proposed approach is applied to the four public men-767

tioned datasets, and results are compared to recent used tools768

for clustering Single cell data. Table 2 shows the number of769

clusters computed by the proposed approach and other tools770

against the ground truth mentioned by the original authors on771

benchmark datasets with golden standards.772

1) VAE TRAINING AND TESTING773

To train and evaluate the VAE model, the data is split into774

a training set and a testing set with percentages (70%-30%)775

respectively. The 70%-30% was chosen in order to have776

enough data for the training to result in better performance.777

Also, the error estimation is more accurate with enough778

data for testing. Other train-test split criteria were used779

(80%-20%,90%-10%) but the results were not accurate. The780

loss value is evaluated on both the training set and the testing781

set. For the hyper parameters such as learning rate, number782

of epochs and batch size, many experiments were conducted783

with different values for each parameter. Eventually, Adam784

optimizer is used with a learning rate of.001 chosen from785

values (.01,.005,.0001,.1) since it achieved better results.786

A batch size of 50 and 100 epochs are used out of many787

suggested values for both parameters based on better perfor-788

mance.789

Fig. (5-8) shows the reconstruction loss and validation790

loss calculated by mean square error as the loss function per791

dataset.792

D. CLUSTERING PHASE793

In the experiments, PSO, GWO, MVO and consensus clus-794

tering had a maximum of 100 runs, a maximum iteration of795

100 and a population size of 50. Experiments were replicated796

TABLE 3. Comparison of CNIC with PSO, GWO and MVO over 100
independent runs.

for all datasets used with the same settings. Four datasets 797

were used to assess the performance of the proposed approach 798

against competing approaches. 799

Standard deviation is used as a descriptive statistic to detail 800

the computed solutions obtained by the proposed clustering 801

approach. The average objective function for all 100 runs of 802

the algorithm is calculated and reported as well as the average 803

execution time needed to find the clustering solutions by all 804

algorithms. 805

Table 3 shows the mean and standard deviation of the 806

fitness function (Silhouette Coefficient) of each algorithm 807

across all runs on all datasets. 808

1) BENCHMARKING 809

To evaluate the clustering accuracy, the performance of the 810

proposed CNIC is compared to currently most used methods 811

in clustering Single cell data using their default parameters 812

as mentioned by the authors. These methods are SNN-Cliq, 813

SC3, CIDR, PcaReduce, SEURAT and t-SNE+k-means. All 814

approaches were applied to Biase, Goolam and melanoma 815

cancer datasets. The results were evaluated by ARI. 816

Fig.9 demonstrates the ARI values obtained by the pro- 817

posed clustering approach against the other methods. It is 818

shown that the proposed CNIC approach achieves better 819
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TABLE 4. Top 20 Signature genes of predicted cluster for lung cancer T cells dataset.

performance than most of the mentioned tools for all datasets.820

For Biase dataset, CNIC achieved better ARI value of .95821

than SNN-Cliq, CIDR, PcaReduce, SEURAT and t-SNE+k-822

means. For Goolam dataset, CNIC achieved an ARI value of823

.75 higher than all methods. For Melanoma cancer dataset,824

CNIC got an ARI value of .88 higher than all mentioned825

methods.826

It is also shown that the proposed CNIC reaches high ARI827

values regardless the size of the dataset samples (the number828

of cells).829

2) CNIC CLUSTERING STABILITY830

A comparison between solutions of the used metaheuristic831

algorithms and the consensus solution found in terms of ARI832

is performed. The ARI values shown are the average of the833

100 runs of each algorithm.834

Fig. 10 shows a comparison between the ARI values of835

the best solutions resulting per algorithm and the consen-836

sus solution. As shown, the CNIC approach achieves .95837

for Biase dataset,.75 for Goolam dataset, .88 for melanoma838

cancer and.9 for lung cancer respectively. The results indicate839

the efficiency of the proposed CNIC approach.840

For assessing the clustering stability, all implemented 841

algorithms as well as the consensus solution were evalu- 842

ated in terms of homogeneity score, completeness score and 843

V-measure. 844

Fig.11, Fig.12 and Fig.13 show the homogeneity score, 845

completeness score and V-measure score of the proposed 846

approach and other implemented algorithms respectively. It is 847

noticed that CNIC achieves better scores indicating clustering 848

stability even in cases of large datasets. 849

Fig.14 shows the average running time for 100 runs for 850

each algorithm. Results show that it takes seconds to cluster 851

small datasets and a reasonable time in case of large datasets. 852

As shown above, all experimental results show that the 853

proposed CNIC approach performs better s in terms of ARI, 854

CS, HS and VS indicating clustering stability. Also, perfor- 855

mance of the proposed CNIC approach is not affected by the 856

number of samples (cells) as it can perform stably whether 857

the number of samples (cells) is small or large in a feasible 858

running time. 859

FINDING MARKER GENES 860

For further analysis of the lung cancer T cells; ANOVA [55] 861

test is performed to identify the signature genes of each 862
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cluster. ANOVA test is known as an analysis of variance used863

to determine the differentially expressed genes. Table 4 shows864

only top 20 signature genes of each cluster in case it has more865

than 20 signature genes of the main 16 predicted clusters866

according to the adjusted p-values.867

V. CONCLUSION868

In this paper, a new unsupervised consensus clustering869

approach based on swarm intelligence optimization algo-870

rithms is proposed to cluster scRNA-seq data. The proposed871

approach automatically and accurately computes the num-872

ber of clusters, k , overcoming the shortcomings of other873

methods that require that k must be known. The proposed874

CNIC approach takes VAE as a dimensionality reduction875

method to project the original feature space into a lower876

dimension space, yet the created latent feature space is bio-877

logically relevant. For clustering, proposed CNIC utilizes878

metaheuristic algorithms PSO, GWO and MVO to cluster879

single cell data and returns best solutions found in the search880

space. Best solutions are concatenated into a binary matrix,881

and consensus clustering is performed fusing the solutions882

of the PSO, GWO and MVO into one consensus solution.883

The proposed CNIC approach achieves higher ARI values884

compared to other widely used methods indicating better885

clustering accuracy. The results of evaluation measures CS886

score, HS score and V-measure score verify the stability of887

the clustering results.888
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