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ABSTRACT The increasing trends toward the accurate identification of power quality disturbances (PQD)
via power quality (PQ) monitoring require an appropriate digital signal processing (DSP) technique and a
robust classifier. To this end, Stockwell transform (ST), one of the most efficient feature extraction DSP
tools, and its several variants play an utmost role in PQ assessment framework. Its time-varying spectral
characteristics generally extract the local instantaneous frequency spectrum from the global temporary
behavior of PQD signal. However, the Standard ST suffers from the poor time-frequency resolution because
of its frequency-dependent Gaussian window (GW). While the analysis of the statistically time-varying
signals requires a suitable balance between time and frequency resolution. To this end, this paper provides
a comprehensive literature review on several modified versions of Standard ST for the first time to reduce
the computational complexity of the algorithm as well as maximize the energy concentration of the time-
frequency plane. A comparative analysis of all themodified STs has been presented in tabular form to provide
the key characteristics of each technique. Additionally, a case study has been presented to substantiate the
highest accuracy of the proposed algorithm over the other ST variants. Apart from the PQD classification,
miscellaneous applications of Standard ST and its modified variants have been indicated. This review paper
may provide a valuable resource to the researchers for further improvement of the time-frequency resolution
of ST not only in classifying PQD but also for its other wide applications.

INDEX TERMS Energy concentration, power quality monitoring, power quality disturbance, Stockwell
transform, time-frequency analysis.

I. INTRODUCTION
In recent years, several power quality (PQ) monitoring algo-
rithms developed for the identification of power quality
(PQ) issues have gained widespread attention from indus-
tries and researchers [1]. The primary reason behind this
is the proliferation of non-linear loads, solid-state switch-
ing devices, power electronics converters, power transfer
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switches, and protective equipment. Moreover, the grid sig-
nals have become more distorted due to the disturbed gen-
eration and the excessive use of renewable energy sources
[2], [3]. Therefore, the nature of the PQ signal is contin-
uously changing due to the aforementioned reasons which
demand more accuracy in the identification of the com-
plex PQ disturbances. For this purpose, various online and
offline approaches to PQ monitoring are available in the
literature which majorly involves two stages: time-frequency
analysis or the feature extraction stage and the classification
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stage. Further, this classification framework plays a vital role
in developing power quality disturbance (PQD) mitigation
approaches by recognizing its underlying reason [4], [5], [6].
The commonly known PQD are an interruption, oscillatory
transients, voltage sag/swell, flicker, etc. To maintain the
reliability of the power transmission and distribution network,
accurate detection and mitigation of PQD are essential to
improve the PQ and it is only possible by adopting highly effi-
cient methodologies in each stage of PQD classification [7].

The time-frequency representation converts the
1-dimensional time series into 2-dimensional data of time and
frequency which shows the deviation of spectral contents of
PQD signal over time [8]. The most used time-frequency rep-
resentation techniques for non-stationary signals are short-
time Fourier transform (STFT), Hilbert Huang transform
(HHT), Wavelet transform (WT), Gabor transform (GT),
Chirp transform (CT), Stockwell transform (ST), Slant trans-
form (SLT) etc. [9], [10], [11], [12]. All the above-mentioned
digital signal processing (DSP) techniques come under non-
model-based (or nonparametric) methods. In these methods,
there is no requirement of prior knowledge of signals. But
it is suffered from low-frequency resolution issues which
further depend on the length of the signal being analyzed.
To overcome this problem, there is another category of signal
processing technique known as model-based (or parametric)
methods. In this tool, the model information (e.g., harmonic
model or autoregressive model) from which a signal is gen-
erated may be recognized based on the prior knowledge of
a disturbance. MUSIC methods, Kalman filter (KF), and
ESPIRIT methods are some of the common methods used for
harmonic modeling [2], [3]. Before choosing an appropriate
DSP technique for PQ assessment, its characteristics and
disadvantages should be known. For instance, STFT provides
the phase and frequency information of the local sections
which vary over time. Although it provides some informa-
tion on time and frequency content present in a signal, the
fixed window size is the main drawback associated with it.
The authors in [13] presented the mathematical description
and some specific applications of windowed DFT or STFT
which is used to classify the PQ issues as per IEEE stan-
dard 1159 [14]. The next logical step in the field of DSP
techniques is WT which is having the concept of variable-
sized windows. WT has been implemented for the first time
in [15]. It performs a very significant role in recognizing the
PQ disturbances. WT uses the concept of multi-resolution
analysis (MRA) which makes it a very powerful feature
extraction tool. Various classifications of WT have been used
in one-dimensional or two-dimensional forms like continu-
ous wavelet transform (CWT), complex continuous wavelet
transform, discrete wavelet transform (DWT), and dual-tree
complex wavelet transform (DTCWT) [16], [17]. The more
computational complexity, noise sensitivity, and dependency
on the mother wavelet are some of the disadvantages associ-
ated with WT [9], [10]. The ST proposed by Stockwell et al.
[18], overcomes the shortcomings of STFT and WT. It is one
of the most powerful PQ assessment techniques available in

FIGURE 1. Basic aspects to maintain time-frequency resolution in ST.

the literature because of its frequency-dependent Gaussian
window (GW) in which window width is inversely propor-
tional to the frequency of a signal. Thereby, the windowwidth
is increased to provide better frequency resolution while it is
decreased to provide better time resolution [19], [20], [21],
[22]. Despite the presence of varying GWwidth, the Standard
ST is having fixed time-bandwidth product due to which it
can give a false result in certain cases e.g., a momentary
interruption signal would be identified as a sag signal [23].
Therefore, a signal-dependent window is required rather than
a frequency-dependent window tomaintain a suitable balance
between time and frequency resolution as well as to enhance
the energy concentration of the time-frequency plane. This
involves the following aspects: selection of GW, selection
of GW parameters, and adjustment of GW parameters as
depicted in Fig. 1.

To obtain a high time resolution in low-frequency band
and high-frequency resolution in high-frequency band, two or
more GW have been proposed in the literature. The selection
of GWparameters also plays a dominant role for this purpose.
To examine GW, different scaling rules have been adopted in
the literature and it is found that a large number of GWparam-
eters gives more flexibility to enhance the energy concen-
tration. The third aspect i.e., adjustment of GW parameters
decides the detection capability of ST for analyzing different
PQD signals. Various heuristic approaches have been adopted
to fix the values of GW parameters. But a fine optimal
solution may not be possible by implementing such rigorous
approaches. The optimal selection of GW parameters can be
found in several modified versions of ST [24], [25], [26],
[27], [28]. Most of the window width optimized ST meth-
ods utilize the concept of non-linear inequality constrained
optimization problem in which energy concentration measure
(ECM) is selected as an objective function and inequality
constraints decide the boundary conditions of GW. Genetic
algorithms (GA), Ant Colony Optimization (ACO), Particle
SwarmOptimization (PSO), etc. are some of the optimization
techniques to adjust thesewindow parameters [29], [30], [31],
[32]. On the other hand, artificial neural network (ANN),
Fuzzy logic (FL), Bayesian classifiers (BC), support vector
machine (SVM), decision tree (DT), nearest neighbor algo-
rithm, Hidden Markov model (HMM), ensemble decision
tree (or random forest) are some of the common classifiers
available in the literature [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43]. Their inputs are the statistical
features extracted from the DSP techniques.
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No attempts have been made in the literature to provide
a review on ST and its variants. Though several improved
ST variants are coming year by year to provide better energy
concentration of time-frequency plane along with improving
the computational complexity. For this purpose, this novel
review manuscript presents a comprehensive overview on
several versions of ST for the first time not only for PQmoni-
toring but also for miscellaneous applications like biomedical
engineering, seismography, fault detection etc., because these
applications cannot be left untouched in order to provide a
review in the chronological order. In the series of improv-
ing time and frequency resolution, several versions of ST
have been modified from the techniques used in applications
like engine knock signals, biomedical signals etc., and these
versions have been extensively used for the purpose of PQ
monitoring.

In addition to it, a case study has been presented to validate
the performance of the proposed algorithm over the previous
variants. Section 2 describes the basic mathematical equa-
tions of Standard ST alongwith the derivation of discrete GW.
The necessity of modifying Standard ST due to its inherent
disadvantages has been discussed in Section 3. Several modi-
fied versions of Standard STs are presented in Section 4 along
with their comparative analysis followed by a case study in
section 5. Section 6 illustrates the miscellaneous applications
of Standard ST as well as modified STs. The final concluding
remarks with recommendations have been given in Section 7.

II. STANDARD ST
There are two methods for obtaining the Standard ST mathe-
matically either using STFT or CWT. If τ, f and w(t) repre-
sent the time, frequency, and window function then the STFT
of a signal x(t) can be expressed as,

STFT (τ, f ) =

∞∫
−∞

x(t)w(τ − t) exp(−j2π ft)dt (1)

The Standard ST can be derived by replacing the fixed win-
dow function of STFT with scalable and movable Gaussian
function,

gw(t) =
|f |
√
2π

exp(−t2f 2/2) (2)

ST (τ, f ) =

∞∫
−∞

x(t)gw(τ − t) exp(−j2π ft)dt (3)

If p is the wavelet width, then CWT expression is expressed
as,

CWT (τ, p) =

∞∫
−∞

x(t)w(τ − t, p)dt (4)

The Standard ST can be obtained by modifying the phase
information in CWT as,

w(t) =
|f |
√
2π

exp(−
t2f 2

2
) exp(−j2π ft) (5)

ST (τ, f ) =

∞∫
−∞

x(t)gw(τ − t) exp(−j2π ft)dt (6)

Thereby, the Standard ST facilitates the additional Character-
istics to either STFT or CWT. Here factor p denotes nothing
but the Standard deviation (σ ) of the GW which is inversely
proportional to the frequency f . To obtain the discrete version
of the GW, firstly differentiation of (2) must be performed
with respect to time,

dg(t)
d(t)

= −
tg(t)
σ 2 (7)

By applying the Fourier transform on each side of (7),

iωG(ω) =
1
iσ 2 ×

dG(ω)
dω

(8)

dG(ω)
dω

G(ω)
= −σ 2ω (9)

Further integrating on both sides,
ω∫

0

dG(ω)
dω

G(ω)
dω = −

ω∫
0

σ 2ωdω (10)

lnG(ω)− lnG(0) = −
σ 2ω2

2
(11)

Due to the normalized nature of Gaussian, the DC compo-
nent G(0) = 0, so (11) can be rewritten as,

lnG(ω) = −
σ 2ω2

2
(12)

Applying the exponent on each side results into,

G(ω) = exp(−
σ 2ω2

2
) (13)

Finally, the discrete version of GW of Standard ST can be
obtained by making ω = 2πα, α→ m/NT , f → n/NT ,

G(ω) = exp(−
2π2m2

n2
) (14)

where m = n = 0, 1, 2 . . . . . . ,N − 1.
The Standard ST provides complex (real and imaginary)

time-frequency spectral localization with a direct connec-
tion, via time averaging, with Fourier spectrum. The fea-
tures extracted through the transformed contours are used
as the inputs for the intelligent classification framework.
The various advantages, associated with ST, are continuously
attracting the researcher’s mind for two decades. The authors
in [19] analyzed the PQ signals using modified WT (or ST)
i.e., a slight modification of local spectrum patterns or phase
correction in WT. This technique provided a good time-
frequency resolution. ST and modular neural network-based
PQD recognition has been presented in [44]. In [45], ST was
implemented on eight single-stage PQ disturbances and two
complex PQ disturbances with a decision tree as the classi-
fier. The ST-based probabilistic neural network algorithm has
been presented in [46] for eleven types of PQD classification.
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This technique also reduces the number of features without
losing their original characteristics. The ST-based recognition
of single-stage and multiple PQ disturbances was proposed
in [20]. The suitable features extracted from the transformed
curve were provided as an input to artificial neural network
and decision tree-based classifier. In [47], high impedance
fault detection has been performed using ST which extracts
the third harmonic component of phase angle of the current
waveform. The authors in [48] recognized various underlying
causes and types of PQ disturbances using a computationally
efficient S-Transform-based decision tree.

III. NEED OF MODIFICATIONS IN STANDARD ST
The shape of a window used for determining the energy con-
centration of time-frequency distribution plays a pivotal role
in any DSP technique. In Standard ST, the window function
is narrower in the time domain for high-frequency analysis,
resulting in poor frequency localization and it provides higher
computational complexity O(N 3). On the other hand, the
possibility of magnifying noise amplitude in high-frequency
regions and the correlation of several samples in the spectrum
makes this approach compromising for practical applications
like PQD classification. Thus, many attempts have beenmade
in optimizing ST to improve energy concentration in the time-
frequency domain and make it faster [49].

IV. MODIFIED VERSIONS OF STANDARD ST
The different versions of ST used for feature extraction of
simple and complex PQ disturbances have been discussed in
this section.

A. BASED ON WINDOW SELECTION
The other windows instead of symmetrical GW have also
been proposed as a kernel of ST to satisfy the different
criteria. To this end, an unsymmetrical bi-GW, made of two
half GW was proposed in [50] to improve the time resolution
in the time-frequency domain which is poor in Standard ST
due to the long front taper of GW. From (2), the expression of
a specific window function, wGS corresponding to a specific
form of Standard ST can be written as,

wGS (τ − t, f , {γGS}) =
|f |

√
2πγGS

exp(−
(τ − t)2f 2

2γ 2
GS

) (15)

The Standard ST can be obtained by putting γGS = 1.
To improve the front time resolution of wGS , a very low value
of γGS is required which inherently degrades the frequency
resolution resulting in a trivial time-frequency spectrum.
As an alternative, a bi-GW function, wBG is introduced for
the visual identification of transition segment using two half
GWs with different front and back tapers,

wBG(τ − t, f , {γ BBG, γ
F
BG}) =

|f |
√
2π

2

(γ BBG + γ
F
BG)

exp(−p)

(16)

where, p = (τ−t)2f 2

2[γ #BG(τ−t)]
2 and the rate of taper of wBG as a

function of (τ − t) i.e., γ #
BG(τ − t) is given by,

γ #
BG(τ − t) =

{
γ BBG, t ≥ τ

γ FBG, t ≤ τ

}
(17)

The time resolution is controlled by decreasing the front
taper and frequency resolution is improved by increasing
the back taper, resulting in overall improved time-frequency
resolution. In [51], a hybrid approach based on ST and
dynamics (Dyn) is proposed in which firstly the location of
signal components has been identified by Dyn followed by
fast Fourier Transform (FFT), and Inverse FFT is applied to
only a few frequency components. Two GWs, G1(a < 1)
and G22(a > 1), where a is the adjustable parameter for
tuning the GW, were proposed in this paper to provide better
flexibility and adaption, first for low-frequency components
(f < 350Hz) and second for high-frequency components
(f > 350Hz),

G1(m, nf ) = exp(−a
2π2m2

n2f
) (18)

G2(m, nh) = exp(−a
2π2m2

n2h
) (19)

An adaptive Dolph–Chebyshev window (DCW) was pro-
posed in [52] in place of GW for time-frequency analysis
of non-stationary signals like multi-component signals and
frequency modulation signals. The origin DCW is given by,

wDC (n, q) =
1
N
[
1
q
+ 2

(N/1)/2∑
j=1

TN−1(K0 cos
jπ
N

) cos
2njπ
N

]

(20)

where, k0 = cosh(1/N − 1 cosh−1 1/r) and k th order Cheby-
shev polynomial, Tn(k) is given by,

Tn(k) =
{

cos(n cos−1 k), |k| < 1
cosh(n cos−1 k), |k| ≥ 1

}
(21)

The value of q for the DCW is,

q =
β + o |f |Z

η
(22)

where, β is the controlling parameter that deals with the
balance between ST and STFT, z defines the rate of change
of DCW width of frequency f , η is the factor of DCW, and
o defines the mode of change of DCW width. The adaptive
DCE is obtained by fixing β = 0 and varying the other
parameters of q i.e. z, o, η to tune the DCW which enhances
the energy concentration in the time-frequency plane.

A double-resolution ST (DRST) was proposed in [23] to
reduce the computational complexity without losing the nec-
essary information present in the signal to be analyzed. This
approach provides accurate frequency extraction because of
variable time-bandwidth product (unlike in Standard ST),
by ignoring the unnecessary frequency components present
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in the signal. The window functions for DRST can be defined
as,

w1(t, f ) =
√
β1 |f |
√
2π

exp(−
t2β1 |f |

2
), if , f ≤ 1.5f0,

β1 > |f | (23)

w2(t, f ) =
√
β2 |f |
√
2π

exp(−
t2β2 |f |

2
), f > 1.5f0,

β2 < |f | (24)

where, f and f0 are the signal and fundamental frequency
respectively. β1 and β2 are the adjustable parameters to pro-
vide a variable time-bandwidth product. By putting β1,2 =
|f |, DRST becomes Standard ST. Moreover, β1,2 > |f |
is desirable when the signal contains only main frequency
components such as pure voltage sag, swell, etc. to provide
better time resolution. On the other hand, β1,2 < |f | should
be adopted to control frequency resolution for the signals
like transient, harmonics which contain several frequency
components. Due to the availability of complex signals in
real-time, the frequency spectrum is generally divided into
two parts namely the low-frequency part and high-frequency
part and different values of β1 andβ2 have been used to meet
the concept of double resolution.

In [53], the authors presented a novel optimally concen-
trated discrete window (OCDW) with a new scaling crite-
rion that works on a constraint optimization problem having
an objective function, to maximize the product of energy
concentrations of time and frequency domain. The Proposed
OCDW and its ST can be expressed as,

9(k, n) =
(w0,k )(Mn,Ln)

(N/2)−1∑
k=−(N/2)

(w0,k )(Mn,Ln)

(25)

SOCDW [j, n] =
(N/2)−1∑
m=−(N/2)

X [m+ n]µ(m, n) exp(i2π
m
n
j)

(26)

where µ(m, n) is the Fourier transform of the OCDW and n
denotes the dependent parameter of both time and frequency
intervals which depend on the frequency of multiresolution
analysis. The value of Mn and Ln for a fixed value of ρ can
be chosen as, Mn = kN/n and Ln =

[
N (2ρ − 1)2/Mn

]
. But

it gives the scaling creation like Standard ST. Thus, a novel
scaling criterion is proposed in this paper where the value of
Mn and Ln can be chosen as,

Mn =

√
N (2ρ − 1)
√
tan θn

(27)

Ln =
√
N (2ρ − 1)

√
tan θn (28)

where

θn = tan−1(
σ 2

N (2ρ − 1)2
)+ (

4 tan−1(N/σ 2)(2ρ − 1)2 − π
N − 2

)

× (n− 1) (29)

Here σ defines the value of M and L at the lowest (n = 1)
and highest frequency (n = N/2).
The authors in [49] proposed an optimized ST for the

detection of complex PQ disturbances and thus improving the
time-frequency resolution. This paper overcomes the prob-
lem with [23] in which DRST fails for mixed or complex
PQ disturbances due to fixed β1,2. The proposed algorithm
adjusts β1,2 dynamically by optimizing the energy concen-
tration which is a function of β1 and β2. To this end, it is
found that the proposed optimized ST provides the energy
more concentrated as compared to DRST even in the case
of nonlinearity mixed complex PQ disturbances. A digital
prolate spheroidal window (DPSW) based modified ST [54]
has been proposed for the accurate detection of voltage sag
characteristics like duration, depth, and phase angle jump.
The solution of the following equation gives zero-order dis-
crete prolate spheroidal sequence i.e., win(N , χ) pass through
a low pass filter h(m),

N−1∑
m=0

h(n− m)wim(N , χ) = λ
i(N , χ)win(N , χ) (30)

where N is defined as window length and i, n =

0, 1, 2 . . . . . . ..N − 1. χ denotes the required main lobe
normalized frequency from 0 to 1/2. λi(N , χ) indicates
the energy ratio defined for each eigenvector of (30). The
eigenvector w0

n(N , χ) corresponds to the highest eigenvalue
λ0(N , χ) among all the eigenvectors, is chosen here as a
DPSW which results in the highest energy aggregation.
By putting, χ = 173.0512e(−11/f ), better accuracy is
achieved for the problem stated above.

A kaiser window with a designed control function is pro-
posed in [55] for ST which provides better frequency res-
olution for the disturbances like harmonics, transients, etc.,
and better time resolution at a fundamental frequency for
checking the amplitude of the disturbances like sag, swell,
etc. Here, the attributes of the fundamental optimal energy
concentration are chosen as the kernel function which is
dependent on the detection demand. This kaiser ST is made
up of STFT and the Standard ST. The mathematical expres-
sion for the kaiser window function is,

wk (t, f ) =
I0[α(f )

√
1− (t/T )2]

I0[α(f )]
, |t| ≤ T (31)

where I0 is the zero-order Bessel function and α is a function
of f .

B. BASED ON NUMBER OF GW PARAMETERS AND THEIR
ADJUSTMENTS
The second category of modified STs is concerning the num-
ber of GW parameters used and how they are adjusted in
literature. In [24], [56], the spread of GW (σ ) is modified
with the introduction of one parameter (α),

σ =
α

f
(32)
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The improved frequency resolution and time resolution
have been obtained with (α > 1) and (α < 1) respec-
tively. Further, a window width optimized ST (WWOST) has
been found in [25] in which two optimization algorithms for
constant and time-varying window width respectively have
been proposed. The former can deal with low/slowly varying
frequency components while the later is designed for high-
frequency components. To improve the energy concentration,
the standard deviation (σ ), is modified as,

σ =
1
f p

(33)

with this newly introduced parameter p, the window will
become wider and narrower in the time-frequency domain
for the cases p > 1 (corresponds to the first optimization
algorithm for fixed windowwidth) and p < 1 (corresponds to
the second optimization algorithm for varying windowwidth)
respectively. Whereas p = 1 value depicts the outcomes of
Standard ST.

A modified GW has been proposed in [57] for the power
signal clustering problem using a fuzzy C-means particle
swarm optimization algorithm. Two positive scaling factors
(a and b) have been introduced here to provide better control
of time and frequency resolution,

σ =
k

a+ b
√
f

(34)

where k ≤
√
a2 + b2

ACross-spectral modified ST approach has been proposed
in [26] with a scaling factor (γ ) which is defined to vary with
frequency linearly for better progressive control of GW,

σ =
γ

f
=
mf + k

f
(35)

where, k is the intercept, and m is the slope for a linear
variation in frequency. This approach is defined for phase
synchrony and coherence analysis.

In [58], the authors proposed a modified frequency scaling
scheme for a fast adaptive discrete generalized ST. The Stan-
dard ST computes the time-varying spectral characteristics
at all the frequencies even for the irrelevant frequencies too
owing to its linear frequency scaling scheme. The proposed
method follows the selective frequency scaling and window
cropping schemes to include only the significant frequency
functions. Additionally, the window function is folded at the
cropped points several times to reduce the effect of aliasing
due to the discretization of samples. The spread of GW is
dependent on three newly introduced parameters (α, β, γ ),

σ =
r

α + β |f |γ
(36)

where, r ≤
√
α2 + β2, which is the window width factor.

γ controls the rate of change of window width. α denotes
the tradeoff between ST and STFT. β defines the mode of
change of window width. The proposed methodology has
been applied to estimate the PQ indices accurately.

A Fast discrete ST (FDST) has been introduced in [59]
for multiple power quality disturbances with a modified GW
having four parameters,

σ =
r

α + β |f |c
(37)

where, r and c denote the scaling factors to control the oscil-
lations. On the other hand, a, c are the positive parameters.
By varying c from 0 to 1, some damped hidden frequencies
can be captured. Increasing the parameter r corresponds to
a broader window in the time domain thus improving fre-
quency resolution. Two novel frequency scaling/partitioning
schemes along with bandpass filtering are introduced to
reduce the computational cost and thus provide a higher
speed of convergence of the proposed algorithm. To over-
come the disadvantages of dyadic scaling in which some of
the significant frequency components can be missed, auto-
matic frequency scaling and power signal analysis scaling is
proposed to reduce the computation. A case study presented
in the paper shows the least computational time of FDST
with automatic scaling giving the best results. After that,
a bandpass filtering or window cropping is applied where the
cropped GW has been multiplied with the FT of the distur-
bance signal resulting in a smaller number of computations.
The cropped window width is selected as per the analyzed
frequency components to satisfy the uncertainty principle.

A sigmoid modified ST has been proposed in [60] to con-
trol the GWwidth. By tuning some parameters of the sigmoid
function, GWs with different widths have been obtained for
several frequency components. This methodology is applied
for vibrational monitoring of water pipes, and it is giving
better results as compared to the previous linear modified
ST [26] and power modified ST [28]. Here, the GW width
is controlled by the sigmoid function as follows,

σ =
1

S(f , β)
(38)

where β denotes the tuning parameters which are further
responsible to control the width of the sigmoid function

S(f ) = f (a, b),

S(f ) = afmerf (
bf
fm

) (39)

S(f ) is a function of two tuning parameters a (for amplitude
control) and b (for shape control) and maximum analysis
frequency fm. erf (χ ) is a function of Gauss error which is
defined as,

erf (χ ) = (2/
√
π )

χ∫
0

exp(−t2)dt (40)

A novel hybrid GW has been proposed in [27] to overcome
the drawbacks of the previous versions of ST,

σ =
mf p + k

f r
(41)
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Here, the parameter (f r/mf p + k) denotes the frequency
cycles within one σ of GW. All four parameters, r, k, p,m
provide more adaptability and flexibility to control the GW
width. To optimize the ECM, a constrained optimization
problem with non-linear inequality constraints has been pro-
posed in this paper. The GA approach has been used to
tune all four parameters and thus increase the time-frequency
resolution even in the presence of additive Gaussian noise.

In [28], a modified optimal FDST has been proposed for
the detection of single and multiple PQ disturbances. Like
the previous paper, this paper also deals with the problem
of maximizing the ECM as an objective function of an opti-
mization problem with a signal-dependent window instead
of a frequency-dependent window. As a result of which,
a sharper energy concentration in time-frequency distribution
is achieved. The standard deviation of the proposed GW
having four parameters varies as,

σ =

√
(af c + b)(f 1−d )

f
(42)

where a changes the mode of GW width, b denotes the
window factor, c decides the tradeoff between STFT and
ST, and d corresponds to the rate of change of GW width.
The expression of ECM using this modified optimal FDST is
obtained as,

ECM =
1∫

∞

−∞

∫
∞

−∞

∣∣STa,b,c,d (t, f )∣∣ dtdf (43)

Performance comparison of all the major modified ver-
sions of ST is depicted in Table 1 illustrating the key advan-
tages and limitations of each technique. Further, a suitable
version of ST is required with more energy concentration,
less computational complexity, and high time-frequency res-
olution for an application. To this end, a newer version is
proposed in this manuscript which improves the accuracy of
ST version proposed in [28] i.e., the modified optimal FDST.
In [28], the values of a,b,c and d are tuned by maximizing
ECM taking into account the whole ST matrix. On Contrary,
the proposed methodology maximizes the objective function
of the i.e., ECM by considering only one row of ST matrix
corresponding to the fundamental frequency component (fn)
i.e., 50 Hz. The normalized proposed ST is given by,

STa,b,c,d (t, f ) =
STa,b,c,d (t, f )√

∞∫
−∞

∞∫
−∞

∣∣Sa,b,c,d (t, f )∣∣2dtdf (44)

Now, this optimization problem is having proposed ECM
with two inequality constraints and a boundary condition for
four parameters which should lie between 0-2,

(ECM )proposed =
1∫

∞

−∞

∫
∞

−∞

∣∣STa,b,c,d (t, fn)∣∣ dtdf (45)

inequality constraints,

n2T 2
s f

d+1
max − a− b ≤ 0 (46)

af cmax + b− (lTs)2 ≤ 0 (47)

The GW width puts constraints on this optimization
problem to maintain a suitable tradeoff between time and
frequency resolution. Here, fmax is decided based on the
analyzed signal. The sampling time is denoted by Ts and the
value of n is chosen as 3 to provide minimum time resolution.
Though the standard deviation of GW in the proposed ST is
same as in Equation (42), but the method for maximizing
the ECM is different which gives a significant reduction
in computational time and complexity as compared to the
previous one described in [28].

V. CASE STUDY
The accuracy of Standard ST (oldest) [18], Modified ST
(newest) [28], and the proposed ST, in phase angle jump
(PAJ) estimation, have been investigated for a voltage sag
signal. The PAJ is nothing but the shift in voltage zero cross-
ings which is further helpful to determine the cause of a
PQD disturbance [48]. It is the largest value of phase angle
excluding the transition segments [61]. The complete details
of PAJ and the different techniques for its estimation have
been presented in [48], [61]. Initially, a synthetic voltage
sag signal is generated in MATLAB as per the international
standards IEEE 1159 [62] and IEC 61000-4-30 [63] with
a sampling frequency and aggregation period of 3.2 kHz
and 0.2s respectively. An original PAJ of 300 and the white
gaussian noise of 30 dB signal to noise ratio (SNR) and 20 dB
SNR respectively have been added to make it like the real-
time PQD. By putting a,b,c, and d values in GW of [28] equal
to 1,0,0, and 1 respectively, it will be resulted in Standard ST
thus making it only frequency dependent.

The modified ST [28] has been implemented in MATLAB
using GA which maximizes the ECM of the whole ST matrix
of dimension 640 × 640. Further, the voltage sag signal
analysis has been done using the proposed ST in which ECM
function of Equation (45) has been considered to deal with
only the fundamental frequency component. The obtained
value of optimized parameters (a,b,c,d) for modified and
proposed STs are 0.0006, 0.0146, 1.6001, 0.2310 and 0.3369,
0.0002, 0.0039, 0.6831 respectively. The Fig. 2 shows the
phase angle vs time contours of Standard ST, modified ST,
and proposed ST corresponding to the original sag signal.
The extracted PAJ values from Fig. 2(b) are 27.220, 28.620,
and 29.720 for Standard ST, modified ST and proposed ST
respectively for 0.63 pu residual voltage (Vres). Further, the
accuracy of all these methods has been checked with different
values of Vres, PAJ, and noise levels as shown in Table 2. The
Fig. 3 depicts the accuracy of all these ST versions in which
the proposed ST is giving the highest accuracy i.e., 99.01 %
and 99.09 % for 30 dB and 20 dB SNR respectively.

VI. MISCELLANEOUS APPLICATIONS OF STANDARD AND
MODIFIED STS
Apart from the PQD recognition, ST finds its applica-
tion in medicine [64], [65], [66], [67], [68], [69], [70],
[71], [72], mechanical engineering [73], [74], geoscience
[75]-[85], fault detection [86], [87], [88], [89], [90], [91],
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TABLE 1. Comparative analysis of a family of standard ST for non-stationary signal analysis.
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TABLE 1. (Continued.) Comparative analysis of a family of standard ST for non-stationary signal analysis.

TABLE 2. Accuracy comparison of Standard ST, modified ST and proposed
ST.

[92], [93], [94], [95], [96], condition monitoring of insulators
[97], [98], [99] etc. In the medicine field, S-Transform was
initially used in spectral analysis of non-stationary cardiovas-
cular time series [64]. It was suggested in [65] to use ST as the
best tool for the analysis of heart sounds. To identify the phys-
iological activities of a cardiovascular system effectively,
authors in [65] utilized the concept of ST for better inter-
pretation of reactive hyperemia from the doppler flowmetry
signals. The authors in [67] implemented ST for correlation-
based pattern recognition for time-frequency decomposition
of the heart sound signals. In [68], ST was implemented
for time-frequency analysis of electroencephalogram (EEG)
recording of seizure activities.

The adaptive ST has been utilized in [69] for the recog-
nition of microsatellites in DNA. In [70], the authors pro-
posed a modified window ST for the accurate identification

FIGURE 2. a) A voltage sag signal with 30 dB SNR, 0.63 pu, and 30-degree
phase shift b) Phase angle versus time contours.

of electromyograms in which a genetic algorithm is used
to optimize the window parameters. Further, ST is used to
localize the hotspots in tubulin which provides new insights
into developing new anti-cancer drugs [71]. In [72], a two-
dimensional discrete orthogonal ST has been employed for
feature extraction from brain magnetic resonance imaging
(MRI).

In the mechanical engineering field, ST was used in [73]
for the early detection of vibrational signals from the gearbox
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FIGURE 3. Accuracy of Standard ST, modified ST, and proposed ST in PAJ
estimation.

to protect the mechanical system from failure. Further, the
performance of ST was compared with the selective regional
correlation technique in [74] for the diagnosis of faults in
machine tools. In Geoscience field, ST finds its application
to calculate the localized spectrum of seismic cross-sections
for color display [75]. Further, ST was utilized in [76] to
calculate P-wave arrival time in noisy seismic data. In [77],
synthetic aperture radar image despeckling has been done
by 2D ST shrinkage technique. An amplitude preserving ST
was proposed in [78] for the compensation of seismic data
attenuation. A novel synchrosqueezing ST was suggested
in [79] for the decomposition of seismic data. The energy
concentration of time-frequency plane is further improved in
[80] by adopting a synchrosqueezing generalized ST for seis-
mic application. A three-parameter-based ST was proposed
in [81] for seismic data analysis. Moreover, a modified ST
with an asymmetrical kaiser window was implemented in
[82] on seismic signals for the detection of the event’s onset
effectively. In [83], the ST tool is used for accurate scanning
of PP and PS waves. Again, the synchrosqueezing general-
ized ST was recently used in [84] for seismic time-frequency
analysis with matching demodulation as a preprocessing step.
In [85], a novel multisynchrosqueezing generalized ST was
implemented for the accurate recognition of tight sandstone
gas reservoir.

Several state-of-the-art literatures are found for ST in fault
identification. In this series, a hyperbolic ST was imple-
mented in [86] for non-intrusive fault monitoring in a wide
area measurement system. Further, the authors in [87], uti-
lized the concept of ST for detecting the location of partial
discharge source (PDS) with the help of signals captured
using an optical sensor. In [88], the fault in the stator winding
of the induction motor has been identified with the help of
ST and random forest by sensing the stator current signals.
Again, ST estimates the statistical parameters like total har-
monic distortion in [89] and classifies the faults in a grid-
integrated wind energy system. In [90], a novel fast discrete
orthogonal ST was proposed for micro phasor measurements
which further detects faults and islanding. A locally demag-
netized fault recognition system using ST was proposed in
[91] for permanent magnet linear synchronous motor. The

authors in [92] implement ST for the detection of broke bar
faults which gives information about the fault severity even in
the very short starting duration and noisy conditions. In [93],
a novel ST with adaptive adjustment was proposed for a
VSC-based DC power system network to protect the DC grid
against short circuit faults. Further, ST was utilized in [94]
for the protection of the distribution feeder. A hyperbolic ST
is implemented in [95] for transformer differential protection
against cross-country faults which are the faults that occur at
two different locations within the same circuitry. Moreover,
a power calculation approach for non-stationary signals has
been presented in [96] using ST and current’s physical com-
ponents power theory.

In [97], the faults associated with direct lightning strikes
have been identified with the help of ST and mahalanobis
distance. Again, a hybrid combination of ST and affinity
propagation clustering is used in [98] to separate two PDS
of oil-paper insulation. Authors in [99] implemented a hyper-
bolic window ST for the estimation of the contamination level
of the overhead insulator by analyzing surface leakage current
signals in the time-frequency domain.

VII. CONCLUSION
The principle normative of this paper is to provide the major
reported literatures of several modified variants of ST illus-
trating their characteristics, for the accurate recognition of
PQD signals. To this end, these variants are classified based
on the window used and a number of parameters along with
their tuning by an optimization technique. The purpose of all
these variants is to optimize the ECM in the time-frequency
plane and to reduce the computational time. A case study
is presented to prove the highest accuracy of the proposed
algorithm in PAJ estimation over the other variants of ST
whichmakes the proposedmethod suitable for other PQD sig-
nals like swell, transient, interruption etc. along with complex
signals. This paper also indicates several other diversified
areas of ST like atmospheric physics, cardiovascular time
series analysis, seismography, biomedical science, etc. There
is still a lot of scope for research in this field as the time and
frequency resolution can only be improved up to some extent
at one instant of time because of Heisenberg’s uncertainty
principle. Beforemitigating a complex PQD, a precise assess-
ment of its type as well as the underlying cause is needed,
and this accuracy is dependent on the extracted PQ indices
from the transformed curves which are further fed to the
classifiers. Thus, the proposed study may give the direction to
develop new ST-based methodologies which should be able
to meet all the key requirements like the accurate statistical
value of PQ indicators, feasibility of online as well as offline
implementation, noise immunity, and classifying complex
PQD.
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