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ABSTRACT In several practical decision procedures, it is not accessible to denote assessments by a single
crisp number due to a lack of information. However, representing information by an interval number within
[0, 1] is a more credible approach. In multi-criteria decision making (MCDM) such an interval number
can significantly catch information. In addition, the combination of soft sets with interval-valued q-rung
orthopair fuzzy sets can be viewed as interval-valued q-rung orthopair fuzzy soft sets (IVq-ROFSs). It can
be a reliable tool to cope with uncertainties. Usually, aggregation operators are functional in MCDM
techniques; therefore, aggregation operators on IVq-ROFSs can significantly aggregate pieces of information
in intervals with IVq-ROFSs. In this paper, we investigated some crucial properties of interval valued q-rung
orthopair fuzzy soft sets (IVq-ROFSSs) and expressed a different representation of IVq-ROFSS in the form
of IVq-ROFS number. Based on this representation, we investigated IVq-ROFweighted averaging, IVq-ROF
weighted geometric operators and given their basic properties. Moreover, we consider interactions between
non-memberships and memberships of different interval-valued q-rung orthopair fuzzy values and defined
IVq-ROF weighted interaction averaging, IVq-ROF weighted interaction geometric aggregation operators
in IVq-ROFS environments. A decision-making process is given, and an illustration is provided by tackling
application in automation company evaluation.

INDEX TERMS Soft set, fuzzy set, q-ROFSs, aggregation operators, interaction aggregation operators,
MCDM.

I. INTRODUCTION
Till 1965, only probability theory and error calculus were
partly able to satisfy the need to handle a special kind
of uncertainty, namely, randomness. The probability theory
has no composition for describing fuzzy predicates such
as small, young, much larger etc. In 1965, Zadeh [58]
launched his seminal paper ‘‘Fuzzy sets’’. Fuzzy sets (FSs)
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are more conceivable in seeking for scalable knowledge
among uncertainties and evolve as vital fundamentals of pat-
tern recognition and multi criteria decision making. How-
ever, when assessing real situations in daily life, things
are acquiring more complexity, which suggests that a sin-
gle membership value can not reflect the essence of the
objects. Thus, due to such difficulties with FSs, a more
effective concept based on the FS is concluded whose
name is intuitionistic fuzzy set(IFS)and it was introduced by
Atanassove [8].
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IFS provide a membership value γ and non-membership
value η such that their range of sum lies in inequality
γ + η ≤ 1. Yager and Xu developed some fundamental
operators and their underlying properties [50], [51]. IFSs
plot cognitive aspects of complex information in specific
domains where uncertainty grasps outcomes. In some com-
plex problems when γ +η ≥ 1 then IFS become insufficient.
This insufficiency of IFS is tackled when Yager proposed
Pythagorean FS (PFS) [53]. The space is extended in PFS
as γ 2

+ η2 ≤ 1, and it tackled several incompleteness of
an information. Although, PFSs works in their specifications
but a more general form of extended space cover up in
q-rung orthopair FSs (q-ROFSs) [54]. Several discussions
on q-ROFSs has been made and it applied in wide rage
of domains including, [3], [10], [28], [29], [30], [31], [40],
[47], [52], and [10]. Some interaction aggregation operators
(IAOs) on PFSs by considering interaction laws proposed by
Wei [48]. Zhang [59] developed Hamacher IAOs on PFSs
and introduced a method of multiple criteria decision-making
(MCDM).

The q-ROFSs particularized memberships and no-
memberships grades, but usually such assessed grades
appear in intervals. An interval form of q-ROFSs was
required, therefore, interval valued q-ROFS (IVq-ROFS)
introduced by Joshi [22]. After the arrival of this essen-
tial idea, researchers around the world were attracted by
IVq-ROFSs [14], [44], [49]. Moreover, IVq-ROF weighted
averaging (IVq-ROFWA), IVq-ROF ordered weighted aver-
aging (IVq-ROFOWA) operators have been introduced by
Ju et al. [23]. Although, IVq-ROFWA or IVq-ROFOWA
aggregate data but in certain situations it is required to
combine parametrization concept with IVq-ROFS.

A comprehensive parameterized and theoretical structure
which represent and appraise uncertainty, known as soft
sets (SSs) [38], arise from distant circumstances concerning
parametrization. Different from stranded sets, SS comprises
mapping where meanings of objects in domain appraised.
In recent decade, the findings on SS theory has emerged
quickly [1], [2], [4], [5], [11], [19], [26], [37]. Maji et al. [39]
and Ali et al. [6] make larger the scope of SSs by defining
useful operations. In certain situations fuzziness prevails in
approximations of SS, thus Maji et al. [33] explore fuzzy
SSs (FSSs) which assess both parametrization and indistinct-
ness. In recent years, several hybrid models of FSSs and
intuitionistic fuzzy SSs have been emerged [12], [16], [17],
[24], [25], [34], [35], [36], [43].

Recently, q-rung orthopair fuzzy SSs (q-ROFSSs) and
q-ROFSSs based MCDM methods are proposed by
Riaz et al. [20]. The q-ROFSS is a classical settings of
q-ROFS to deal with uncertainties in the framework
and descriptions of parameters in contrast of reliable
and un-reliable informations in the larger space [42].
Hussain et al. [21] proposed MCDM frameworks by making
fissile averaging operators and order averaging operators
on q-ROFSSs. Another model of averaging operators over
q-ROFSSs [18] has been developed by a different mean of

generalizations parameter. Recently, Zulqarnain et al. [55]
proposed IAOs to solve MCDM problem under pythagorean
fuzzy soft (PFS) environment. Moreover, geometric inter-
action averaging operators in IFSs environments has been
introduced by He et al. [15]. Although many methods on
q-ROFS can be found but in combination with soft sets
it gives a classical notion to handle complex information.
Soft representation of q-ROFS makes linearity of different
components of an environment more viable. A large q-ROFS
data might difficult to compute in many cases but q-ROFSSs
do not have such inadequacy.

In some practical decision procedures, due to lack of
availability of information, it is not accessible to denote
assessments by a single crisp number, however representa-
tion of information by an interval number within [0, 1] is
a fair choice [9], [13], [27], [41], [45], [46]. As interval
based memberships are relay on composure of assessment
when it is difficult to choose a single value in [0, 1]. There-
fore, it was required that the classical model of q-ROFSSs
can further elaborate on interval of membership and inter-
val of non-membership. Recently, Ali et al. [7] introduced
interval valued q-ROFSSs (IVq-ROFSSs) and applications in
attributes reduction. As discussed earlier benefits of interval
of membership and interval of non-membership in MCDM,
further, existence of parametrization in IVq-ROFSS can man-
age larger information. Especially, aggregation operators on
environments of IVq-ROFSS can overcome drawbacks which
exists in operators in q-ROFS or q-ROFSS. Moreover, inter-
actions between non-memberships and memberships of dif-
ferent interval-valued q-rung orthopair fuzzy values can be
substantial to aggregate intervals of memberships and inter-
vals of non-memberships in IVq-ROFSS. In recent years
MCDM approaches have been adopted with extensive suc-
cess to support decision making in a wide range of complex
MCDM real-world problems. The integration of IVq-ROFSS,
MCDM specifies new potentialities relating to the modeling
of MCDM problems in complex environments. By the moti-
vations of such interval capturing prospect of IVq-ROFSS
and IOAs [15], [55], it is required to study aggregations oper-
ators on IVq-ROFSSs. Therefore in this work we proposed
group MCDM on IVq-ROFSS by mean of new introduced
IVq-ROFS aggregations (averaging, geometric, interaction
averaging, interaction geometric) operators in this work.

II. PRELIMINARIES
This part of paper expresses some fundamental rudiments of
q-ROFSs and soft sets. Throughout this section U denotes
universe of discourse. A fuzzy set (FS) A is defined as;

A = {(x, ρA(x)) | x ∈ U },

where ρA is known as fuzzymembership grade of x inA [58].
In several complex problems FSs are little tawdry to deal

with credibility and incredibility of an information. In such a
situation IFSs are implemented.
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Definition 1 [8]: An IFS over U is indicated as

A = {(x, ρA(x), %A(x)) | x ∈ U },

where the functions ρA : U → [0, 1] and %A(x) : U →

[0, 1] assign the membership grade and non-membership
grade of an object x in U . Mainly, it is required that
0 ≤ ρA(x)+ %A(x) ≤ 1 ∀x ∈ U .
Yager investigated Pythagorean fuzzy sets (PFSs) [53] and

q-rung orthopair fuzzy sets (q-ROFSs) [54], which are vital
generalizations of IFSs. The q-ROFSs comprise an over-
all scenarios with arrangement of membership grade and
non-membership grade in the larger space.
Definition 2 [54]:A q-rung orthopair fuzzy set (q-ROFS)

in a universe U is defined as

P = {(x, µP (x), νP (x)) | x ∈ U },

where the functions µP : U → [0, 1] and νP : U →

[0, 1] respectively assign the degree of membership and
non-membership grades of the element x ∈ U . Further, it is
required that 0 ≤ (µP (x))q + (νP (x))q ≤ 1 ∀x ∈ U ,
where q ≥ 1. The hesitancy degree of q-ROFS is indicated
as πP (x) = q

√
1− (µP (x))q − (νP (x))q.

The set of all q-ROFSs over U is denoted by q−ROFSU .
In most real-life complex MCDM problems under the

q-ROF environment, it is not suitable for decision-makers
to give accurate values of both grades (membership grade
and non-membership grade) in the situation of hesitation
or oscillation of judgments. It is more appropriate for
decision-makers to provide their assessments in the closed
interval subset when situation is unclear by providing one
grade.
Definition 3 [22]: A IVq-ROFS in a universe U is

expressed as

P = {(x, ρP (x), %P (x)) | x ∈ U },

where the functions ρP : U → int[0, 1] and %P : U →

int[0, 1], that is, ρP = [ρ−P , ρ
+

P ] and %P = [%−P , %
+

P ]
respectively, known as interval degree of membership grade
and non-membership grade. Further, it is required that 0 ≤
(ρ+P (x))

q
+ (%+P (x))

q
≤ 1 ∀x ∈ U , where q ≥ 1. For x ∈ U

the nondeterminacy index is expressed as πP = [π−P , π
+

P ] =

[ q
√
1− (ρ+P (x))

q − (%+P (x))
q, q
√
1− (ρ−P (x))

q − (%−P (x))
q].

The set of all IVq-ROFSs over U is denoted by IVq −
ROFSU . LetP1 = {(x, [ρ

−

P1
(x), ρ+P1

(x)], [%−P1
(x), %+P1

(x)]) |

x ∈ U } and P2 = {(x, [ρ
−

P2
(x), ρ+P2

(x)], [%−P2
(x), %+P2

(x)]) |
x ∈ U } be two IVq-ROFSs over U . Then, as shown

in the equation at the bottom of the page, And (P1)c =
{(x, %P1

(x), ρP1
(x)) | x ∈ U }, P1 ⊆ P2 if and

only if ρ−P1
(x) ≤ ρ−P2

(x), ρ+P1
(x) ≤ ρ+P2

(x), %−P1
(x) ≥

%−P2
(x), %+P1

(x) ≥ %+P2
(x).

Definition 4 [23]: Assume F = ([ρ−, ρ+], [%−, %+]) be
an IVq-ROFV, a score function S can be defined as

S (F) =
1
4

(1+ (ρ−)q − (%−)q
)
+(

1+ (ρ+)q − (%+)q
) , S (F) ∈ [0, 1].

Definition 5 [22]: Assume F1 = 〈[ρ
−

1 , ρ
+

1 ][%
−

1 , %
+

2 ]〉
and F2 = 〈[ρ

−

2 , ρ
+

2 ][%
−

2 , %
+

2 ]〉 be IVq-ROFNs, then the
operational axioms are defined as below
(i) F1 ⊕ F2 = 〈[

(
(ρ−1 )

q
+ (ρ−2 )

q
− (ρ−1 )

q
×

(ρ−2 )
q
) 1
q ,
(
(ρ+1 )

q
+ (ρ+2 )

q
− (ρ+1 )

q
× (ρ+2 )

q
) 1
q ], [(%−1 )×

(%−2 ), (%
+

1 )× (%+2 )]〉.

(ii) F1 ⊗ F2 = 〈[(ρ
−

1 ) × (ρ−2 ), (ρ
+

1 ) × (ρ+2 )], [
(
(%−1 )

q
+

(%−2 )
q
− (%−1 )

q
× (%−2 )

q
) 1
q ,
(
(%+1 )

q
+ (%+2 )

q
− (%+1 )

q
×

(%+2 )
q
) 1
q ]〉.

(iii) εF1 =

〈[(
(1− (ρ−1 )

q)ε)
) 1
q ,
(
(1− (ρ+1 )

q)ε)
) 1
q

]
,[

(%−1 )
ε, (%+1 )

ε
]〉
, ε > 0.

(iv) F1
ε
=

〈[
(ρ−1 )

ε, (ρ+1 )
ε
]
,[(

(1− (%−1 )
q)ε)

) 1
q ,
(
(1− (%+1 )

q)ε)
) 1
q

]〉
, ε > 0.

Definition 6 [38]: Assume E be the set of parameters,
M ⊆ E . A pair (S,M ) is called a soft set over U , where
S is a mapping given by S : M → P(U ). It is indicated as

(S,M ) = {(a, S(a)) | a ∈ M , S(a) ∈ P(U )}.

Note that P(U ) is the set of all subsets of U . The set of all
soft sets over U , with respect to subset of E is denoted by
SSE (U ).

Now, we provide a definition of IVq-ROFSS as follows.
Definition 7 [7]:AssumeU be the universal set andM ⊆

E be set of attributes. Let IVq − ROFS(U ) be the set of all
IVq-ROFS over U . An IVq-ROFSS over U is expressed as
(F,M ) orFM whereF : M → IVq−ROFS(U ). It is defined
as

(F ,M ) =
{(

e, {
x

〈ρFM (x), %FM (x)〉
}

)
| e ∈ M , x ∈ U

}

P1 ∪ P2 =

{(
x, [max{ρ−P1

(x), ρ−P2
(x)},max{ρ+P1

(x), ρ+P2
(x)}],

[min{%−P1
(x), %−P2

(x)},min{%+P1
(x), %+P2

(x)}]

)
| x ∈ U

}

P1 ∩ P2 =

{(
x, [min{ρ−P1

(x), ρ−P2
(x)},min{ρ+P1

(x), ρ+P2
(x)}],

[max{%−P1
(x), %−P2

(x)},max{%+P1
(x), %+P2

(x)}]

)
| x ∈ U

}
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TABLE 1. IVq-ROFSS = (F, M).

where function ρFM : U → int[0, 1] and %FM : U →

int[0, 1] are the interval degree of membership and non-
membership grades, respectively. These grades can be indi-
cated as ρFM (x) = [ρ−FM

(x), ρ+FM
(x)] and %FM (x) =

[%−FM
(x), %+FM

(x)]. Note that 0 ≤ (ρ+FM
(x))q + (ρ+FM

(x))q ≤
1 is a condition on intervals of membership grade and non-
membership grade. The set of all IVq-ROFSS over U is
denoted by IVq− ROFSSU .
Example 8: Let U = {x1, x2, x3, x4, x5} and E =

{e1, e2, e3, e4, e5}. Suppose that M = {e1, e3, e4, } such that
M ⊂ E .

For q = 3, we defined IVq-ROFSS as follows;

(G,M ) =




e1, {x1, [0.05, 0.08], [0.23, 0.33]},
{x2, [0.04, 0.07], [0.26, 0.39]},
{x3, [0.13, 0.63], [0.31, 0.53]},
{x4, [0.12, 0.42], [0.43, 0.49]},
{x5, [0.25, 0.45], [0.42, 0.54]}

 ,

e3, {x1, [0.15, 0.55], [0.42, 0.46]},
{x2, [0.13, 0.52], [0.32, 0.64]},
{x3, [0.26, 0.54], [0.34, 0.58]},
{x4, [0.16, 0.72], [0.24, 0.62]},
{x5, [0.21, 0.65], [0.29, 0.52]}



e4, {x1, [0.17, 0.68], [0.27, 0.52]},
{x2, [0.37, 0.53], [0.36, 0.48]},
{x3, [0.29, 0.64], [0.41, 0.52]},
{x4, [0.26, 0.72], [0.43, 0.57]},
{x5, [0.28, 0.62], [0.44, 0.60]}




III. AGGREGATION OPERATORS ON IVQ-ROFSS
The Definition 7 of IVq-ROFSS can be viewed in another
shape.
Definition 9: Let a soft universe (U ,E) and M ⊆ E . Let

M = {e1, e2, · · · em} be the set of attributes for the a set of
alternatives U = {x1, x2, · · · xs}. A pair (F ,M ) is said to
be IVq-ROFSS over U , where F is a function given by F :
M → IVq− ROFSU , it is defined as

Fej (xi) =


〈
xi,
[
ρ−j (xi), ρ

+

j (xi)
]
,[

%−j (xi), %
+

j
(xi)
] 〉

q

|
xi ∈ U &
q ≥ 1


where IVq − ROFSU represents the collection of all
IVq-ROFSs of U . Here, [ρ−j (xi), ρ

+

j (xi)] is the interval
degree of membership grade of an objects xi ∈ U and
[%−j (xi), %

+

j (xi)] is the interval degree of non-membership
grade of an objects xi ∈ U . Note that 0 ≤ (ρ+j (xi))

q
+

(%+j (xi))
q
≤ 1 is a condition on intervals of membership

and non-membership grades. The set of all IVq-ROFSS over
U is denoted by IVq − ROFSSU . A more short the notion
Fej (xi) is expressed by Feij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]) and it
is known as IVq-ROFS value (IVq-ROFSV). Moreover, the
interval degree of hesitancy for IVq-ROFSS is defined as

πF eij
= [π−eij , π

+
eij ] =

 q
√
1− (ρ+j )

q − (%+j )
q,

q
√
1− (ρ−j )

q − (%−j )
q


Let M = {e1, e2, · · · em} be the set of attributes for

the a set of alternatives U = {x1, x2, · · · xs}. Then
a general form of IVq-ROFSS is given in Table 1.
Assume Fei2 = ([ρ−i2 , ρ

+

i2 ], [%
−

i2, %
+

i2]), (i = 1, 2) and
F = ([ρ−, ρ+], [%−, %+]) be any three IVq-ROFSVs and
ε, ε1, ε2 > 0. Thus some basic operation on IVq-ROFSVs
are given follows:

(i) Fe12 ∪ Fe22 =

{ [
max{ρ−12, ρ

−

22},max{ρ+12, ρ
+

22}
]
,[

min{%−12, %
−

22},min{%+12, %
+

22}
] }

.

(ii) Fe12 ∩ Fe22 =

{ [
min{ρ−12, ρ

−

22},min{ρ+12, ρ
+

22}
]
,[

max{%−12, %
−

22},max{%+12, %
+

22}
] }.

(iii) Fc
= (%, ρ) where Fc

denotes the complement of F .
(iv) Fe12 ⊆ Fe22 ⇐⇒ ρ−12 ≤ ρ−22, ρ

+

12 ≤ ρ+22, %
−

12 ≥

%−22, %
+

12 ≥ %
+

22.

(v) Fe12 ⊕ Fe22

=


 q
√
(ρ−12)

q + (ρ−22)
q − (ρ−12)

q(ρ−22)
q,

q
√
(ρ+12)

q + (ρ+22)
q − (ρ+12)

q(ρ+22)
q

 ,[
(%−12)

q(%−22)
q, (%+12)

q(%+22)
q
]


(vi) Fe12 ⊗ Fe22

=


[ρ−12)

q(ρ−22)
q, (ρ+12)

q(ρ+22)
q], q

√
(%−12)

q + (%−22)
q − (%−12)

q(%−22)
q,

q
√
(%+12)

q + (ρ+22)
q − (ρ+12)

q(ρ+22)
q




(vii) Fε =
([

q
√
1−(1−(ρ−)q)ε, q

√
1−(1−(ρ+)q)ε

]
,[

(%−)ε, (%+)ε
]

)
.

(viii) Fε
=

( [
(ρ−)ε, (ρ+)ε

]
,[

q
√
1− (1− (%−)q)ε, q

√
1− (1− (%+)q)ε

]).
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TABLE 2. IVq− ROFSWA (F, M) for q ≥ 3.

A. IVQ-ROFS WEIGHTED AVERAGING AGGREGATION
OPERATORS ON IVQ-ROFSSS
Let Q be any collection of IVq-ROFV and Qs×m set of
IVq-ROFSV in a IVq-ROFSS (F ,M ). Then we define
(IVq-ROFS weighted averaging aggregation operators)
IVq-ROFSWA as follows;
Definition 10: Let M = {e1, e2, · · · em} be the set of

attributes for a set of ‘‘s′′ number of alternatives U =

{x1, x2, · · · xs}. Then a general form of IVq-ROFSS (F ,M ) is
given in Table 1. Assume that Feij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]),
(i = 1, 2, · · · s, j = 1, 2, · · ·m) be the collection of
IVq-ROFSVs in (F ,M ). Let W = [w1,w2, · · ·wm] and
1 = [δ1, δ2, · · · δs] be the weighted vectors over M and U ,
respectively, such that

∑m
j=1 wj = 1,

∑s
i=1 δi = 1 and

wj, δi ∈ [0, 1]. Define a mapping IVq − ROFSWA :

Qs×m
→ Q, that is, IVq−ROFSWA(Fe11 ,Fe12 , · · ·Fesm ) =

⊕
m
j=1(⊕

s
i=1Feijδi)wj.

Theorem 11: Assume that Feij = ([ρ−ij , ρ
+

ij ], [%
−

ij , %
+

ij ]),
(i = 1, 2, · · · s, j = 1, 2, · · ·m) be the collection of
IVq-ROFSVs in (F ,M ). Let W = [w1,w2, · · ·wm] and
1 = [δ1, δ2, · · · δs] be weighted vectors over M and U ,
respectively, such that

∑m
j=1 wj = 1,

∑s
i=1 δi = 1 and

wj, δi ∈ [0, 1]. Then,

IVq− ROFSWA(Fe11 ,Fe12 , · · ·Fesm )

= ⊕
m
j=1(⊕

s
i=1Feijδi)wj

=



[ q

√
1−

∏m

j=1

(∏s

i=1

(
1−

(
ρ−ij

)q)δi)wj
,

q

√
1−

∏m

j=1

(∏s

i=1

(
1−

(
ρ+ij

)q)δi)wj
],

[
∏m

j=1

(∏s

i=1

(
%−ij

)δi)wj
,∏m

j=1

(∏s

i=1

(
%+ij

)δi)wj
]


.

Proof: The proof of the Theorem is given in
APPENDIX 1. �
Example 12: Let an insurance company wants to recruit

a sale consultant from a set of five applicants U =

{x1, x2, x3, x4, x5}. For selection of suitable candidate, five
most relevant attributes are chosen as in the set E =

{e1, e2, e3, e4, e5}, that is, ei(i = 1, 2, 3, 4, 5) stand for e1 =
finance and insurance professional, e2 = self − confidence,
e3 = past experience,e4 = interpersonal skills,
e5 = score in universty degree, respectively. Let the
weighted vectors W = {0.13, 0.21, 0.31, 0.24, 0.11} and

1 = {0.15, 0.23, 0.05, 0.28, 0.29} over forM andU respec-
tively. The evaluation data obtained is given in the Table 2.
Let q = 3 for this example. Now by using Theorem 4.1,
we calculate operator as follow

IVq− ROFSWA(Fe11 ,Fe12 ,Fe13 , . . . ,Fe55 )

=



[
q

√
1−

∏5

j=1

(∏5

i=1

(
1−

(
ρ−ij

)q)δi)wj
,

q

√
1−

∏5

j=1

(∏5

i=1

(
1−

(
ρ+ij

)q)δi)wj]
,[∏5

j=1

(∏5

i=1

(
%−ij

)δi)wj
,∏5

j=1

(∏5

i=1

(
%+ij

)δi)wj ]


where calculation as shown at the bottom of the next page.
Therefore IVq − ROFSWA(Fe11 ,Fe12 ,Fe13 , · · · ,Fe55 ) =
([0.291494, 0.426198], [0.221314, 0.399961]).
Lemma 13: Idempotency: If Feij = Fe, (∀i =

1, 2, · · · , s and j = 1, 2, · · · ,m), where Fe = (ρ, %), then
IVq− ROFSWA(Fe11 ,Fe12 , · · · ,Fesm ) = Fe.

Proof: Assume Feij = Fe = (ρ, %)
(∀i = 1, 2, · · · , s and j = 1, 2, . . .m). Now in terms of
Theorem 4.1, we have

(Fe11 ,Fe12 , · · · ,Fesm )

=



,
[

q

√
1−

∏m

j=1

(∏s

i=1

(
1−

(
ρ−ij

)q)δi)wj
,

q

√
1−

∏m

j=1

(∏s

i=1

(
1−

(
ρ+ij

)q)δi)wj]
,[∏m

j=1

(∏s

i=1

(
%−ij

)δi)wj
,∏m

j=1

(∏s

i=1

(
%+ij

)δi)wj ]


= ([ q

√
1− (1− (ρ−)q), q

√
1− (1− (ρ+)q)], [(%−), (%+)])

= (ρ, %) = Fe.

Therefore (Fe11 ,Fe12 , . . . ,Fesm ) = Fe �
Lemma 14: Boundedness: If

F−eij =


[
minjmini{ρ

−

ij },minjmini{ρ
+

ij }

]
,[

maxjmaxi{%
−

ij },maxjmaxi{%
+

ij }

]
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and

F+eij =


[
maxjmaxi{ρ

−

ij },maxjmaxi{ρ
+

ij }

]
,[

minjmini{%
−

ij },minjmini{%
+

ij }

]
 .

Then

F−eij ≤ IVq− ROFSWA(Fe11 ,Fe12 , · · · ,Fesm ) ≤ F+eij .

Proof: As

F−eij =


[
minjmini{ρ

−

ij },minjmini{ρ
+

ij }

]
,[

maxjmaxi{%
−

ij },maxjmaxi{%
+

ij }

]
 ,

F+eij =


[
maxjmaxi{ρ

−

ij },maxjmaxi{ρ
+

ij }

]
,[

minjmini{%
−

ij },minjmini{%
+

ij }

]
 .

Wehave to show thatF−eij ≤ IVq−ROFSWA(Fe11 ,Fe12 , · · · ,

Fesm ) ≤ F+eij . Now for each i = 1, 2, · · · , s and j =
1, 2, · · · ,m, we have

minjmini{ρ
−

ij } ≤ ρ
−

ij ≤ maxjmaxi{ρ
−

ij }

↔ 1− maxjmaxi{(ρ
−

ij )
q
} ≤ 1− (ρ−ij )

q

≤ 1− minjmini{(ρ
−

ij )
q
}

↔

m∏
j=1

(
s∏
i=1

(
1− maxjmaxi

(
ρ−ij

)q)δi)wj

≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj

≤

m∏
j=1

(
s∏
i=1

(
1− minjmini

(
ρ−ij

)q)δi)wj

↔

((
1− minjmini

(
ρ−ij

)q)∑s
i=1 δi

)∑m
j=1 wj

≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤

( (
1− minjmini

(
ρ−ij

)q)∑s
i=1 δi

)∑m
j=1 wj

↔ (1− maxjmaxi(ρ
−

ij )
q)

≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤ (1− minjmini(ρ

−

ij )
q)

↔ 1− (1− minjmini(ρ
−

ij )
q)

≤ 1−
m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤ 1− (1− maxjmaxi(ρ

−

ij )
q)

q

√√√√√1−
5∏
j=1

(
5∏
i=1

(
1−

(
ρ−ij

)q)δi)wj

=
3

√√√√√√√√√√√√√√√√

1−
{(
1− (0.12)3

)0.13 (
1− (0.20)3

)0.21 (
1− (0.21)3

)0.31 (
1− (0.41)3

)0.24 (
1− (0.26)3

)0.11}0.15{(
1− (0.32)3

)0.13 (
1− (0.44)3

)0.21 (
1− (0.31)3

)0.31 (
1− (0.22)3

)0.24 (
1− (0.34)3

)0.11}0.23{(
1− (0.12)3

)0.13 (
1− (0.12)3

)0.21 (
1− (0.17)3

)0.31 (
1− (0.30)3

)0.24 (
1− (0.20)3

)0.11}0.05{(
1− (0.25)3

)0.13 (
1− (0.21)3

)0.21 (
1− (0.22)3

)0.31 (
1− (0.23)3

)0.24 (
1− (0.24)3

)0.11}0.28{(
1− (0.24)3

)0.13 (
1− (0.41)3

)0.21 (
1− (0.34)3

)0.31 (
1− (0.11)3

)0.24 (
1− (0.14)3

)0.11}0.29
= 0.291494,

q

√√√√√1−
5∏
j=1

(
5∏
i=1

(
1−

(
ρ+ij

)q)δi)wj
= 0.426198,

5∏
j=1

(
5∏
i=1

(
%−ij

)δi)wj
=

{
{(0.14)0.13(0.10)0.21(0.30)0.31(0.25)0.24(0.20)0.11}0.15

{(0.42)0.13(0.15)0.21(0.32)0.31(0.22)0.24(0.33)0.11}0.23{(0.13)0.13(0.12)0.21(0.13)0.31(0.14)0.24(0.15)0.11}0.05

{(0.16)0.13(0.40)0.21(0.32)0.31(0.13)0.24(0.14)0.11}0.28{(0.11)0.13(0.12)0.21(0.26)0.31(0.41)0.24(0.28)0.11}0.29
}
= 0.221314,

5∏
j=1

(
5∏
i=1

(
%+ij

)δi)wj
= 0.399961.
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Hence

minjmini{ρ
−

ij } ≤
q

√√√√1−
m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤ maxjmaxi{ρ

−

ij }. (1)

Similarly, we can obtain

minjmini{ρ
+

ij } ≤
q

√√√√1−
m∏
j=1

(
s∏
i=1

(
1−

(
ρ+ij

)q)δi)wj
≤ maxjmaxi{ρ

+

ij }. (2)

Next for each i = 1, 2, · · · , s and j = 1, 2, · · · ,m, we have

minjmini{%
−

ij } ≤ %
−

ij ≤ maxjmaxi{%
−

ij }

↔

m∏
j=1

(
s∏
i=1

(
minjmini{%

−

ij }

)δi)wj

≤

m∏
j=1

(
s∏
i=1

(
%−ij

)δi)wj

≤

m∏
j=1

(
s∏
i=1

(
maxjmaxi{%

−

ij }

)δi)wj
↔

( (
minjmini{%

−

ij }

)∑s
i=1 δi

)∑m
j=1 wj

≤

m∏
j=1

(
s∏
i=1

(
{%−ij }

)δi)wj
≤

( (
maxjmaxi{%

−

ij }

)∑s
i=1 δi

)∑m
j=1 wj

This implies that

minjmini{%
−

ij } ≤

m∏
j=1

(
s∏
i=1

{
%−ij

}δi)wj
≤ maxjmaxi{%

−

ij }. (3)

Similar way we get;

minjmini{%
+

ij } ≤

m∏
j=1

(
s∏
i=1

{
%+ij

}δi)wj
≤ maxjmaxi{%

+

ij }. (4)

Therefore, from Equations (1),(2),(3) and (4) we can write,
F−eij ≤ IVq− ROFSWA(Fe11 ,Fe12 , . . . ,Fesm ) ≤ F+eij . �

B. IVQ-ROFS WEIGHTED GEOMETRIC AGGREGATION
OPERATORS ON IVQ-ROFSSS
Let Q be any collection of IVq-ROFV and Qs×m set of
IVq-ROFSV in a IVq-ROFSS (F ,M ). Then we define
IVq-ROFSWG as follows;
Definition 15: Let M = {e1, e2, · · · em} be the set of

attributes for a set of ‘‘s′′ number of alternatives U =

{x1, x2, · · · xs}. Then a general form of IVq-ROFSS (F ,M ) is
given in Table 3.1. Assume thatFeij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]),

(i = 1, 2, · · · s, j = 1, 2, · · ·m) be the collection of
IVq-ROFSVs in (F ,M ). Let W = [w1,w2, · · ·wm] and
1 = [δ1, δ2, · · · δs] be the weighted vectors over M and U ,
respectively, such that

∑m
j=1 wj = 1,

∑s
i=1 δi = 1 and

wj, δi ∈ [0, 1]. Define a mapping IVq − ROFSWG :

Qs×m
→ Q, that is, IVq−ROFSWG(Fe11 ,Fe12 , · · ·Fesm ) =

⊗
m
j=1(⊗

s
i=1Feij

δi )wj .
Theorem 16: Assume that Feij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]),
(i = 1, 2, · · · s, j = 1, 2, · · ·m) be the collection of
IVq-ROFSVs in (F ,M ). Let W = [w1,w2, · · ·wm] and
1 = [δ1, δ2, · · · δs] be weighted vectors over M and U ,
respectively, such that

∑m
j=1 wj = 1,

∑s
i=1 δi = 1 and

wj, δi ∈ [0, 1]. Then,

IVq− ROFSWG(Fe11 ,Fe12 , · · ·Fesm )

= ⊗
m
j=1(⊗

s
i=1Feij

δi )wj

=




∏m

j=1

(∏s

i=1

(
ρ−ij

)δi)wj
,∏m

j=1

(∏s

i=1

(
ρ+ij

)δi)wj
 ,


q

√
1−

∏m

j=1

(∏s

i=1

(
1−

(
%−ij

)q)δi)wj
,

q

√
1−

∏m

j=1

(∏s

i=1

(
1−

(
%+ij

)q)δi)wj



Proof: Same as the proof of Theorem 11. �

Example 17: Consider Example 12 where IVq-ROFSS is
given in Table 2. Let q = 3 for this example. Now by using
Theorem 16, we calculate operator as follow;

IVq− ROFSWG(Fe11 ,Fe12 ,Fe13 , . . . ,Fe55 )

=



[∏5

j=1

(∏5

i=1

(
ρ−ij

)δi)wj
,∏5

j=1

(∏5

i=1

(
ρ+ij

)δi)wj ]
,[

q

√
1−

∏5

j=1

(∏5

i=1

(
1−

(
%−ij

)q)δi)wj
,

q

√
1−

∏5

j=1

(∏5

i=1

(
1−

(
%+ij

)q)δi)wj]


where ∏5

j=1

(∏5

i=1

(
ρ−ij

)δi)wj
= 0.237893,∏5

j=1

(∏5

i=1

(
ρ+ij

)δi)wj
= 0.374455,

q

√
1−

∏5

j=1

(∏5

i=1

(
1−

(
%−ij

)q)δi)wj
= 0.283800,

q

√
1−

∏5

j=1

(∏5

i=1

(
1−

(
%+ij

)q)δi)wj
= 0.485539.

Therefore IVq − ROFSWG(Fe11 ,Fe12 ,Fe13 , . . . ,Fe55) =
([0.237893, 0.374455], [0.283800, 0.485539]).
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Lemma 18: Idempotency: If Feij = Fe, (∀i =

1, 2, .., s and j = 1, 2, . . .m), where Fe = (ρ, %), then
IVq− ROFSWG(Fe11 ,Fe12 , . . . ,Fesm ) = Fe.

Proof: Same as the proof of the Lemma 13. �
Lemma 19: Boundedness: If

F−eij =


[
minjmini{ρ

−

ij },minjmini{ρ
+

ij }

]
,[

maxjmaxi{%
−

ij },maxjmaxi{%
+

ij }

]
 ,

F+eij =


[
maxjmaxi{ρ

−

ij },maxjmaxi{ρ
+

ij }

]
,[

minjmini{%
−

ij },minjmini{%
+

ij }

]
 .

Then

F−eij ≤ IVq− ROFSWG(Fe11 ,Fe12 , . . . ,Fesm ) ≤ F+eij .

Proof: Same as the proof of the Lemma 14. �

IV. INTERACTION AGGREGATION OPERATORS
ON IVQ-ROFSS
Consider Definition 9 where IVq-ROFSS is given in Table 1.
Some interaction operations are expressed as follows;
Definition 20: Assume Fei2 = ([ρ−i2 , ρ

+

i2 ], [%
−

i2, %
+

i2]), (i =
1, 2) and F = ([ρ−, ρ+], [%−, %+]) be any three IVq-
ROFSVs and λ, λ1, λ2 > 0. Thus some basic interactive
operation on IVq-ROFSVs are given follows:

(i) Fe12⊕̃Fe22

=





[ q
√
(ρ−12)

q + (ρ−22)
q − (ρ−12)

q(ρ−22)
q,

q
√
(ρ−12)

q + (ρ+22)
q − (ρ+12)

q(ρ+22)
q],

[ q

√
(%−12)

q
+ (%−22)

q
− (%−12)

q(%−22)
q
−

(%−12)
q(ρ−22)

q
− (ρ−12)

q(%−22)
q ,

q

√
(%+12)

q
+ (%+22)

q
− (%+12)

q(%+22)
q
−

(%+12)
q(ρ+22)

q
− (ρ+12)

q(%+22)
q ]




.

(ii) Fe12⊗̃Fe22

=





[ q

√
(ρ−12)

q
+ (ρ−22)

q
− (ρ−12)

q(ρ−22)
q
−

(ρ−12)
q(%−22)

q
− (%−12)

q(ρ−22)
q ,

q

√
(ρ+12)

q
+ (ρ+22)

q
− (ρ+12)

q(ρ+22)
q
−

(ρ+12)
q(%+22)

q
− (%+12)

q(ρ+22)
q ],

[ q
√
(ρ−12)

q + (%−22)
q − (%−12)

q(%−22)
q,

q
√
(%−12)

q + (%+22)
q − (%+12)

q(%+22)
q]




.

(iii) Fλ =


 [ q

√
1− (1− (ρ−)q)λ,

q√1− (1− (ρ+)q)λ],
[ q
√
(1− (ρ−)q)λ − (1− (ρ−)q + (%−)q)λ,

q√(1− (ρ+)q)λ − (1− (ρ+)q + (%+)q)λ]

.
(iv) Fλ

=


 [ q

√
(1− (%−)q)λ − (1− (ρ−)q + (%−)q)λ,

q√(1− (%+)q)λ − (1− (ρ+)q + (%+)q)λ],
[ q
√
1− (1− (%−)q)λ,

q√1− (1− (%+)q)λ],

.

A. IVQ-ROFS INTERACTION WEIGHTED AVERAGING
AGGREGATION OPERATORS ON IVQ-ROFSSS
Based on above interaction operation, we express following
notion.
Definition 21: Let M = {e1, e2, · · · em} be the set

of attributes for a set of ‘‘s′′ number of alternatives
U = {x1, x2, · · · xs}. Then a general form of IVq-
ROFSS (F ,M ) is given in Table 1. Assume Feij =

([ρ−ij , ρ
+

ij ], [%
−

ij , %
+

ij ]), be a collection of IVq-ROFSSs, where
(i = 1, 2 · · · , s and j = 1, 2, · · · ,m). Assume W =

[w1,w2, · · ·wm] and 1 = [δ1, δ2, · · · δs] be the weighted
vectors over M and U , respectively, such that

∑m
j=1 wj =

1,
∑s

i=1 δi = 1 and wj, δi > 0. Define a map-
ping IVq − ROFSIWA : Qs×m

→ Q, that is, IVq −
ROFSIWA(Fe11 ,Fe12 , · · ·Fesm ) = ⊕̃

m
j=1(⊕̃

s
i=1Feijδi)wj,

where IVq-ROFSIWA expresses IVq-ROF soft interactive
weighted averaging operator.
Theorem 22: Assume Feij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]),
be a collection of IVq-ROFSVs in (F ,M ), where (i =
1, 2 · · · , s and j = 1, 2, · · · ,m). So,

IVq− ROFSIWA(Fe11 ,Fe12 , · · ·Fesm )

= ⊕̃
m
j=1(⊕̃

s
i=1Feijδi)wj.

=




q

√
1−

∏m

j=1

(∏s

i=1

(
1−(ρ−ij )

q
)δi)wj

,

q

√
1−

∏m

j=1

(∏s

i=1

(
1−(ρ+ij )

q
)δi)wj

,


q

√√√√√√√
∏m

j=1

(∏s

i=1

(
1−(ρ−ij )

q
)δi)wj

−

∏m

j=1

(∏s

i=1

(
1−

(
(ρ−ij )

q
+(%−ij )

q
) )δi)wj ,

q

√√√√√√√
∏m

j=1

(∏s

i=1

(
1−(ρ+ij )

q
)δi)wj

−

∏m

j=1

(∏s

i=1

(
1−

(
(ρ+ij )

q
+(%+ij )

q
) )δi)wj





.

such that,
∑m

j=1 wj = 1,
∑s

i=1 δi = 1 and wj, δi > 0.
Proof: The proof of the theorem is given in

APPENDIX 2. �
Example 23: Consider Example 12 where IVq-ROFSS is

given in Table 2. Let q = 3 for this example. Now by using
Theorem 16, we calculate following;

q

√√√√√1−
5∏
j=1

(
5∏
i=1

(
1− (ρ−ij )

q
)δi)wj

= 0.291494,

q

√√√√√1−
5∏
j=1

(
5∏
i=1

(
1− (ρ+ij )

q
)δi)wj

= 0.426198,
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q

√√√√√√√
∏5

j=1

(∏5
i=1

(
1− (ρ−ij )

q
)δi)wj

−∏5
j=1

(∏5
i=1

(
1−

(
(ρ−ij )

q
+ (%−ij )

q
) )δi)wj = 0.283161,

q

√√√√√√√
∏5

j=1

(∏5
i=1

(
1− (ρ+ij )

q
)δi)wj

−∏5
j=1

(∏5
i=1

(
1−

(
(ρ+ij )

q
+ (%+ij )

q
) )δi)wj = 0.482599.

Therefore (Fe11 ,Fe12 , · · ·Fe55 )
= ([0.291494, 0.426198], [0.283161, 0.482599]).
Lemma 24: Idempotency: If Feij = Fe, (∀i =

1, 2, · · · , s and j = 1, 2, · · · ,m), where Fe =

(ρ, %),then IVq− ROFSIWA(Fe11 ,Fe12 , · · · ,Fesm ) = Fe.
Proof: Assume Feij = Fe = (ρ, %) (∀i =

1, 2, · · · , s and j = 1, 2, · · · ,m). Now in terms of Theo-
rem 22, we have

(Fe11 ,Fe12 , · · · ,Fesm )

=




q

√
1−

∏m
j=1

(∏s
i=1

(
1− (ρ−ij )

q
)δi)wj

,

q

√
1−

∏m
j=1

(∏s
i=1

(
1− (ρ+ij )

q
)δi)wj

 ,


q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (ρ−ij )

q
)δi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(ρ−ij )

q
+ (%−ij )

q
) )δi)wj ,

q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (ρ+ij )

q
)δi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(ρ+ij )

q
+ (%+ij )

q
) )δi)wj





=




q

√
1−

((
1− (ρ−ij )

q
)∑s

i=1 δi
)∑s

j=1 wj
,

q

√
1−

((
1− (ρ+ij )

q
)∑s

i=1 δi
)∑m

j=1 wj

 ,


q

√√√√√√√√
((

1− (ρ−ij )
q
)∑s

i=1 δi
)∑m

j=1 wj
−((

1−
(
(ρ−ij )

q
+ (%−ij )

q
) )∑s

i=1 δi
)∑m

j=1 wj
,

q

√√√√√√√√
((

1− (ρ+ij )
q
)∑s

i=1 δi
)∑m

j=1 wj
−((

1−
(
(ρ+ij )

q
+ (%+ij )

q
) )∑s

i=1 δi
)∑m

j=1 wj





=



[
q

√
1−

(
1− (ρ−ij )

q
)
, q

√
1−

(
1− (ρ+ij )

q
)]
,[

q

√(
1− (ρ−ij )

q
)
−

(
1−

(
(ρ−ij )

q + (%−ij )
q
) )
,

q

√(
1− (ρ+ij )

q
)
−

(
1−

(
(ρ+ij )

q + (%+ij )
q
) )]



= ([ρ−ij , ρ
+

ij ], [%
−

ij , %
+

ij ]) = (ρ, %) = Fe

Therefore (Fe11 ,Fe12 , · · · ,Fesm ) = Fe. �
Lemma 25: Boundedness: If

F−eij =


[
minjmini{ρ

−

ij },minjmini{ρ
+

ij }

]
,[

maxjmaxi{%
−

ij },maxjmaxi{%
+

ij }

]


and

F+eij =


[
maxjmaxi{ρ

−

ij },maxjmaxi{ρ
+

ij }

]
,[

minjmini{%
−

ij },minjmini{%
+

ij }

]


Then,

F−eij ≤ IVq− ROFSIWA(Fe11 ,Fe12 , · · · ,Fesm ) ≤ F+eij .

Proof: As

F−eij =

[minjmini{ρ−ij },minjmini{ρ+ij }],[
maxjmaxi{%

−

ij },maxjmaxi{%
+

ij }

]
and

F+eij =

[maxjmaxi{ρ−ij },maxjmaxi{ρ+ij }],[
minjmini{%

−

ij },minjmini{%
+

ij }

]  .
Wehave to show thatF−eij≤ IVq−ROFSIWA(Fe11 ,Fe12 , · · · ,

Fers ) ≤ F+eij . Now for each i = 1, 2, · · · , s and j =
1, 2, · · · ,m, we have

minjmini{ρ
−

ij } ≤ ρ
−

ij ≤ maxjmaxi{ρ
−

ij }

⇒ 1− maxjmaxi{(ρ
−

ij )
q
}

≤ 1− (ρ−ij )
q
≤ 1− minjmini{(ρ

−

ij )
q
}

⇔

(
1− maxjmaxi

(
ρ−ij

)q)δi
≤

(
1−

(
ρ−ij

)q)δi
≤

(
1− minjmini

(
ρ−ij

)q)δi
⇔

(
1− maxjmaxi

(
ρ−ij

)q)∑s
i=1 δi

≤

s∏
i=1

(
1−

(
ρ−ij

)q)δi
≤

(
1− minjmini

(
ρ−ij

)q)∑s
i=1 δi

⇔

(
1− maxjmaxi(ρ

−

ij )
q
)∑m

j=1 wj

≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤

(
1− minjmini

(
ρ−ij

)q)∑m
j=1 wj
⇔ (1− maxjmaxi(ρ

−

ij )
q)

≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤ (1− minjmini(ρ

−

ij )
q)

⇔ (1− minjmini(ρ
−

ij )
q)
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≤ 1−
m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤ (1− maxjmaxi(ρ

−

ij )
q)

Hence

minjmini(ρ
−

ij ) ≤
q

√√√√1−
m∏
j=1

(
s∏
i=1

(
1−

(
ρ−ij

)q)δi)wj
≤ maxjmaxi(ρ

−

ij ) (5)

also,

minjmini{ρ
+

ij } ≤ ρ
+

ij ≤ maxjmaxi{ρ
+

ij }

⇒ 1− maxjmaxi{(ρ
+

ij )
q
} ≤ 1− (ρ+ij )

q

≤ 1− minjmini{(ρ
+

ij )
q
} ⇔

(
1− maxjmaxi

(
ρ+ij

)q)δi
≤

(
1−

(
ρ+ij

)q)δi
≤

(
1− minjmini

(
ρ+ij

)q)δi
⇔

(
1− maxjmaxi

(
ρ+ij

)q)∑s
i=1 δi

≤

s∏
i=1

(
1−

(
ρ+ij

)q)δi
≤

(
1− minjmini

(
ρ+ij

)q)∑s
i=1 δi

⇔

(
1− maxjmaxi(ρ

+

ij )
q
)∑m

j=1 wj

≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ+ij

)q)δi)wj
≤

(
1− minjmini

(
ρ+ij

)q)∑m
j=1 wj

⇔ (1− maxjmaxi(ρ
+

ij )
q) ≤

m∏
j=1

(
s∏
i=1

(
1−

(
ρ+ij

)q)δi)wj
≤ (1− minjmini(ρ

+

ij )
q)

⇔ (1−minjmini(ρ
+

ij )
q) ≤ 1−

m∏
j=1

(
s∏
i=1

(
1−

(
ρ+ij

)q)δi)wj
≤ (1− maxjmaxi(ρ

+

ij )
q).

Thus

minjmini(ρ
+

ij ) ≤
q

√√√√1−
m∏
j=1

(
s∏
i=1

(
1−

(
ρ+ij

)q)δi)wj
≤ maxjmaxi(ρ

+

ij ) (6)

Similarly, we have

minjmini(%
−

ij )

≤
q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (ρ−ij )

q
)δi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(ρ−ij )

q
+ (%−ij )

q
) )δi)wj

≤ maxjmaxi(%
−

ij ) (7)

minjmini(%
+

ij )

≤
q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (ρ+ij )

q
)δi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(ρ+ij )

q
+ (%+ij )

q
) )δi)wj

≤ maxjmaxi(ρ
+

ij ) (8)

On conclusion of inequalities (i), (ii), (iii) and (iv) F−eij ≤
IVq− ROFSIWA(Fe11 ,Fe12 , · · · ,Fesm ) ≤ F+eij . �

Lemma 26: Show that IVq−ROFSIWA(λFe11 , λFe12 , · · ·

λFesm ) = IVq − ROFSIWAλ(Fe11 ,Fe12 , · · ·Fesm ) for any
positive real number λ.

Proof: AssumeFe11 be a IVq-ROFSN and≥ 0, we have

λFe11 =



[
q

√
1−

(
1− (ρ−ij )

q
)λ
,

q

√
1−

(
1− (ρ+ij )

q
)λ]

,

q

√√√√√ 1−
(
1− (ρ−ij )

q
)λ
−(

1−
(
(ρ−ij )

q
+ (%−ij )

q
) )λ ,

q

√√√√√ 1−
(
1− (ρ−ij )

q
)λ
−(

1−
(
(ρ−ij )

q
+ (%−ij )

q
) )λ




.

So,

IVq− ROFSIWA(λFe11 , λFe12 , · · · λFesm )

=




q

√
1−

∏m
j=1

(∏s
i=1

(
1− (ρ−ij )

q
)λδi)wj

,

q

√
1−

∏m
j=1

(∏s
i=1

(
1− (ρ+ij )

q
)λδi)wj

 ,


q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (ρ−ij )

q
)λδi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(ρ−ij )

q
+ (%−ij )

q
) )λδi)wj ,

q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (ρ+ij )

q
)λδi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(ρ+ij )

q
+ (%+ij )

q
) )λδi)wj





=




q

√
1−

(∏m
j=1

(∏s
i=1

(
1−(ρ−ij )

q
)δi)wj)λ

,

q

√
1−

(∏m
j=1

(∏s
i=1

(
1−(ρ+ij )

q
)δi)wj)λ

,


q

√√√√√√√√
(∏m

j=1

(∏s
i=1

(
1−(ρ−ij )

q
)δi)wj)λ

−(∏m
j=1

(∏s
i=1

(
1−
(
(ρ−ij )

q
+(%−ij )

q
))δi)wj)λ ,

q

√√√√√√√√
(∏m

j=1

(∏s
i=1

(
1−(ρ+ij )

q
)δi)wj)λ

−(∏m
j=1

(∏s
i=1

(
1−

(
(ρ+ij )

q
+ (%+ij )

q
) )δi)wj)λ
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= IVq-ROFSIWAλ(Fe11 ,Fe12 , · · ·Fesm ).

Hence proved. �

B. IVQ-ROFS INTERACTION WEIGHTED GEOMETRIC
AGGREGATION OPERATORS ON IVQ-ROFSSS
Definition 27: Let M = {e1, e2, · · · em} be the set of

attributes for a set of ‘‘s′′ number of alternatives U =

{x1, x2, · · · xs}. Then a general form of IVq-ROFSS (F ,M )
is given in Table 1. Assume Feij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]),
be a collection of IVq-ROFSVs in (F ,M ), where (i =
1, 2 · · · , s and j = 1, 2, · · · ,m). Assume W =

[w1,w2, · · ·wm] and 1 = [δ1, δ2, · · · δs] be the weighted
vectors over M and U , respectively, such that

∑m
j=1 wj =

1,
∑s

i=1 δi = 1 and wj, δi > 0. Define a mapping
IVq − ROFSIWG : Qs×m

→ Q, that is, IVq −
ROFSIWG(Fe11 ,Fe12 , · · ·Fesm ) = ⊗̃

m
j=1(⊗̃

s
i=1Feij

δi )wj ,
where IVq-ROFSIWG expresses IVq-ROF soft interactive
weighted geometric operator.
Theorem 28: Assume Feij = ([ρ−ij , ρ

+

ij ], [%
−

ij , %
+

ij ]),
be a collection of IVq-ROFSVs in (F ,M ), where (i =
1, 2 · · · , s and j = 1, 2, · · · ,m). So,

IVq− ROFSIWA(Fe11 ,Fe12 , · · ·Fesm )

= ⊗̃
m
j=1(⊗̃

s
i=1Feij

δi )wj

=



[
q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (%−ij )

q
)δi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(%−ij )

q
+ (ρ−ij )

q
) )δi)wj ,

q

√√√√√√√
∏m

j=1

(∏s
i=1

(
1− (%+ij )

q
)δi)wj

−∏m
j=1

(∏s
i=1

(
1−

(
(%+ij )

q
+ (ρ+ij )

q
) )δi)wj ],

[
q

√
1−

∏m
j=1

(∏s
i=1

(
1− (%−ij )

q
)δi)wj

,

q

√
1−

∏m
j=1

(∏s
i=1

(
1− (%+ij )

q
)δi)wj]



.

such that,
∑m

j=1 wj = 1,
∑s

i=1 δi = 1 and wj, δi > 0.
Proof: Same as the proof of Theorem 22. �

Lemma 29: Idempotency: If Feij = Fe, (∀i =

1, 2, · · · , r and j = 1, 2, · · · , s), where Fe =

(ρ, %),then IVq− ROFSIWG(Fe11 ,Fe12 , · · · ,Fers ) = Fe.
Proof: Same as the proof of Lemma 24. �

Lemma 30: Boundedness: If

F−eij =


[
minjmini{ρ

−

ij },minjmini{ρ
+

ij }

]
,[

maxjmaxi{%
−

ij },maxjmaxi{%
+

ij }

]


and

F+eij =


[
maxjmaxi{ρ

−

ij },maxjmaxi{ρ
+

ij }

]
,[

minjmini{%
−

ij },minjmini{%
+

ij }

]


Then F−eij ≤ IVq−ROFSIWG(Fe11 ,Fe12 , . . . ,Fesm ) ≤ F+eij .
Proof: Same as the proof of Lemma25. �

Lemma 31: Show that IVq−ROFSIWG(λFe11 , λFe12 , · · ·

λFesm ) = IVq − ROFSIWGλ(Fe11 ,Fe12 , · · ·Fesm ) for any
positive real number λ.

Proof: Same as the proof of Lemma 26. �

V. MULTI CRITERIA DECISION MAKING BASED ON
IVQ-ROFSS ENVIRONMENT
MCDM played vital role in complex real life situation where
it is difficult to obtain a choice with respect to certain types
of criteria. It is a process to select the a logically appropriate
choice among several objects. A systematic MCDM process
can handle all aspects where different competitor have their
own choices. In order to define a well recognized MCDM
method, we explained some basic points method as in the
following;

1) Assume X = {X1,X2, · · ·Xn} be the discrete set of n
number of various alternatives, and the related set of
parameters is E = {e1, e2, · · · em}.

2) Let experts <1,<2, · · · <s provide assessments over
E for each Xk (k = 1, 2, · · · , n) in the form of IVq-
ROFSVs (Fk )eij = ([(ρk )

−

ij , (ρk )
+

ij ], [(%k )
−

ij , (%k )
+

ij ])
k = 1, 2, · · · , n. Denote U = {<1,<2, · · · <s}.
In another word, we obtain n numbers of IVq-ROFSSs
(F1)eij , (F2)eij , · · · , (Fn)eij over U for each Xk (k =
1, 2, · · · , n) respectively. For each k = 1, 2, · · · , n soft
matrix, as shown at the bottom of the next page.

3) For k = 1, 2, · · · , n normalize SMk in terms of param-
eters as follows;

(Pk )eij

=


〈

[
(%k )−eij , (%k )

+
eij

]
,[

(ρk )−eij , (ρk )
+
eij

] 〉; for cost type parameter,
〈

[
(ρk )−eij , (ρk )

+
eij

]
,[

(%k )−eij , (%k )
+
eij

] 〉; for profit type parameter,
Then obtain normalized soft matrices SM ′k for each
k = 1, 2, · · · , n.

4) By applying the proposed aggregation operators on
IVq-ROFSVs (Fk )eij = ([(ρk )

−

ij , (ρk )
+

ij ], [(%k )
−

ij ,

(%k )
+

ij ]) for each k = 1, 2, · · · , n, obtain IVq-ROFVs

`1 = ([(ρ1)−, (ρ1)+], [(%1)−, (%1)+]),

`2 = ([(ρ2)−, (ρ2)+], [(%2)−, (%2)+]), · · ·

`n = ([(ρn)−, (ρn)+], [(%n)−, (%n)+]).

5) Calculate the score function S using Definition 4 on
each `k , that is, S (`k ) k = 1, 2, · · · , n.

6) The best optimal result Xk ′ k ′ ∈ (1, 2, · · · n) can be
obtained on larger value of S on `k , k = 1, 2, · · · , n.

The projected MCDM method is reckoned in Figure 1.
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FIGURE 1. MCDM on IVq-ROFSSs.

VI. AN APPLICATION OF PROPOSED MCDM METHOD
This section brings demonstration of effectiveness and relia-
bility of introduced results in real life complex problem with
IVq-ROFS environment.

Nowadays, automation companies worldwide provide
their specific work environment for automation engineers.
A healthy environment in terms of leadership can boost the
artistry of automation engineers. An automation company
can achieve this aspiration through well-qualified automation
engineers. On the other hand, automation engineers seek
an aspiring workplace to excel in their creative abilities.
Assume five automation companies X1,X2,X3,X4,X5 where
we have assess good environment for automation engi-
neers. Consider a set of five senior experts U =

{<1,<2,<3,<4,<5} who have to assess job environment in
given automation companies. The weighted vector for experts
is W = (0.18/<1, 0.23/<2, 0.16/<3, 0.26/<4, 0.17/<5)T .
The parameters for which we have to choose the best
automation company for automation engineers are given as

a set;

E =


e1 = Leadership is involved and engaged,
e2 = Communication,
e3 = healthy company culture,
e4 = innovation,
e5 = individuals are empowered to grow

 .
The weighted vector over parameters is

1 = (0.42/e1, 0.11/e2, 0.19/e3, 0.21/e4, 0.07/e5)T .

In order to evaluate suitable automation company for engi-
neers, following steps are used.

1) The senior experts give productive assessments
over parameters for each company in the form of
IVq-ROFSS. IVq-ROFSSs for companies X1, X2, X3,
X4, X5 are given in Tables 3-7 respectively.

2) Normalized the data in Tables 3-7. As there does not
exist any cost type parameter, thus, normalization con-
cludes same data as in the Tables 3-7.

3) Applying IVq-ROFS aggregation operators from the
Definition III-2. For q = 3, we receive IVq-ROFVs

`1 = 〈[0.199607, 0.512417], [0.290453, 0.453487]〉,

`2 = 〈[0.241580, 0.414274], [0.247639, 0.459448]〉,

`3 = 〈[0.241541, 0.808656], [0.248643, 0.657005]〉,

`4 = 〈[0.282778, 0.441976], [0.252393, 0.352567]〉,

`5 = 〈[0.253570, 0.484110], [0.105438, 0.241946]〉.

4) By using Definition II-4, we compute score function
S (`k )(k = 1, 2, 3, 4, 5) as follows;

S (`1) = 0.506184, S (`2) = 0.493645,

S (`3) = 0.560980, S (`4) = 0.512261,

S (`5) = 0.528606

5) Now rank the results in descending order as S (`3) >
S (`5) > S (`4) > S (`1) > S (`2). Therefore the
ranking of automation companies is given by X3 >

X5 > X4 > X1 > X2. It observed company X3 is very
dynamic for automation engineers for services.

Similarly, we apply IVq-ROPFSIWA as follows;
1) similarly calculate IVq-ROPFSIWA are

`1 = 〈[0.199607, 0.512417], [0.311701, 0.727133]〉,

Soft Matrix

SMk =



(
[(ρk )

−

11, (ρk )
+

11],
[(%k )

−

11, (%k )
+

11]

) (
[(ρk )

−

12, (ρk )
+

12],
[(%k )

−

12, (%k )
+

12]

)
· · ·

(
[(ρk )

−

1m, (ρk )
+

1m],
[(%k )

−

1m, (%k )
+

1m]

)
(
[(ρk )

−

21, (ρk )
+

21],
[(%k )

−

21, (%k )
+

21]

) (
[(ρk )

−

22, (ρk )
+

22],
[(%k )

−

22, (%k )
+

22]

)
· · ·

(
[(ρk )

−

2m, (ρk )
+

2m],
[(%k )

−

2m, (%k )
+

2m]

)
...

...
. . .

...(
[(ρk )

−

s1, (ρk )
+

s1],
[(%k )

−

s1, (%k )
+

s1]

) (
[(ρk )

−

s2, (ρk )
+

s2],
[(%k )

−

s2, (%k )
+

s2]

)
· · ·

(
[(ρk )−sm, (ρk )

+
sm],

[(%k )−sm, (%k )
+
sm]

)
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X 1
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`2 = 〈[0.241580, 0.414274], [0.334460, 0.578685]〉,

`3 = 〈[0.241541, 0.808656], [0.311947, 0.468633]〉,

`4 = 〈[0.282778, 0.441976], [0.304150, 0.487587]〉,

`5 = 〈[0.253570, 0.484110], [0.246577, 0.446510]〉.

2) By using Definition II-4, we compute score function
S (`k )(k = 1, 2, 3, 4, 5) as follows;

S (`1) = 0.466403, S (`2) = 0.463999,

S (`3) = 0.626941, S (`4) = 0.491223,

S (`5) = 0.506437

TA
B

LE
4.

IV
q-

RO
FS

S
fo

r
au

to
m

at
io

n
co

m
pa

ny
X 2

.

3) Now rank the results in descending order as S (`3) >
S (`5) > S (`4) > S (`1) > S (`2). Therefore the
ranking of automation companies is given by X3 >

X5 > X4 > X1 > X2. It observed company X3 is very
dynamic for automation engineers for services.

A. COMPARATIVE ANALYSIS
First, we compare the proposed results withHussain et al. [21]
and Zulqarnain et al. [57]. For this, we consider the Example
in Section VI. Consider only lower membership and lower
non-membership for each IVq-ROFV in Tables 3-7, and we
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.

get new tables as Tables 8-12. There are five q-ROFSSs given
in Tables 8-12, respectively.
• Now by using the method of Hussain et al. [21]
for q-ROFSSs (q = 3), we calculate scores as
S(X1) = −0.020553, S(X2) = −0.001352,S(X3) =
−0.001589,S(X4) = 0.008104 and S(X5) = 0.018848.
We obtain ranking X5 > X4 > X2 > X3 > X1.

• And by using the method of Zulqarnain et al. [57]
for q-ROFSSs (q = 3), we calculate scores as
S(X1) = −0.027700, S(X2) = −0.028843,
S(X3) = −0.020149, S(X4) = −0.006835 and

TA
B

LE
6.

IV
q-

RO
FS

S
fo

r
au

to
m

at
io

n
co

m
pa

ny
X 4

.

S(X5) = −0.001629. We obtain ranking X5 > X4 >
X2 > X1 > X3.

If we consider upper membership and upper non-membership
from Tables 3-7, then;

• By using the method of Hussain et al. [21], we obtain
scores as follows S(X1) = 0.059255, S(X2) =
−0.031268,S(X3) = 0.256643,S(X4) = 0.051755 and
S(X5) = 0.120932.We obtain ranking X3 > X5 > X1 >
X4 > X2.
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• And by using the method of Zulqarnain et al. [57]
for q-ROFSSs (q = 3), we calculate scores as
S(X1) = −0.0279801, S(X2) = −0.145208,S(X3) =
0.464509,S(X4) = −0.035482 and S(X5) = 0.029308.
We obtain ranking X3 > X5 > X4 > X2 > X1.

It can be analyzed that the above rankings are different
from the ranking obtained from the proposed method by
considering the Example in Section VI. The reason is that
Hussain et al. [21] and Zulqarnain et al. [57] do not consider
intervals of membership grades and non-membership grades.
The proposed method overcomes those inadequacies, where
it is difficult to take a membership and a non-membership

TABLE 8. q-ROFSS for automation company X1.

TABLE 9. q-ROFSS for automation company X2.

TABLE 10. q-ROFSS for automation company X3.

TABLE 11. q-ROFSS for automation company X4.

TABLE 12. q-ROFSS for automation company X5.

grade, but bothmembership and non-membership gradesmay
exist in intervals. Therefore, introduced results are better for
dealing with uncertainties in many complex problems.

Consider the work of Zulqarnain et al. [56], where correla-
tion co-efficient of IVIFSSs are given and their application in
MCDM is discussed. Consider the Example given in section
4.2 of Zulqarnain et al. [56], where IVIFSSs is depicted in
Table 1-4. By their method the ranking of alternatives in
R4 > R3 > R1 > R2. In order to compare results
with Zulqarnain et al. [56], we take q = 1. Then using the
proposed method we obtain S1 = 0.4606, S2 = 0.4274,
S3 = 0.5127 and S4 = 0.5420. Thus, R4 > R3 > R1
> R2. Similarly we can obtain same ranking on q > 1.
The fundamental capability of given model of MCDM is to
solve real life problems by utilizing parameterizations and
intervals.

VII. CONCLUSION
In this paper, we have introduced some crucial properties of
IVq-ROFSSs and we have investigated IVq-ROF weighted
averaging, IVq-ROFweighted geometric, IVq-ROFweighted
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interaction averaging, IVq-ROF weighted interaction geo-
metric aggregation operators and given a MCDM method.

The integration of IVq-ROFS, soft sets and MCDM
specifies new potentialities relating to the modeling of
complex MCDM problems in distributed environments.
In addition, models of IVq-ROFSSs equipped for supervis-
ing of massive data sets and manipulation of ill-structured
knowledge.

In several prospectives the introduced operators are useful
to cope uncertainties. The results are given on a representation
of information by an interval number within [0, 1] is a fair
choice. It can upgraded in different directions, because in
several real life problem usually informations exist in inter-
vals. The IVq-ROFSSs can be useful inMCDMwhere several
prospects in terms of alternatives and parameters involves.
Aggregation operators on IVq-ROFSSs are investigated with

IVq− ROFSWA(Fe11 ,Fe12 ,Fe21Fe22 )
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their axioms which can be helpful to complex MCDM prob-
lems. A procedure is interrupted with smooth and validate
steps, which can be root mechanism in MCDM. An illustra-
tion is considered; that is, to select appropriate automation
company for automation engineers where they feel com-
fortable to excel their abilities. Although introduced results
reprieve in complex scenarios of MCDM, in future works
we will focus on advanced forms of IVq-ROFSS, that is,
generalized IVq-ROFSS and give an insight in to the impact
of IVq-ROFSS in graphs and networks. One can develop
complexity analysis of the given algorithm. Furthermore,
the developed aggregation operators can be extended to
T-spherical fuzzy soft environments with decision making
approaches.

APPENDIX I. THE PROOF OF THE THEOREM III.1
The result can be demonstrated by the mathematical
induction. Take s = 2 and m = 2, we have

IVq− ROFSWA(Fe11 ,Fe12 ,Fe21Fe22 ), as shown at the top
of the previous page.

Hence the result is true for s = 2 and m = 2. Now
we take s = s1 and m = m1 (IVq − ROFSWA(Fe11 ,

Fe12 , · · · ,Fes1
,Fem1

), as shown at the top of the previous
page.)

Further we take s = s1 + 1 and m = m1 + 1;
IVq−ROFSWA(Fe11 ,Fe12 , · · · ,Fes1

,Fem1
,Fe(s1+1)(m1+1)),

as shown at the top of the previous page.
Hence the result is true for s = s1 + 1 and m = m1 + 1.

Therefore by mathematical induction it is correct for all
m, s ≥ 1.

APPENDIX II. THE PROOF OF THE THEOREM IV.1
The result can be demonstrated by the mathematical
induction. Take s = 2 and m = 2, we have
IVq− ROFSWA(Fe11 ,Fe12 , · · ·Fe1m), as shown at the
bottom of the page.
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For m = 1 and we get w1 = 1. So, we have
IVq− ROFSIWA(Fe11 ,Fe12 , · · ·Fe1s ), as shown at the
bottom of page 17.

Hence the result is true for m = 1 and s = 1. Therefore
the Theorem holds for m = α1 and s = α2. Now we have to
check three cases;
Case-1:When s = α2,m = α1 + 1 (⊕̃α1+1j=1 (⊕̃α2i=1Feijδi)wj,

as shown at the previous page.)
Case-2:When s = α2 + 1,m = α1 (⊕̃

α1
j=1(⊕̃

α2+1
i=1 Feijδi)wj,

as shown at the previous page.)
Case-3:When s = α2 + 1 and m = α1 + 1 by (i) and (ii),
⊕̃
α1+1
j=1 (⊕̃α2+1i=1 Feijδi)wj, as shown at the top of the page.
Hence the result is true for s = α2 + 1 and m = α1 + 1.

Therefore by mathematical indiction it is correct for all
s,m ≥ 1.
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