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ABSTRACT As a biometric identification method in the post-epidemic era, face recognition owingmore and
more attention in practical applications to its non-contact and interaction-friendly advantages. Researchers
more favor 3D faces because they have richer spatial information than 2D faces and are not easily affected
by the environment. However 3D faces are not all collected in normal environments. To enhance the facial
features of 3D faces and improve the recognition degree of 3D faces in weak-light or dark environments, a 3D
face recognition algorithm based on point cloud depth learning is proposed. First, 3D faces are automatically
detected from 3D raw data and preprocessed, including nose-tip detection and face cropping, spike removal
and hole filling, and surface normals. Then, rotated projection statistical local feature descriptors (RoPS) are
integrated into the PointNet++ network to describe and classify local features. Finally, feature matching
is performed using the nearest neighbor distance ratio. The algorithm was tested on the Bosphorus and
CASIA-3D datasets, and good results were obtained in a simulated weak-light environment.

INDEX TERMS PointNet++, RoPS, 3D face recognition, deep learning.

I. INTRODUCTION
With the increasing degree of information in current society,
the related information security issues have received increas-
ing attention, and all information security is ultimately insep-
arable from the authentication of personal identity.Whether it
is personal privacy information, property security, or govern-
ment confidential documents and management authority, it is
necessary to authenticate the identity of the relevant people to
ensure security. Traditional identity authentication methods
such as certificates, passwords, seals, and cards have their
disadvantages and hidden dangers, such as certificates, cards,
and other authentication tools are easy to be damaged or lost,
passwords are easy to be confused and forgotten, etc. Due
to the advantages of reliability and convenience, emerging
biometric recognition technology has incomparable advan-
tages over traditional identity recognition and authentication
technology, It has been widely concerned and used by the
society [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

Among many biometric recognition technologies, finger-
print and palmprint recognition have low costs and simple
operations, but there are serious security risks due to easy
forgery. Iris recognition has high accuracy and is not easy
to be forged, but its high cost of acquisition and recognition
equipment makes it unable to be widely used. Face recogni-
tion technology combines the advantages of other recognition
technologies and has the advantages of simple acquisition, the
advantages of safety and reliability, have wider application
and practicability. Although the two-dimensional face recog-
nition method has the advantages of friendly interaction,
convenient acquisition, and low cost, it still has shortcomings
in dealing with illumination changes, posture changes, anti-
counterfeiting attacks, etc. [3], [4]. Compared with the above
methods, 3D face recognition technology not only takes into
account the advantages of 2D face recognition but also has
its unique advantages. These advantages are reflected in the
following points:

1) The collected three-dimensional shape data of the face
can be regarded as not changingwith the change of light
and view, and accessories such as makeup significantly
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impact on the image but have no obvious impact on the
three-dimensional data. Therefore, 3D face recognition
is considered to have the characteristics of constant
illumination and pose [5].

2) 3D data has explicit spatial shape representation, so it
is richer in information than 2D images [6].

In the existing traditional 3D face recognition methods
and 3D face recognition methods combined with deep learn-
ing, the traditional 3D face recognition methods generally
recognize global face features, such as principal component
analysis, or local face features, such as using local feature
descriptors to describe the local features of the human face,
to achieve the purpose of face recognition. However, com-
pared with the 3D face recognition method combined with
deep learning, the traditional 3D face recognition method
relies too much on the face alignment algorithm and feature
descriptor, which limits the scalability.

Due to point cloud data’s excellent performance in rep-
resenting the position information and depth information of
3D images, the point cloud depth learning framework has
shown remarkable performance in 3D object classification,
semantic segmentation, and target recognition. PointNet [7]
structure is the first structure that uses the symmetric function
to aggregate point-to-point and order invariant features on
the original point cloud. However, PointNet only aggregates
global features and ignores local features, which are very
important for the representation of 3D shapes. PointNet++
[8] applies PointNet hierarchically to capture local and global
features for object recognition and segmentation on point
clouds. We pay more attention to facial features, use the
method of the surface normal in the preprocessing process,
and propose to integrate RoPS local feature descriptor into
PointNet++ to describe face features in more detail, and
can be easily integrated into PointNet++. The improved
PointNet++ extracts face features directly from the original
face point cloud.

II. RELATED WORK
A. 3D FACE RECOGNITION
The existing 3D face recognition methods can be roughly
divided into two categories: methods based on deep learning
or traditional methods. The method based on deep learning is
to train the three-dimensional face model through the neural
network model to detect and extract the three-dimensional
face features and then match the extracted three-dimensional
face features with the target face to determine whether the
two faces belong to the same person, to achieve the purpose
of face recognition. Luo et al. [9] fused the two-dimensional
face abstract features output by a convolutional neural net-
work with the depth maps representing three-dimensional
face information, and output the fused data through the full
connection layer as the input of the classifier. Kangming et al.
[10] proposed a method of 3D face recognition using depth
dual neural network to fuse 3D depth and 2D texture. Unlike
Luo et al. [9] and others who directly fused two-dimensional

face features with depth map, Kangming et al. [10] fused
depth features extracted based on a convolutional neural net-
work. Dutta et al. [11] proposed a lightweight deep learning
network sppcanet for feature extraction and used a linear sup-
port vector machine (SVM) to classify the extracted features.

Based on the traditional method, face recognition is car-
ried out by describing the feature information of three-
dimensional face. According to the different types of features,
face recognition can be divided into three methods: global-
based, local-based, and hybrid.

Global-based methods usually recognize 3D faces as a
whole feature vector. Russ et al. [12] proposed a general
method of 3D face recognition based on principal component
analysis. It avoids eliminating size information by scaling
3D reference to realize the alignment of principal compo-
nent analysis training, synthesis, and recognition of critical
facial points. Liu et al. [13] proposed a competitive method
for 3D face recognition using the spherical harmonic fea-
ture (SHF). This method is based on the spherical harmonic
feature (SHF), namely spherical depth map (SDM), reliably
calculated using a standardized three-dimensional face repre-
sentation. mohammadzade et al. [14] used the iterative near-
est normal point method (ICNP) to find the nearest normal
point between the ordinary reference plane and each input
plane. These points are effectively aligned on all faces so the
discriminant analysis method can effectively apply to 3D face
recognition.

The local-based method first detects landmarks or rep-
resentative facial regions and then uses these landmarks /
regions to calculate the similarity measure between faces.
Lei et al. [15] proposed an automatic 3D particle filter
method based on single sample input, which can effectively
represent some 3D faces by counting the angle and distance
information of multiple spatial triangular regions around key
points. Yu et al. [16] proposed a new 3D direction vertex
(3d2v) method, which effectively represents and matches 3D
surfaces through fewer sparse distributed structured vertices.
Soltanpour et al. [17] proposed a new 3D face recognition
descriptor based on the local derivative pattern. They can
extract more detailed unique information from 3D facial
images by calculating high-order LNDP.

The hybrid-based method combines global and local
features. Taghizadegan et al. [18] proposed a method
of automatic face recognition using three-dimensional
images, which uses the nose point for positioning, two-
dimensional principal component analysis for feature acqui-
sition, and Euclidean distance method for classification.
Huang et al. [19] proposed a new geometric face representa-
tion and local feature hybrid matching scheme, which uses
multi-scale extended local binary pattern to describe facial
depth information and sift matching strategy to realize local
and overall analysis.

B. POINT CLOUD DEEP LEARNING
Point cloud data refers to a set of vectors in a
three-dimensional coordinate system. Point cloud data
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generally scans the object to be measured through a 3D
scanner and stores its data in the form of points. Each
point contains three-dimensional coordinates, and some may
contain color information or reflection intensity information.
Due to the remarkable performance of point cloud data in
3D object classification, semantic segmentation, and target
recognition, it is favored by researchers, and combined with
the neural network, and it is widely used in feature extraction
and registration. PointNet [7] began to use the deep learning
network for point cloud processing. PointNet uses symmetric
functions to aggregate point state features, which solves the
problem of dealing with disordered point sets. However,
PointNet cannot capture the local structure generated by
metric space points, which limits its generalization ability
to complex scenes. PointNet++ [8] introduces a multi-level
feature extraction structure based on PointNet to extract local
and global features on the point cloud in an iterative way.
In addition, KD-Networks [20] uses kd-trees instead of a
unified grid to build calculation diagrams and share learnable
parameters. Compared with uniform voxel grid, kd-trees
have improved the ability to index and construct 3D data.
KD-Networks occupies less memory and has higher com-
putational efficiency in training and testing. Unsupervised
point fractal network pf-net estimates the missing point cloud
hierarchically by using the multi-scale network based on
feature points and proposes a new multi-resolution encoder.
A new feature extractor combined with multi-layer percep-
tion (CMLP) is used to extract multi-layer features from
local point clouds and their low-resolution feature points.
Finally, the multi-stage completion loss and antagonistic loss
are added to generate a more real missing area. Patchmatch-
Net [21] introduces the Patchmatch idea into the end-to-
end trainable deep learning based on MVS framework and
embeds the model into the coarse to the fine framework
to speed up the calculation speed. In addition, Patchmatch-
Net uses a learnable adaptive module to enhance the tradi-
tional propagation and cost evaluation steps of Patchmatch,
improving of image processing accuracy. Point-GNN [22]
introduced graph convolution neural networks into point
cloud processing. The GNN merge operation is designed
to automatically reduce the variance of multiple translation
points according to the GNN merge operation. Point cloud
deep learning shows its robust in 3D object classification
and segmentation performance. However, we know that a
3D point cloud neural network is relatively less used in face
recognition.

III. METHOD
A. FACE PREPROCESSING
In order to enhance the local features of the face and reduce
the impact of acquiring the original 3D scanning surface,
we preprocess the acquired face before further operation [23],
[24]. The operation consists of three parts: nose tip detection
and face cutting, removing spikes and filling holes, and sur-
face normals (as shown in Figure 1).

FIGURE 1. An illustration of 3D facial data preprocessing.

1) NOSETIP DETECTION AND FACE CROPPING
Given the original facial scan obtained from above the shoul-
der, we first detect the tip of the nose and remove unwanted
points outside the three-dimensional area of the face. Firstly,
a set of horizontal face scans are used to slice the three-
dimensional face, and a set of horizontal contours of the
three-dimensional face are obtained. For each horizontal con-
tour, the points on the contour are evenly interpolated to fill
the hole. Then, a set of probe points are located on each
section and a circle is placed at each point to get two inter-
sections with the horizontal section. The probe point forms
a triangle with two intersections. The probe point with the
maximum height h of its related triangle along the section
is regarded as the candidate point of the nose tip. Repeat this
process for all horizontal planes to obtain a set of nose tip can-
didates. Then, a random sample consensus (RANSAC) algo-
rithm is used to screen these candidate points. The remaining
candidates can be considered as a group of points on the
bridge of the nose, and the one with the highest section height
is considered the nose’s tip. Once the nose tip is detected, the
3D face is cropped from the face scan by eliminating points
more than 90 mm from the nose tip.

2) SMOOTH FACE AND FILL HOLES
Spikes mainly appear in three areas: eyes, the nose tip, and
teeth. To remove these spikes, we apply a median filter to
the vertices of 3D faces. The filter first sorts the coordinates
in a neighborhood, finds the median, and finally replaces
the original coordinates with the median. However, the pro-
cess of removing spikes will produce unwanted holes in
the three-dimensional surface. In addition, these holes may
also be caused by other factors, including light absorption
in dark areas, specular reflection of lower surfaces such
as sclera, pupils and eyelashes, open mouth and eyes, and
occlusion. For 3D faces, these holes can be filled with cubic
interpolation.

3) SURFACE NORMALS
Compared with the simple point cloud image, the normal
image of the face can display more local features, achieve the
effect of enhancing the local features of the face, and facili-
tate better extraction and recognition of facial features. The
facial surface normal components are estimated by adopting
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FIGURE 2. Illustration of facial point cloud normal estimation: (a) the
original point cloud image, (b-d) its normal images of components x, y,
and z (the sample comes from the e Bosphorus dataset).

the optimization-based method [25]. The plane fits the local
neighbors of a given point by minimizing the cost function
(for example, the average distance to the neighbors). For a
set of nth points, the data matrix is:

P = [p1, p2, . . . , pn]T , pi ∈ R3 (1)

The 3D coordinates are defined as pi =
[
pix , piy, piz

]>.
The normal vector ni =

[
nix , niy, niz

]T is estimated by the
adjacent point Qi around qi.

It is calculated by solving the optimization problem as:

minA (pi,Qi, ni) (2)

Here A is the cost function. We use a neighborhood of 5×
5 matrix. Therefore, each 3D point has its normal component
in the X , Y , and Z channels.

N (P) = Nx(j, k),N y(j, k),N z(j, k)

1 ≤ j ≤ m, 1 ≤ k ≤ n (3)

Figure 2 shows the normalized point cloud images from the
Bosphorus database and their estimated three normal com-
ponent images. Not surprisingly, the normal image contains
more feature information than its corresponding point cloud
image, and the point cloud image looks very subdued. In the
normal images, the shape details around the eyes and mouth
are nicely highlighted with other colors.

B. RoPS LOCAL FEATURE DESCRIPTOR
The local image feature is the local expression of image fea-
tures, which can reflect the local characteristics of the image.
After obtaining the key points detected from the 3D face,
the local feature descriptor describes the local information
around each key point in the form of a matrix, histogram,
etc. In this paper, the rotation projection statistical descrip-
tor [26] is used to encode the geometric information of the
corresponding local surface. Then, we introduce a rollover
protection structure into the rotating projection statistic for
3D face recognition.

Given a key point Q and its supporting radius r , the adja-
cent points around the key pointQwhose distance is less than
r are clipped from the three-dimensional surface to produce
a point set Q = {q1, q2, . . . , qM}. Then, the RoPS descriptor
is generated by following the steps below.

First, rotate the cloud of points to be measured Q by a
set of angles around the x-axis {θk}, k = 1, 2, 3, . . . ,K.
Generate rotation point cloud Q′(θk), the point cloud after

rotation is Q′(θk) It will be projected on XY , XZ and YZ
planes respectively to obtain three projection point clouds
Q′i(θk), i = 1, 2, 3. 2D projection can describe 3D local
surface in a concise and effective way, retain the geomet-
ric information under specific viewpoints, and significantly
reduce the dimension, to achieve the purpose of recording
the geometric information of different point sets Q to be
measured.

Secondly, to extract the corresponding geometric informa-
tion, we divide each projected 2D point set into Ndiv

RoPS ∗

Ndiv
RoPS meshes on average. By calculating the number of

point clouds in each grid, and Ndiv
RoPS ∗ Ndiv

RoPS distribution
matrix D is obtained. The distribution matrix D is further
normalized to achieve invariance to the change of grid reso-
lution. We use the central moment µmn, such as formula, and
Shannon entropy e, such as formula, to further compress the
information in distribution matrix D. The compressed distri-
bution matrixD can improve the efficiency of calculation and
storage. According to the literature [26], we use four central
moments{µ11, µ12, µ21, µ22}.

Then, the central moment generated by rotation and projec-
tion is connected with Shannon entropy to form a sub-feature
descriptor fx(θk) rotating around the x-axis. In order to
encode more information about the local surface, the point set
Q is rotated and projected around the y-axis and z-axis respec-
tively in the same way to generate two sub feature descriptors
fy(θk), fz(θk) rotating around the y-axis and z-axis. All these
sub-feature descriptors will be connected into a vector to form
an overall RoPS feature descriptor, That is:

f =
{
fx (θk) , fy (θk) , fz (θk)

}
, k = 1, 2, . . . ,T . (4)

Finally, based on principal component analysis (PCA), the
RoPS feature descriptor is further compressed. Select a set
of training RoPS features and calculate its covariance matrix
C . Then C is decomposed into eigenvalues to obtain its
eigenvector. These eigenvectors are arranged according to the
descending order of eigenvalues. The first Nsf eigenvector is
used to form amatrix Vsf. Nsf is determined so that the fidelity
of the training RoPS feature is maintained in the compressed
feature θ Ratio of. Usually, θ Is a positive number close to
1. For a RoPS feature fi, its compressed RoPS feature f̂ i is
calculated as:

f̂ i = VT
sf f i (5)

C. NETWORK ARCHITECTURE
Inspired by PointNet++’s [8] introduction of a multi-level
feature extraction structure to extract local features-global
features on point clouds by iteration, we made improvements
in the sampling layer of PointNet++ to make it more effec-
tive in capturing local surface information of 3D faces. The
proposed network structure is shown in Figure 3.We use three
ensemble abstraction (SA) modules containing sampling,
grouping, and MLP layers to extract local-global features.
The first two layers focus on local features of different fields
of view by defining the center of mass of the local area and
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FIGURE 3. Improved PointNet++ modeling framework.The pre-processed point cloud image determines the face feature region by sampling
layer and grouping layer, the face features are extracted by the PointNet layer, the local features are described by adding RoPS local feature
descriptors in the PointNet layer to extract more accurate local features. Finally, the global features of the face are output by maximum
pooling.

finding the ‘‘neighboring’’ points around the center of mass to
build the local area set, while theMLP layer focuses on global
features. Key point data are collected in the sampling layer by
RoPS and directly grouped accordingly to better extract local
features of the face.

In PointNet++ local feature selection, we use Rotational
Projection Statistic (RoPS) for 3D keypoint detection and
extract feature descriptors with sufficient recognition power
from the local surface around these key points since RoPS
crops out a circular region such that the local region has
information around a single point and has a more geometric
shape compared to the global information. To extract local
features, we can directly use PointNet, and after sampling
the key points several times and covering most of the global
region, we can finish the process. After processing these
feature key points by PointNet, we can get the final global
features.

We use the global features proposed in FaceNet [27] as face
embedding. This algorithm can be used to calculate the cosine
similarity between faces. If the distance between two scans is
greater than a given threshold, the two scans are considered
to belong to the same constant equation and vice versa [28].

D. FEATURE MATCHING
Suppose F i

=
{
f in
}
and F j

=

{
f jm
}
are RoPS feature sets

extracted from 3D face P i and P j, respectively. The nearest
neighbor distance ratio (NNDR) method is used for feature
matching. Specifically, each feature f in in F i matches all
features in F i to obtain its closest feature f jm′ the second
closest feature f jm′′ , that is:

f jm′ = arg min
f jm∈F j

∥∥∥f in − f jm∥∥∥2 ,

f jm′′ = arg min
f jm∈F j\f j

m′

∥∥∥f in − f jm∥∥∥2 , (6)

where F j
\f jm′ is the feature set F j excluding feature f jm′ .

NNDR rdis is calculated as:

rdis =

∥∥∥f in − f jm′∥∥∥2∥∥∥f in − f jm′′∥∥∥2 (7)

If the ratio rdis is less than the threshold τf ,
(
f in, f

j
m′

)
is considered as a potential feature matching. In order to
achieve robust feature matching, f jm′ also matches all features
in F i. If f in is the closest feature in F i to f jm′ and meets

the NNDR criterion, then
(
f in, f

j
m′

)
is finally considered as

feature matching. Threshold τf determines the number and
accuracy of feature matching. The number of feature match-
ing generated by a small threshold is limited, which is not
enough to achieve accurate transform estimation. In contrast,
a large threshold will lead to a large number of false pos-
itive matches, which reduces the performance of transform
estimation. The face recognition performance under different
thresholds is further analyzed in Section IV-B2. Figure 4
shows the same facematching at the same angle (Figure 4(a)),
the same face matching at different angles (Figure 4(b)),
different faces matching at the same angle (Figure 4(c)), and
different faces matching at different angles (Figure 4(d)). For
3D point cloud faces from the same body at different angles,
most features can be matched correctly. While most of the
3D point cloud faces from different individuals cannot match
the corresponding features. We match all of the features in
F i against the features in F j, resulting in a set of matched
keypoints Cij =

{
cij1, c

ij
2, . . . , c

ij
n

}
, where cijn =

{
qin, q

j
n

}
is a

pair of matched keypoints.
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FIGURE 4. An illustration of the feature matching results: (a) indicates
the matching result of the same facial feature from the same angle;
(b) indicates the matching result of the same facial feature from different
angles; (c) indicates the matching result of different facial features from
the same angle; (d) indicates the matching result of different facial
features from different angles.

FIGURE 5. Selected face point clouds from the Bosphorus dataset and the
CASIA-3D dataset: (a) Derived from the Bosphorus dataset. (b) Derived
from the CASIA-3D dataset.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
1) EXPERIMENTAL SIMULATION ENVIRONMENT SETTING
In this paper, we simulate 3D face recognition in normal and
weak light environments.

In the classification training and fine-tuning under a nor-
mal environment, the input of our network is face scanning
of 8192 point cloud data; In the classification and fine-tuning
in a weak light environment, the number of point cloud data
input for face scanning is reduced to 4096. Each point cloud
data has six-dimensional features, including three European
coordinates x, y, z, and their corresponding normal vector
coordinates nx , ny, nz.

We adopt the frequently used Rank-1 Identification Rate
(R1IR) to measure the performance [29]. The R1IR is the
percentage of the probe faces that are correctly recognized
using the first rank.

2) DATASET DESCRIPTION
In this paper, we use the two publically available datasets (i.g.,
the Bosphorus dataset [30] and the CASIA-3D dataset [31])
(as shown in Figure 5) to test our proposed PR-Net in both
normal and weak light environments.

The Bosphorus dataset includes 4666 3D facial scans from
105 individuals (61 men and 44 women) aged 25 to 35 [30].
There are more than 31 scans for each individual, and these

TABLE 1. The performance was represented by using different feature
description radii r on the Bosphorus dataset.

scans were acquired under different expressions, poses, and
occlusions.

The CASIA-3D database was created by the pattern recog-
nition and security technology research center of the Insti-
tute of automation, Chinese Academy of Sciences, using
Minolta vivid910 3D digital scanner. The database was built
from August to September 2004. There are 123 people in
the database. Each person has 37 or 38 different three-
dimensional data. Each data contains different expressions,
gestures, lighting, and different combinations of the above
conditions. There are 4626 face models [32].

B. ABLATION STUDY
In this section, we test the radius r and the threshold τ of
feature matching used by our algorithm in different feature
descriptions Performance in. We conduct comparative exper-
iments on each parameter.

1) RADIUS USED IN THE FEATURE DESCRIPTION
The support radius determines the discriminative power and
robustness of the expression. We tested our face verification
algorithm and the support radius was set to 5mm, 10mm,
15mm, 20mm. The threshold τ was set to 0.8, and no feature
compression was performed in the experiments. The exper-
imental results are shown in Table 1. It can be seen that the
facial verification performance improves significantly as the
support radius increases from 5mm to 10mm. This is because
the recognition capability of feature descriptors is insufficient
when the support radius is small. The method achieves the
best performance when the support radius is further increased
from 10 mm to 15 mm. The face verification performance
decreases when the support radius is further increased. This
is due to the trade-off between discriminative power and
robustness when the support radius is set to 15 mm. A larger
support radius makes the extracted feature descriptors sen-
sitive to expressions, which reduces the overall verification
performance. In this paper, the feature descriptors are set to
15 mm using radius.

2) FEATURE MATCHING THRESHOLD
The threshold τ determines the number and accuracy of
matched features. A smaller τ can improve feature matching
accuracy, but the number of matched features is smaller.
In this section, we will set the threshold τ to 0.6, 0.7, 0.8, and
0.9, set the radius r to 15mm, and test the performance of face
verification. The results are shown in Table 2. It is obvious
that the best performance is obtained when τ is set to 0.8.
When the threshold value increases, the recognition perfor-
mance slightly decreases. This is because when the threshold
is larger, many incorrect feature matches are encountered,
and therefore these incorrect matches reduce the recognition
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TABLE 2. The performance was expressed using different feature
matching thresholds τ on the Bosphorus dataset.

TABLE 3. Comparison of the rank-1 identification rates achieved on the
Bosphorus dataset set in a normal and weak light environment.

performance. In this paper, the threshold value τ is set to
0.8 for the subsequent experiments.

C. COMPARISON RESULTS OF NORMAL AND WEAK LIGHT
ENVIRONMENT ON BOSPHORUS DATASET
The face recognition performance of the algorithmwas tested
using the Bosphorus dataset. First, key points are identified
using the PointNet++ framework described in Section III-C,
and key points are detected using the sampling layer itera-
tive farthest-away technique (FPS). For each key point, its
neighboring points (with a radius of 15 mm) are transformed
into a local reference frame generated by RoPS features.
These RoPS descriptors are then compressed and matched
using the technique described in Section III-B. Finally, face
recognition is performed using the similarity metric NNDR
(Section III-D).
We have conducted classification training for 3D face

recognition on the PointNet++ network without RoPS local
descriptor. It can be clearly seen from table 3 that the recogni-
tion rate of RP-Net is much higher than that of PointNet++,
which proves the effectiveness of our method with RoPS
local descriptor. In order to compare our recognition results
with the latest performance implemented on the Bosphorus
dataset, we give the recognition rate of ranking 1 of the exist-
ing algorithms in Table 3. It can be seen that Dutta et al. [33]
achieved the best recognition results in the normal environ-
ment, and the rank-1 recognition rate was 98.54%. The rank-
1 recognition rate of RP-Net algorithm is 98.0%; In the weak
light environment, RP-Net is 0.7% higher than the algorithm
proposed by Koushik Dutta et al.

D. COMPARATIVE RESULTS ON THE CASIA-3D DATASET
The face recognition performance of the algorithm was fur-
ther tested using the CASIA-3D dataset. The 3D face recog-
nition results on the CASIA-3D dataset are shown in Table 4.
It can be seen that under normal environment, our algo-
rithm achieves 97.9% face recognition rate in the CASIA-3D
dataset. In a weak light environment, our algorithm achieves
97.34% face recognition rate in the CASIA-3D dataset.

Again we compare our recognition results with the latest
performance implemented on the CASIA-3D dataset, and we
give the rank-1 recognition rate of the existing algorithms
in Table 4. It can be seen that under a normal environment,

TABLE 4. Comparison of the rank-1 identification rates achieved on the
CASIA-3D dataset set in a normal and weak light environment.

Chandrakala et al. [36] achieved the best recognition results
with a rank-1 recognition rate of 98.4%. However, in a weak
light environment, our algorithm has higher robustness.

V. CONCLUSION
In this paper, we propose a PointNet++ 3D face recognition
algorithm integrating RoPS local feature descriptor (RP-Net).
Firstly, the original 3D face is preprocessed by nose tip
detection, face clipping, removing spikes, filling holes, and
surface normals. The RoPS local feature descriptor is used
to describe the facial features extracted from PointNet++
to enhance the extraction of face features in weak light or
dark environment. The local face features extracted in each
level will be spliced into global face features for output. So as
to achieve the purpose of using local global facial features
to classify. Finally, the nearest neighbor distance ratio algo-
rithm is used for recognition. The experimental results on
Bosphorus and CASIA-3D database show that our proposed
algorithm achieves not only high face recognition rate in a
normal environment but also has high face robustness in a
weak light environment. This research, however, is subject to
several limitations. the RP-Net extracts global-local features
of 3D faces, which brings a large number of parameters and
relatively slow recognition speed. In future work, we will try
to improve the feature extraction structure of RP-Net in the
direction of light weight to achieve a lightweight network
model that balances speed and accuracy.
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