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ABSTRACT The energy interactions and uncertain factors of integrated energy systems (IES) have brought
risks to the reliable energy supply. A large number of states need to be analyzed to obtain a stable reliability
value. However, different operating characteristics complicate the optimal energy flow (OEF) model, which
brings tremendous computational cost. To address that, a deep-learning-based approach is proposed as an
alternative way to solve the OEF problems. This approach constructs the mapping between system state
and energy allocation to directly obtain the optimal load curtailment. Thereafter, the deep-learning-based
reliability assessment framework for IES is proposed to improve efficiency. Additionally, the Gaussian
noise and data-processing strategies are involved to achieve higher accuracy. Compared to the model-based
approach, the proposed method increases the reliability assessment efficiency by 6 orders of time. With an
accuracy of over 95%, it outperforms other autoencoder and random forest methods. Method accuracy has
remained above 90% in various scenarios.

INDEX TERMS Integrated energy system, deep learning, optimal energy flow, stacked denoising auto-

encoder (SDAE), reliability assessment.

I. INTRODUCTION
Integrated energy system (IES) has shown a promising land-
scape for its characteristics in energy sharing and flexible
energy management [1]. However, the interconnection of
energy can trigger unexpected failures and deteriorate the
reliability of the energy supply. The blackout of Texas in
2021 can be traced to the gas blockage [2], [3]. A similar
reason accounts for the blackouts that occurred in Singapore
and England [4]. Reliability assessment of IES reflects the
supplying reliability of IES and can be used as a quantitative
analysis tool [5] for upgrading and planning. Therefore, the
issue of IES reliability has become more critical.

Reliability assessment can qualitatively or quantitatively
assess the potential risks from various uncertainties in
the integrated energy system [5]. Accurate modeling for
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energy interaction is crucial in the quantitative analysis of
IES reliability assessment. Compared with the traditional
power system, bidirectional energy interactions and physical
characteristics should be studied to evaluate the reliability
level [6], [7]. Residual gas [8] and the dynamic transmission
process [9] are incorporated into the reliability assessment
process. Some byproducts of gas utilization, including smoke
and steam, are considered to refine the fluid model [10].
Multi-energy flow model of the power and heat system is
decoupled to accelerate the calculation [11]. Moreover, IES
reliability is also influenced by the uncertainties of renewable
energy installation and multiple types of loads [12].

Optimal energy flow can be used to calculate the opti-
mal load curtailment after the equipment failure in relia-
bility assessment [13]. By analogy with the optimal power
flow [14], OEF is also used to optimize the generation dis-
patch or minimize the energy shedding under a particular
objective function. For formulating the interactions of IES,

VOLUME 10, 2022


https://orcid.org/0000-0002-6036-3706
https://orcid.org/0000-0003-3899-412X
https://orcid.org/0000-0003-3742-765X
https://orcid.org/0000-0001-6423-4357
https://orcid.org/0000-0003-2907-2895
https://orcid.org/0000-0002-4986-4438
https://orcid.org/0000-0002-2773-9599

Z. Dong et al.: Deep-Learning-Based Optimal Energy Flow Method for Reliability Assessment of Integrated Energy Systems

IEEE Access

OEF is an effective tool to address the scheduling problem
across multiple energy systems and optimize energy distri-
bution [13]. The OEF is applied to optimize the energy uti-
lization of IES considering the carbon emission [15] and
economical factors [16]. A two-stage stochastic program-
ming model is presented to evaluate the operational risk of
IES with high penetration of renewable energy [14]. Con-
sidering a set of economic factors, a hybrid energy sharing
framework is applied to a heat-electricity system [15]. A day-
ahead energy trading strategy is proposed to reach a win-win
situation of efficient utilization and economic operation [16].
Apart from the diversity of optimization goals, the optimiza-
tion and analysis can be realized in a variety of ways, such as
the contract theory and game model. The former can be used
in a closed-loop energy coordinative framework [17], and a
Stackelberg game model is used to coordinate multi-energy
flow [18]. In summary, the researchers mainly endeavor to
improve the OEF accuracy, but the model complexity brings
a heavy computation burden. In each system state, minimum
load curtailment needs to be determined, and repetitive OEF
solving is also time-consuming [19].

As a new-arising technology, deep-learning approaches
bypass the physical model to solve complex OEF problems.
A deep learning approach is applied to manage the cool-
ing/heating energy of the building [20]. And the energy opti-
mization can be further improved with load demand forecast-
ing in a deep learning way [21], [22]. With the Industrial
Internet of Things (IIoT) gaining more importance in modern
industry, an IToT-based framework is combined with deep
reinforcement learning techniques to optimize energy uti-
lization [15]. Allowing uncertainties, a random-forest-based
method is devised to optimize the distribution of power and
gas [23], [24]. Although the deep learning approaches have
shown high efficiency, a comprehensive method based on
Monte Carlo simulation and the energy flow model is com-
monly used in existing IES reliability works [25], [26]. How-
ever, studies of the deep learning applications in the IES
reliability assessment are relatively rare. Further research is
still needed.

In this paper, a deep-learning method is proposed to solve
the OEF in a faster manner for reliability assessment. First, a
stacked denoising auto-encoder (SDAE) is developed to map
the relationship between the system state and optimal opera-
tional results. Thereafter, the SDAE-based network is used to
determine the load curtailment of system states considering
the multiple uncertainties. The reliability indices are calcu-
lated based on the load curtailment and the weakness of IES
can be identified in terms of energy shortage. In summary, the
main contributions are as follows,

o A deep-learning approach based on an SDAE network
is proposed to determine the optimal energy flow in IES
with high efficiency and acceptable accuracy. This tech-
nique is an alternative way to the traditional model-based
optimization algorithms. It can approximate the relation-
ship between system states and optimal results.

« A novel deep-learning-based reliability assessment
framework is developed for IESs. Applying deep-learning
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OEF to reliability assessment contributes to the analysis
of large numbers of system states in batches and signifi-
cantly improves the efficiency of reliability assessment.

o Considering the data characteristics of OEF, the Gaus-
sian noise and data-filtering strategy are proposed to
improve the accuracy of results.

The remaining paper is organized as follows. The SDAE
network is introduced in section II. In Section III, the chal-
lenges in IES reliability assessment are discussed and a
deep-learning framework is proposed. Section IV presents
the SDAE-based OEF learning process, including the net-
work design and network training. The overall procedure is
described in section V. Numerical results with the proposed
method are shown in section VI. Finally, the paper is con-
cluded in section VII.

Il. INTRODUCTION OF SDAE NETWORK

This section briefly introduces the autoencoder (AE) and rel-
evant variants, including denoising autoencoder (DAE) and
stacked denoising autoencoder (SDAE).

1) AUTOENCODER

Z=s(W'Y+b)
2,

Y =s(WX +b)
hy

FIGURE 1. The structure of the Autoencoder.

Autoencoder is a feedforward network with a single hidden
layer. The encoded feature output by the hidden layer can be
expressed as,

h(xi) = s (Wxi + b) ey

where s(') denotes the activation function. % is the encod-
ing transforming function. x; is the input vector of the ith
sample. W and b represent weights and bias in the hidden
layer, respectively. Then the hidden layer output matrix can
be obtained by gathering /(x;) of all samples.

Y=[h(x),h(x2), - h(xng) ] =sWX+b) (2

where Y is the encoding feature. N; is the sample number. The
hidden layer output is the encoding form of the input features.
The key idea of AE is to write the original input fea-
tures while keeping valuable features in the encoding form.
Decoding can be used to test whether valuable features are
kept. If the feature can be decoded into the original form, Y
contains the valuable information of the original input. The
feature reconstruction in the decoder can be expressed as,

Z=g(Y)=s<WTY+b’) 3)
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where Z is the decoding output. g(Y) denotes the decoding
transforming function. W' and b’ represent weights and bias
in the decoding layer. Therefore, the size of Z is the same as
that of the original input X.

2) DENOISING AUTOENCODER

Y =s(WX +b)
h

0

X

noise

S

FIGURE 2. The structure of denoising autoencoder.

Denoising autoencoder is the network with a noise erosion
layer at the front of AE. The noise erosion layer is used to
add noise to the input so the network can be trained against
noise. By training the network with additional noise, DAE can
obtain a denoising effect. A practical way of noise erosion is
the “random mask™, i.e., randomly setting the original value
to zero. The erosion can be expressed as,

Xnoise = sgn (r - P) X (4)

where Xj,,isc 1S the input with noise erosion. sgn(r-p) is the
signal function. r is a random number. p is the probability of
erosion.

3) STACKED DENOISING AUTOENCODER
The difference between the traditional AE and the SDAE-
based network is the stacked structure and the noise erosion

layer. The stacked structure brings more nonlinear transfor-
mations to solve the linear-inseparable problem.

oo e
_OmmomcmmmwO Y =h(--h(X))

°° e X oise
oo 0o X

FIGURE 3. The structure of stacked denoising autoencoder.

Output Layer Z=g(--gX))

Decoder

Encoder

Noise Erosion

Input Layer

The stacked structure can process the input data in a chain
of linear-nonlinear transformations [27]. The chain operation
eventually extracts abstract features and rebuilds original fea-
tures. The encoding and decoding process can be expressed
as (5) and (6), respectively.

=1 (W (2 (o Kuse)))) )
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where Y; and Z; are the outputs of the /th encoder and decoder
layer, respectively.

Ill. PROBLEM STATEMENT AND SOLUTION FRAMEWORK

~

EDNS — z P, (LC,E +Lcy+ LC,C)

s€Q),

SDAE-based OEF Analysis

p
IES Reliability
R

.

MCS Sampling

FIGURE 4. The deep-learning framework of reliability assessment.

The reliability assessment is to evaluate the reliability lev-
els of the possible scenarios based on their probabilities and
impacts. The probability of the system state is obtained from
the out-of-service probability of the equipment, while the
impact is determined by solving the OEF in IES. In the relia-
bility assessment, all the uncertainties should be analyzed to
calculate the optimal load curtailment.

The deep learning method is a model-free way to calculate
the optimal load curtailment by mapping the relationship with
weight matrices and bias vectors. This method is the matrix
calculation which is easy to extend for batch calculations.
Therefore, it can accelerate the analysis of OEF for massive
system states. To this end, a data-driven approach to solving
OEF is the core of the reliability assessment scheme for IES.

The proposed deep-learning IES reliability framework is
shown in Fig.4. The probability is based on Monte-Carlo Sim-
ulation, while the impact is calculated via the SDAE-based
OEF learning approach. The proposed framework includes
three stages.

Stage 1: 1ES state sampling. The possible system states are
selected based on the Monte-Carlo simulation and equipment
failure model.

Stage 2: SDAE-based OEF analysis. The selected states are
analyzed and the optimal energy curtailment is determined
based on the proposed deep-learning-based OEF.

Stage 3: 1ES reliability index. The reliability is calculated
in terms of the expected demand not supplied (EDNS). The
reliability index is expressed in a weighted form where state
probabilities are regarded as the weights.

A. SELECT STATES VIA MCS

The MCS method relies on repeated random samplings to
estimate reliability indices. Equipment samples are obtained
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by MCS and the two-state model can be expressed as,

st = 0, ifr>U 7
1, else
where sy is the kth equipment state. r is a random value. Uy
is the out-of-service probability of the kth equipment. The
system states are determined by combining all the equipment
states, which can be expressed as,

U skCr | Up Uy (8)

keQEgs

SIES =

where sgs is the system state of IES, which is represented by
the capability of available equipment and the current wind
speed and solar irradiation. Qs is the set of equipment
states. Cy is the capacity of kth equipement.

The weather factors are randomly chosen from the his-
torical data. ¢ is the solar irradiation. v is the wind speed.
For each particular system state, the state probability can be
expressed as,

Py =— &)

where P; is the system state probability. N is the occurrence
of system state s. N is the total number of system states.

B. STATE ANALYSIS AND OPTIMAL ENERGY FLOW

Energy interaction is supported by the energy converting
equipment, including combined heat and power units (CHP),
geothermal pump (GHP), gas boiler (GB), air source heat
pump (ASHP), electric chiller (EC), absorption chiller (AC),
etc. To address the bi-direction interaction, the OEF is devel-
oped to formulate the energy interaction and determine
energy utilization. Renewable energies are plugged into the
IES with a power conversion system (PCS). In the reliability
assessment, the optimal energy flow aims to minimize the
curtailment of load and renewable energy, and the objective
function is expressed as,

f=wilc,u +w2Lc.g +w3Lc,c +wa(Lc,w + Lc,py)
(10)

where Lc g, Lc g, and Lc, ¢ are the load curtailment of heat-
ing, electricity, and cooling, respectively. Lc w; is the wind
energy curtailment. Lc _p, is the solar energy curtailment. w;
is the weight of the ith curtailment. The first three items are
designed to meet the load demand as much as possible, while
other items are used to maximize the utilization of renewable
energy.

Equality constraints include energy balance constraints of
each subnetwork.

PGria + Pcp + (Pwr + Ppy) fpes
=LpEg — Lc.g + Pge + Pasip + Pcip (11)

where Pg;iq is the power purchased from the grid. Pcy, is the
power output of CHP units. Py; and Pp, are the power injec-
tion of the wind turbines and photovoltaic cells, respectively.
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fpes 1s the efficiency factor of PCS. Lp g is the electricity load.
PEg¢, Pasnp, and Pgy, are the power consumption of electric
chiller, air source heat pump, and ground source heat pump,
respectively.

PPv = PPv,max - LC,PV (12)
PWt = PWt,max - LC,WI (13)
where Pw; max and Pp, max are the available capacities
of wind farm and the photovoltaic system, which can be

obtained based on the wind speed and solar irradiation. The
relationship can be expressed as,

0 Vv < Ver, V> Voo
v — vy
Pwimx =\ Ply——— va <v<w (14)
X VR — V(I
Py, VR <V <Vco

where PR Wt is the available and rated power output. v is
the current wind speed. vg, v¢y, and vcp are the rate of wind
speed, cut-in wind speed, and cut-out wind speed.

The photovoltaic generation is controlled by the maximum
power point tracking (MPPT) technique. In MPPT control,
the output of PV can be expressed as,

4
Promas = o PR, —— 147 (To = TE)] (15
psrc

where Pp, max is the maximum power output of PV at the
current time. @s7c is the standard irradiation. Tp, is the actual
PV temperature. TR Pv is the reference temperature. PR Py
is the rated power output of the photovoltaic cells. pp, is
an inner parameter. y is an efficiency factor related to the
temperature.

Lpu — Le,i + Oac = Pcwpfrzp,chp + fasupPashp
+fenpPacnp + Qcb (16)
where Lp g is the heat load. Q4. is the heat consumption
of AC. Pcyp is the power output of CHP and fyop, cpp is
the heat-power ratio of energy conversion. fap is the ASHP
conversion efficiency. fgpp is the GHP conversion efficiency.
Qgp is the thermal generation of GB.

Lp,c — Lc,c = fEcPE: + facQac (17

where Lp ¢ is the cool load. f. is the efficiency factor of EC.
fac 1s the cool-heat ratio of AC.

Inequality constraints include operational limits in power,
heating, and cooling systems.

PGrid,min < PGrid < PGrid, max
0 <Pcrp < Ccip

0 < Qc» < Cap

0 < Pgc < Cge

0 < Pagip < Casip

0 < Pep < Canp

0 < Qac < Cac
OSPWt+PPv<Cpcs

(18)

0 < Ppy <Cpy

0 <¢ < ¢max
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where PGyig min and Pgrig max are the lower and upper limi-
tations of electricity purchased from the grid. C denotes the
equipment capability, for example, Cp.; is the capacity of the
power conversion system.

C. RELIABILITY INDEX

The IES reliability can be evaluated with the expected value
based on the probability of system state and the optimal load
curtailment.

ReDNS = Z Ps(Lc.e + Lo +Leyc) (19)
SESIES

where Rgpys is the reliability index in terms of expected
demand not supplied (EDNS). s is the system state. P is the
possibility of the state s, which is calculated by (9). sjgs is
the set of the possible system states in period time ¢, which
is determined by MCS as (8). Lc.u, Lc E, and Lc ¢ are tra-
ditionally obtained by solving the equations (10)-(18), while
they can be directly predicted by the SDAE network once it
is trained. Section IV details this training process.

IV. SDAE-BASED OPTIMAL ENERGY FLOW APPROACH

A neural network with a particular structure can be considered
as a function set, where different functions can be obtained
by changing network parameters. In a supervised learning
process, network parameters are learned through a gradient-
descent process.

A. OPTIMAL ENERGY FLOW FEATURES

The optimal multi-energy flow contains the multi-energy fea-
tures and their influence mechanism, including the capac-
ity of the energy generation, energy conversion, and the
internal physical laws. These multi-energy features, includ-
ing optional factors and unchangeable variables, are closely
dependent on each other and eventually influence the energy
curtailment. From the OEF model, the dependence between
the decision variables and other uncontrollable factors fol-
lows a function. From the perspective of deep learning, solv-
ing the OEF problem can be regarded as regression work.
The relationship between the energy variables is mapped,
whereby operating variables are predicted.

The curtailment of load and renewable energy are directly
related to the equipment capacities, load demand, and actual
power outputs of WT and PV. Since the other arguments in
the physical model like constant efficiency factors remain
unchanged, they can be excluded from input data. Therefore,
the input vector X and the output vector Y are as follows,

X = [Ccnp, Cip, Cee, Cashps Canps Cacs Cevr
Cpv, Pwr max> PPV max> Lp.E>» LDp.H» Lp,C, v, 9]
(20)
Y = [PGria, Pcupr, QGB. Pashp, PGhp, PEc, OAc,
Pw;, Ppy, Lc.E, Le.is Le,c, Le,wrs Le,pyl 21

B. PRE-TRAIN ENCODER: FEATURE EXTRACTION
In the pre-train stage, a large size of unlabelled data is used to
outline the initial value of encoder parameters in an improved

91096

network with Gaussian noise erosion. The improved SDAE
network is shown in Fig.5.

Noise Erosion Encoder Decoder

Gaussian

Noise -
\ Latent 5 Reconstruct
Input g —X Feature g Feature
feature 1 T

o

Noise Erosion Encoder Decoder

Gaussian
Noise

\
Input o —X
feature |

n

Reconstruct
Feature

Hidden 1
Hidden 2
Hidden 2’
Hidden 1’

Encoder Decoder

Noise Erosion

Gaussian
Noise

\
Input o —X
feature l

Bt

Latent Reconstruct
Feature Feature

Hidden 1
Hidden 2
Hidden 2’
Hidden 1’

Latent Space

FIGURE 5. The proposed structure of the pre-train stage.

To increase the feature diversity and extract fine features,
hidden layers should be larger with the depth increasing of
the encoder. In the traditional structure, the size of the middle
layer is the smallest to compress and filter features. However,
the structure of the encoder is inverted in our network, allow-
ing for rewriting features in a high-dimensional way.

The features are extracted and rewritten more abstractly
in a high-dimensional way. Training with noise endows the
network with anti-noise ability and robustness. In the classic
SDAE network, the random mask strategy is widely used to
add noise as equation (4). It is unsuitable for the state data
of IES, which may block the key features out of the network.
A random Gaussian noise strategy is expressed as,

Xnoise = 77X O sgn (}’ —P) +X (22)

where Xj,0ise 1S the input vector added with noise. 1 is the noise
ratio, which obeys a Gaussian distribution. » is a random
vector. p is the probability vector of noise arising. sgn(r - p)
is the noise flag in the Monte-Carlo simulation. © represents
the element-wise multiplication. The randomly selected parts
of data are added with Gaussian noise. This strategy prevents
data distortion and increases sample diversity.

Feature extraction relies on the value of encoder parame-
ters. However, direct learning parameters of all the encoder
layers are intractable. To solve this problem, this pre-train
stage is completed layer by layer in a symmetric network of
encoder-decoder. For example, the first encode layer (Hidden
1 in Fig.5) is trained in the subnetwork Hiddenl-Hiddenl’.
Then, each encoder layer and corresponding decoder layer
are added to the subnetwork and the new layers are trained in
the same way.
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In each subnetwork, the encoder layers rewrite the input
feature into a latent feature, and the large difference in the
input variables can be mapped to the relative neighborhood in
the latent space. The latent feature is decoded to its original
form. A successful encode-decode process reflects the ability
of feature extracting because the encoder keeps valuable fea-
tures and rewrites them. To minimize the difference between
reconstruction features and initial features, the loss function
is designed as,

Lu(X,Z) =X — 73 (23)

where Ly is the loss function in the pre-training stage, which
is mainly for hidden layer updating. ||X - Z;||; is the Euclid
norm of the residual vector. Z; is the reconstruction feature
of the /th DAE. The weights and biases are updated by the
mini-batch gradient descent method in SDAE pre-training.
The process can be expressed as,

n
(L4100 1 oLy (X, 7))
Wit = w0 = =3 W
ij

+pox AW D
/ / 1 < aLy(X, Z)
G+l _ /A 1 H(X, 2]
bi = bi n (n ,; 8b/.(l’t) (24)
= i
o x Abi(l,tfl)

1 < ALy(X, Z))
(I,t+1) (I,t) H s L]
b; =b" -1 (- § —
.0
nk:l 8bl

+ux Abgl,t—l)

where 7 is the learning rate.  is the momentum factor. 7 is
the neuron number of the /th layer.

C. FINETUNE: OEF RELATIONSHIP MAPPING

In finetune stage, the deep network learns the OEF relation-
ship in a supervised way. The process of supervised learning
is finetuning all parameters based on the difference between
the prediction and the actual value (i.e., label data). The pre-
diction value is obtained from a deep auto-encoder network
and a fully connected (FC) layer. The size of the original
feature is expanded in our encoder, as shown in Fig.6.

Noise Erosion Encoder Predict

Gaussian
Noise

\

hput o X
feature l

no—+

Output

Hidden 2

FIGURE 6. Deep network for OEF prediction.

The difference can be evaluated in the loss function,
N N 2
Le(¥,¥r) =¥ = vr| @5)

where Ly denotes the loss function used in the finetune stage,
which is mainly for FC layer updating. Y is the network
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prediction. Y7 is the actual value, which serves as the target
output. ||f/ - Y7||2 is the Euclid norm of the residual vector.
In the finetune stage, the pre-training results are used as the
initial values of the encoder. Note that a smaller learning rate
is selected to adjust network parameters, which is 1% of that
in the pre-training stage. In this process, the gradient descent
algorithm is adopted to minimize the gap between predictions
and actual values. To speed up the training process, the whole
dataset is separated into several batches. The updating rules
based on the Adam optimizer in a single batch are shown as,

mt
o —L—
T T—1

o =0l - =L (26)

J J e
[ i
=5, +¢

ALp(Y™ !, Y7)

m = pim ' +(1—B) = 27)
J
N 2
ALp(YT1 Y-
v = ,321’;71 + U= p2) <F(—T_1T)> (28)
8a)j

where a is the initial learning rate. ¢ is a very small value to
avoid the denominator decreasing to zero. mtj and vtj are the
first and second-order values of the homogenized historical
gradient of wj, and they change with the epoch 7. 81 and B>
are the homogenized parameters. Y™~ is the final predicted
value calculated in the (7-1)th epoch. Y7 is the actual value.

V. ACCURACY IMPROVEMENT TECHNIQUES

The performance of deep-learning approaches relies heavily
on data quality. In view of the data characteristics of OEF, the
data preprocessing strategy is proposed for higher accuracy.

A. STATE FILTERING
Since the IES is usually in a reliable state without any load
curtailment, the distribution of historical load curtailment is
highly uneven. This is the class-imbalance problem.
Essentially, a deep learning algorithm is to obtain certain
experiences from the big data. However, the accuracy is dete-
riorated because of the class-imbalance problem. The his-
torical records fail to provide much information about load
curtailment. Small portion load curtailment data is considered
noise and ignored while training. Such data distribution can
cause a greater error in the prediction of the rare curtailment.
To alleviate impediments of class imbalance, two cate-
gories (classified by whether or not load curtailment occurs)
are supposed to share almost the same proportion in the train-
ing data. The raw training dataset is filtered based on the data
deduplication technique to balance the two classes of state
samples.

B. MINORITY OVER-SAMPLING BASED ON MCS

The size of the training dataset shrinks dramatically with
data filtration. A large-scale dataset is necessary to ensure
accuracy and avoid the over-fitting problem. To address this,
the over-sampling strategy is proposed based on the Monte-
Carlo simulation. Using the probability model of equipment
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failure, more operation states are simulated in the neighboring
state space by MCS and selected in the descending order of
load curtailment.

C. DATA NORMALIZE TRANSFORM

Since the data scale of the different energy variables is dif-
ferent, it is difficult to choose a universal learning rate. The
influence of key but small variables will be weak. Smaller
variable fades out easily if other large variables go through the
same data process. In this regard, the original data is mapped
into the unit interval from 0 to 1, which can be expressed as,

X — Xmin

s if Xmax — Xmin # 0

Xmax — Xmin

X=\ X, if Xmax — Xmin = 0,Xmax =0 (29)
Xmin .
> lf Xmax — Xmin = 0,Xmax 7& 0
Xmax

where x is the original input. xmin and xmax are the minimal
and maximal values of x. The normalized transformation for
Y is in the same way with the minimal and maximal values
of y.

VI. FLOWCHART OF IES RELIABILITY ASSESSMENT
The overall process of the proposed deep-learning IES relia-
bility assessment is shown in Fig.7.

Step 2
Probability

Step 4
Offline
Training
Mapping Function

Step 6
Suggestion

Weak Points

Step 3
Offline

Simulation
System States.
Optimal Flow

Step 5
Online
Application

Reliability

Step 1
History Data

Load [)cmand

T T
Offline Stage Online Stage

FIGURE 7. The scheme of deep-learning IES reliability assessment.

Step 1: History data collection. Experience of IES opera-
tion reflects the precise mechanism of interactions between
multi-energy. In this stage, historical load demand, wind
speed, solar irradiation, energy output, and energy distribu-
tion data are accumulated.

Step 2: Unavailability modeling. States of energy gener-
ation equipment, renewable energy installation, and energy
conversion devices are decisive to available capacity and
energy distribution. The uncertainties of equipment are sim-
ulated in MCS manners based on the two-state model. The
wind speed and current solar irradiation data are randomly
selected from the interpolation results according to their his-
torical data.

Step 3: Replenish samples via simulation. Based on the
probability model, the equipment states and consequent sys-
tem states are simulated by MCS, and then the available
capacity is determined. The optimal energy flow, load curtail-
ment, and renewable energy loss are obtained via the interior-
point algorithm and labeled as the target values.
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Step 4: Network training. The deep network is trained with
a Gaussian noise based on SDAE to rewrite the input features.
The pre-train result is used to initialize the network parame-
ters. Thereafter, the fully connected layer is trained with a
smaller learning rate for fine-tuning.

Step 5: Online applying. Use the after-trained model to
predict the optimal energy flow and minimal curtailment of
load and wind energy in IES. Calculate the expected value of
the predicting outcomes as the IES reliability indices.

Step 6: Reliability suggestions. The reliability indices of
IES can support the analysis of weak points, and many relia-
bility enhancement strategies are determined accordingly.

VII. CASE STUDY

The proposed deep-learning approach is tested in the IES
system, as shown in Fig. 8. The WT and PV are connected
to the electric bus with a converter, and the outputs of PV
and WT follow their distribution of the historical data. The
parameters of components are listed in Table 1. The hardware
and software used in the test conditions are listed as follows:
Intel i5-10600KF CPU, 16G RAM, Windows 10, and Python
3.8.

Ground

Source
Combined Gas  Heat  Electric
heat and power Boiler Pump  Boiler

Gas S ) @ ¥ 3
Network @ @ @ $
1
Gl’ld Power [ Electricity
Converter Load
) ©
*JI i
= 7 3 Electric  Absorption
[j Chiller Chiller

@

Heat Load

©

()

Cool Load
Wind Photovoltaic
Turbines Cells

FIGURE 8. The test IES case.

TABLE 1. Parameters of components.
Equipment U C (kW) f
Combined Heat and Power 0.03 5000 0.6 (heat/power)
Gas Boiler 0.025 2000 0.85
Photovoltaic Cells 0.03 1000 /
Air Source Heat Pump 0.065 2000 3
Geothermal Pump 0.065 1000 44
Electric Chiller 0.03 7000 35
Absorption Chiller 0.03 5000 0.7
Wind Turbine 0.03 1000 /
Converter 0.03 4000

The indices used to evaluate the performance of the pro-
posed deep-learning approach are listed as follows.
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TABLE 2. Methods in details.

Details

Methods Description i i i

Stacked structure Pre-train Noise State filtering
MO Modeling method [25]
Ml Random Forest [24]
M2 DAE x x x x
M3 SDAE without pre-train \ X x x
M4 SAE (without noise) v \ x x
M5 SDAE with an imbalanced dataset N \ v x
M6 SDAE with random zero noise \ \ v J
M7 SDAE with Gaussian Noise (the proposed method) \/ \ v J

The absolute relative error (ARE),

_ |Rreal,i - Rprea’,i|

ARE x 100% (30)

Rreal N
The normalized average of the squares error (NMSE),

N

NMSE = l Z (Rreal,i - Rpred,i)2
N Rreal,iRpred,i

i=

(3D

The average absolute percentage error (MAPE),

1 N
MAPE = v 21:
1=

Rreal,i - Rprea',i

x 100%  (32)
Rreal,i

The index of agreement (IA),

N 2
Z (Rpred,i - Rreal,i)
A=1— ’;1 . (33)
yOUR i+ YR
N = real i N & pred i
The fractional bias (FB),
FB — 2(Ryeal — Rpred) (34)

I_ereal + Rpred
The Theil inequality coefficient (TIC),

1 N 2
N Z (Rprea’,i - Rreal,i)
i=1

TIC = - (35)
1 ul 2 1 N 2
N X% Rreal,i + N X; Rpred,i
= 1=

where N is the number of elements in the array. R, and
Rpreq denote the actual and predicted values, respectively. The
error indicator reflects the numerical closeness, and FB and
TIC can reflect the consistency and stability of the prediction.

A. RELIABILITY ASSESSMENT RESULTS

To demonstrate the performance of the proposed method,
multiple methods in Table 2 are used in this case. MO is the
traditional MCS-based method, whose result is used as the
benchmark to evaluate other data-driven methods (M1-M7).
M2 and M3 are designed to analyze the effect of the stacked
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structure and pre-train strategy, respectively. The difference
between M5 and M7 is the training dataset. M4, M6, and M7
are introduced to analyze the impact of noise settings. M7
is the proposed method. For the random mask erosion, the
corruption rate is set as 0.2, while the variance of Gaussian
noise is 0.05. The size of the training and validation dataset
is 5740 and 20000, respectively. The neurons of each layer
are set as 15, 50, 100, 200, and 14 respectively. Redundant
states without load curtailment are abandoned in the state-
filtering process, and 2870 items are kept (50% of the training
samples). The weight homogenized parameters of the Adam
optimizer are 0.7 and 0.92. The reliability results are shown
in Table 4 and the comparison is analyzed in part B.

As shown in Table 4, the average accuracy of M7 in reli-
ability assessment is 96.876%. The computing time of the
proposed M7 method has been reduced by 99.99991%. The
computing time is reduced by 6 orders of magnitude, which
meets the requirements of online calculation.

B. PERFORMANCE ON OEF DETERMINATION

The performance indices of M1-M7 are shown in Table 3.
The indices such as ARE and MAPE indicate the advantages
of M7 in accuracy. In terms of FB and TIC, M7 shows a lower
dispersion degree and better data consistency.

Calculated from the average MAE, the proposed method
M7 in OEF accuracy is 96.57% as compared to M1 and M2
with accuracy rates of 18.50% and 90.39% respectively. The
results of M1 show the random forest method is not compa-
rable with the SDAE method. M2 indicates that the stacked
structure and deep learning algorithm help improve accuracy
by offering more types of feature interaction.

Comparing M3 with M7, pre-training improves the effects
of feature extraction. Compared with M5, the proposed pre-
filtering strategy improves the accuracy by enriching the
minority samples.

Results of M4, M6, and M7 prove the effectiveness of the
Gaussian noise strategy. The results show that OEF accuracy
of for M7 is 95.86% as compared to 90.32% and 88.55%
for M4 and M6 respectively. M6 has the worst prediction
because the input features are polluted by the random zero
and the network is trained based on insufficient information.
Compared with M4 and M7, the proposed noise erosion strat-
egy further improves the accuracy because the Gaussian noise
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TABLE 3. Performance indices for comparison.

Performance Indices M1 M2 M3 M4 M5 Mé M7
Average ARE 0.8150 0.0961 0.0968 0.1145 0.1004 0.0874 0.0660
Max ARE 3.6082 0.3180 0.3232 0.2869 0.3420 0.1746 0.1565
NMSE 0.4251 0.0122 0.0124 0.0146 0.0139 0.0081 0.0057
MAPE 0.6155 0.0802 0.0806 0.1022 0.0832 0.0812 0.0639
1A 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999
FB 0.0016 -0.0041 -0.0141 -0.0228 -0.0241 -0.0326 -0.0034
TIC 0.0108 0.0122 0.0095 0.0091 0.0096 0.0133 0.0097
iabili 25 e
TABLE 4. IES reliability assessment results. . »|:=Ere:al“\::‘i;l o ]
EDNS (kW) Loss (kW) %15
Case Time (s) Fl
Power  Heat Cool PV Wind 2o
MO 58520.033  15.307 20.784  191.018  6.183 7.523 % 5
M7 0.054 14974  22.172  200.320 6.414 7.826 0

increases the similarity between the training dataset and the
real data. Furthermore, the proposed Gaussian noise strategy
also enriches the training samples and improves generaliza-
tion capabilities.

T T T T T T T

I Real Value
[EEPredict Value

o o

OEF Results (MW)

S N B

0‘\6 R (B0 g% Q0O 98¢ Qb K ?%C o OQ&C
Variables

FIGURE 9. The OEF results at 17:00 in summer.

Apart from the curtailment prediction, the proposed
method can be used to predict OEF operation strategies in
different scenarios. Fig.9 shows the operating results for IES
without failure, and Fig.10 shows the operating results of IES
when the AC is out of service.

Since AC absorbs heat and converts it into cooling energy,
the outage of AC results in a cooling shortage in sum-
mer. On the other hand, the heat cannot be consumed by
AC leading to the reduction of CHP output. Consequently,
the power generation is decreased and the power consump-
tion of EC is limited. The shortage of cooling output is
intensified and eventually causes the high cooling curtail-
ment. Compared with the real value, the predicted results
of OEF are quite accurate for these two different scenarios.
The proposed method is proved to accommodate the complex
changes described above.

C. GAUSSIAN NOISE STRATEGY FOR IES DATA
Gaussian noise can enrich the training data by varying the
data partially. The prediction accuracy is related to the noise
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FIGURE 10. The OEF results at 17:00 in summer with AC outage.

strategy. The failure of the random mask strategy indicates
that large distortion of the input features should be avoided.
The variance of Gaussian noise is an important factor in the
transformation.

Fig.11 shows an ideal variance is around 0.02. Fig.12
shows the reason is the lower relative error and degree of
variation. The noise can help to overcome the overfitting
problem of training and avoid great discrepancy. As shown in
Fig.12, the higher variance is detrimental to network training.
From aspects of FB and TIC, higher variance results in lower
agreement and prediction consistency.

20%

5 =001
15% || ™c=0.02
6=0.05
[sa]
& 10% (2o=01
<
5% Il I I I
PGrid PChp QGb PPv  PAshp PEc
Component
FIGURE 11. Influence of noise variances on OEF results.

D. SYSTEM WEAKNESS ANALYSIS

The proposed model can be used to analyze the reliability
indices of components, as shown in Table 5 and Fig. 13. The
EC and AC are the weak points of IES. Their outages can
pose the most severe threat to the cooling supply. The ASHP
and GHP are critical to the heat supply. In addition, weak
points can be identified within 1 second with the proposed
method.
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FIGURE 12. Influence of noise variances on performance indices.

TABLE 5. Reliability indices of IES components.

EDNS (kW)
Components Time (s)
Power Heat Cool

CHP 13.3379 2.1630 6.5422 0.05157

GB 0.4327 1.4499 6.1792 0.05194

ASHP 0.7260 1.1696 6.7293 0.05166

GHP 1.0628 22.3858 14.6508 0.05155

EC 1.0640 10.4403 14.7150 0.05154

AC 0.0004 1.1716 124.9388 0.05152

PV 0.0006 1.1692 76.3751 0.05154

WT 0.4734 1.1692 6.5411 0.05149

PCS 1.0263 1.1696 7.0527 0.05157
125
80
5 60
% 40

a

[y}
(=}

(=)

CHP GB PV ASHP GHP EC AC WT CVT
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FIGURE 13. The reliability indices of components in IES.
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FIGURE 14. The OEF result with 90% of load.

E. SCENARIO ROBUSTNESS

To demonstrate the scenario robustness of the proposed
method, the cases of IES with 90% and 110% of load are
tested. Fig.14 is a typical summer day and the IES operates
at the 90% load level. In Fig.15, PV is out of service on a
spring day and the IES operates at 110% of load levels. The
OEF accuracy of Fig.14 and 15 are 90.02% and 94.25%. The
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FIGURE 15. The OEF result with 110% of load and PV outage.

proposed method can provide an energy allocation strategy
for different scenarios. with over 90% accuracy from a numer-
ical standpoint.

VIil. CONCLUSION

This paper proposes an SDAE-based method to determine
the optimal energy flow in IES and offers an efficient way to
assess the reliability. The proposed method can accelerate IES
reliability assessment by 6 orders of magnitude. The results
demonstrated that the SDAE-based method has good perfor-
mance with an accuracy of 96.57% as compared to RF and
DAE with accuracy rates of 18.50% and 90.39% respectively.
The proposed method improves the accuracy from 88.55%
by replacing the random-zero noise with Gaussian noise. The
results also show that the accuracy of strategy for OEF pre-
diction is over 90% with different load levels. Based on these
results it can be concluded that the proposed scheme provides
high accuracy and scenario robustness. With the proposed
reliability scheme, IES weakness can be identified for no
more than 1 second. Because labeling samples is a costly
work, the future work is to study an algorithm that can learn
on unlabeled data.
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