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ABSTRACT Power system functionality is determined on the basis of power system state estimation (PSSE).
Thus, corruption of the PSSEmay lead to severe consequences, such as disruptions in electricity distribution,
maintenance damage, and financial losses. Classical bad data detection (BDD) methods, developed to ensure
PSSE reliability, are unable to detect well-designed attacks, named unobservable false data injection (FDI)
attacks. In this paper, we develop novel structural-constrained methods for the detection of unobservable
FDI attacks and the identification of the attacked buses. The proposed methods are based on formulating
structural, sparse constraints on both the attack and the system loads. First, we exploit these constraints
in order to compose an appropriate model selection problem. Then, we develop the associated generalized
information criterion (GIC) for this problem. However, the GIC method’s computational complexity grows
exponentially with the network size, which may be prohibitive for large networks. Therefore, based on the
proposed structural and sparse constraints, we develop two novel low-complexity methods for the practical
identification of unobservable FDI attacks: 1) a modification of the state-of-the-art orthogonal matching
pursuit (OMP) method; and 2) a method that utilizes the graph Markovian property in power systems,
i.e. the second-neighbor relationship between the power data at the system’s buses. In order to analyze the
performance of the proposed methods, the appropriate oracle and clairvoyant detectors are also derived. The
performance of the proposed methods is evaluated on the IEEE-30 bus test case.
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INDEX TERMS Attack detection and identification, false data injection (FDI) attacks, graph Markovian
property, model selection, structural constraints.

I. INTRODUCTION19

Modern electrical grids are monitored by energy manage-20

ment systems (EMSs). The EMS evaluates the power system21

state estimation (PSSE) for multiple monitoring purposes,22

including stability assessment, control, and security [1], [2].23

To ensure the reliability of the measurements, residual-24

based bad data detection (BDD) methods have been inte-25

grated into the EMS [1]. However, BDD methods cannot26

detect well-designed attacks, named unobservable false data27

injection (FDI) attacks [3], [4]. Unobservable FDI attacks28

are achieved by manipulating measurements based on the29

The associate editor coordinating the review of this manuscript and

approving it for publication was Amedeo Andreotti .

power network topology [3], where the topology matrix is 30

either known or can be estimated from historical data [5], [6], 31

[7], [8]. Unobservable FDI attacks may inflict severe damage 32

by influencing the PSSE [4], [9], [10]. Therefore, appropriate 33

tools for the detection, identification, and estimation of these 34

attacks, that ensure the reliability of the PSSE, are essen- 35

tial for obtaining high power quality and maintaining stable 36

power system operation. 37

The problem of detecting and identifying unobservable 38

FDI attacks has been considered in the last decade. Methods 39

that strategically protect a basic set of measurements were 40

proposed in [11], [12], and [13]. In the same context, using 41

synchronized phasor measurement units (PMUs) has been 42

suggested [13], [14], [15]. However, these approaches require 43
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integrating additional hardware into the power system, which44

results in high cost, a long installation period, and additional45

security vulnerabilities [16]. In addition, theymay result in an46

unobservable system [1], [17]. Detection and identification47

by the moving target defense technique, where the system48

configuration is actively changed, have been proposed in49

[18], [19], and [20], respectively. However, these methods50

carry the cost of operating far from the optimal state and,51

thereby, cause economic losses. Detection and identification52

based on load or state forecasting have been suggested in53

[21] and [22], yet obtaining a reliable forecast is not ensured54

and may require extensive resources [23]. Detection and55

identification methods based on machine learning and data56

mining have been suggested in [24], [25], [26], [27], and [28].57

In [29], the dynamic state estimation has been considered, and58

a Kalman filter algorithm for detection and identification has59

been presented. In [30], a real-time detection and identifica-60

tion model-agnostic algorithm based on the Koopman mode61

decomposition and spectral clustering has been suggested.62

However, the above data-driven methods require a large set63

of historic and real-time power system data, which is usually64

unavailable.65

In this paper, we suggest a novel compressive sensing (CS)66

parametric approach, based on structural constraints, for the67

detection of unobservable FDI attacks and the identification68

of the attacked buses. Sparse recovery CS techniques have69

become a foremost research area in the last two decades (see,70

e.g. [31], [32], [33], [34] and references therein). In power71

systems, CS algorithms have been used for multi-line outage72

identification [35], [36], gross error identification [37], iden-73

tification of imbalances [38], and BDD [39]. CS algorithms74

designed against unobservable FDI attack have been provided75

in [40], [41], and [42], where these methods exploit temporal76

correlations of the power measurements. However, the meth-77

ods in [40], [41], and [42] require multi-time measurements78

and do not consider the difference between the structures of79

the attack and of the system measurements.80

In this paper, we formulate structural and sparse constraints81

for both the FDI attack and the change in the power system82

loads between two consecutive time samples. Accordingly,83

we formulate amodel selection problem,where in eachmodel84

the attack is assumed to be represented by a different set85

of dictionary elements, i.e. the topology matrix columns.86

Based on the model selection formulation and the generalized87

information criterion (GIC) selection rule [43], we develop88

a structural-constrained method for the detection and iden-89

tification of unobservable FDI attacks. However, the pro-90

posed GIC-based method requires an exhaustive search, for91

which the required computational complexity increases expo-92

nentially with the network size, and is therefore practically93

infeasible. Thus, based on the proposed structural and sparse94

constraints, we develop two novel low-complexity methods95

for unobservable FDI attack identification: 1) a modification96

of the state-of-the-art orthogonal matching pursuit (OMP)97

method [44]; and 2) a method that is based on the graph98

Markovian property in power systems, i.e. second-neighbor99

relationship [45]. Finally, we show by numerical simulation 100

that the proposed GIC, OMP, and Graph Markovian GIC 101

(GM-GIC) methods outperform the detection and identifi- 102

cation performance of existing methods. In particular, the 103

proposed parametric methods that are based on information 104

criteria outperform our previous non-parametric detection 105

methods in [46] and [47] that are heuristic in nature and are 106

based on the Graph Fourier Transform (GFT). 107

The main contribution of this paper is threefold. First, 108

we present a new model that takes into account the phys- 109

ical, statistical, and structural properties of unobservable 110

FDI attacks and the typical load changes in power systems. 111

Second, by leveraging the proposed model, we derive a 112

model-selection-based approach for unobservable FDI attack 113

identification. Finally, we propose an OMP-based method 114

and the novel low-complexity GM-GIC method that utilizes 115

both the sparsity and the graphical properties of the problem 116

in order to reduce complexity, while preserving high capa- 117

bilities for the identification of unobservable FDI attacks. 118

Further, we demonstrate that the GM-GIC method can be 119

used in the general context of sparse recovery of a graph 120

signal from the outputs of a graph filter, and is not limited 121

to power system applications. 122

The remainder of this paper is organized as follows. 123

In Section II we introduce the necessary background on the 124

power flow equations, BDD, and unobservable FDI attacks. 125

The proposed structural-constrained model for unobservable 126

FDI attacks is presented in Section III. This model is then 127

used in Section IV to develop the GIC-based approach for 128

the detection and identification of unobservable FDI attacks, 129

which is the basis for the two low-complexity methods devel- 130

oped in Section V. Next, a simulation study is presented in 131

Section VI and conclusions in Section VII. 132

In this paper, vectors are denoted by boldface lowercase 133

letters andmatrices are denoted by boldface uppercase letters. 134

The operators ||·|| and ||·||0 denote the Euclidean norm and 135

the zero seminorm, respectively, where the latter specifies the 136

number of nonzero elements in the vector. The operators (·)T 137

and (·)−1 are the transpose and inverse operators, respectively. 138

The linear space spanned by theAmatrix columns is denoted 139

by col(A). For an index set, 3 ⊂ {1, . . . ,L}, θ3 is the |3|- 140

dimensional subvector of θ containing the elements indexed 141

by 3, where |3| denotes the set’s cardinality. For any index 142

sets, 31 and 32, A31,32 is the submatrix composed by 143

the rows and columns of A associated with 31 and 32, 144

respectively. 145

II. BACKGROUND 146

A. SYSTEM MODEL 147

Apower system can be represented as an undirected weighted 148

graph, G(V, E), where the set of vertices, V , is the set of buses 149

(substations), and the edge set, E , is the set of transmission 150

lines between these buses. The weight in each line is defined 151

according to the π -model of transmission lines [1]. Hence, 152

the weight over line (n, k) ∈ E is given by the admittance of 153

the transmission line, Yn,k . Specifically, in the direct current 154

94170 VOLUME 10, 2022



G. Morgenstern, T. Routtenberg: Structural-Constrained Methods for the Identification of FDI Attacks in Power Systems

(DC) model, where branches are without resistance loss, only155

the imaginary part of the admittance (the susceptance) is156

considered as the line weight.157

The direct current (DC) power flow model is a lin-158

earized representation of the power measurements. This159

model defines the relation between the active power mea-160

surements in the buses and power flows in the transmission161

lines, z = [z1, · · · , zM ]T ∈ RM , and the voltage angles162

(‘‘states’’) at the N buses, θ = [θ1, . . . , θN ]T , in the power163

system network [1]. Based on the DC model, the standard164

observation model for data injection attacks is given by [48]:165

z = Hθ + a+ e. (1)166

The topology matrix,H, is a constantM×N Jacobian matrix,167

N < M , which is composed of the susceptance elements168

(as described, for example, in [1] and [49]). In addition,169

e ∈ RM is a zero-mean Gaussian additive noise vector with170

covariance matrix R, e ∼ N (0, R). The attack is denoted171

by a ∈ RM . It is assumed that H is a full-rank matrix,172

i.e. rank(H) = N − 1, and that the system is fully observable.173

B. POWER SYSTEM STATE ESTIMATION (PSSE)174

The PSSE is commonly used for multiple monitoring pur-175

poses, where under the DC model, the system states are the176

voltage angles, θ . The PSSE is commonly computed using177

the weighted least squares (WLS) estimator [1]:178

θ̂
WLS
= argmin

θ∈RN
(z−Hθ )TR−1(z−Hθ ) = Kz, (2)179

where180

K = (HTR−1H)−1HTR−1. (3)181

In order to robustify the PSSE against errors, classical182

BDDmethods are implemented [1]. These BDDmethods are183

based on the residual error:184

r = z−Hθ̂
WLS
= (I−HK)z, (4)185

where the last equality is obtained by substituting the esti-186

mated state vector as defined in (2). The residual error187

from (4) is used, for example, in the Largest Normalized188

Residual rNmax-test and the χ
2-test [1], which is given by189

TBDD
= ||z−Hθ̂

WLS
||
2
H1
≷
H0

γ BDD, (5)190

where H1 is the hypothesis that the measurements are cor-191

rupted by bad data, which may be the result of an attack, and192

H0 is the null hypothesis. The threshold, γ BDD, is determined193

to obtain a desired false alarm probability. However, both194

the Largest Normalized Residual, which is an identification195

method, and the χ2-test, which is a detection method, can196

neither detect nor identify the presence of unobservable FDI197

attacks, as described in the next subsection.198

C. UNOBSERVABLE FDI ATTACKS 199

The unobservable FDI attack satisfies 200

a
4
= Hc, (6) 201

where c ∈ RN is an arbitrary constant vector. By substituting 202

the well-designed attack from (6) in the observation model 203

from (1) we obtain 204

z = H(θ + c)+ e. (7) 205

From a comparison between the models in (1) and in (7), it 206

can be verified that by observing z, the state vector in (1), θ , 207

cannot be distinguished from its corrupted (attacked) version 208

in (7), θ + c, since both θ and c are unknown vectors. As a 209

result, the residual error, obtained by substituting the WLS 210

estimation (which is based on the unobservable FDI model 211

from (7)) in (4) is 212

r = (I−HK)e, (8) 213

and, thus, it cannot be utilized in order to indicate the presence 214

of an unobservable FDI attack. Consequently, all residual- 215

based methods, as well as all the other methods that are 216

based solely on the model in (7), are expected to fail in 217

detecting unobservable FDI attacks. Therefore, methods for 218

the identification of manipulated measurements that integrate 219

additional constraints are required. 220

III. STRUCTURAL-CONSTRAINED MODELING FOR 221

UNOBSERVABLE FDI ATTACK IDENTIFICATION 222

Due to the unobservable FDI attack formation and further 223

sparsity restrictions, the additional power caused by the attack 224

is constrained to a small subset of buses in the network. 225

Hence, in this section, a new framework that is based on 226

observing power changes in small subnetworks of the system 227

is proposed. First, the assumptions behind this framework 228

are presented in Subsection III-A. Then, the new structural- 229

constrainedmodel for powermeasurements in the presence of 230

unobservable FDI attacks is developed in Subsection III-B. 231

A. ASSUMPTIONS 232

The proposed framework, which facilitates structural con- 233

straints on the unobservable FDI attack and the typical load 234

changes, is constructed by applying the following definitions 235

and assumptions: 236

A.1 Difference-based model: Similarly to the models 237

in [21] and [50], we assume that two consecutive time 238

samples are observed from the model in (7) at times t 239

and t + 1. The first, zt , is free from malicious attacks, 240

i.e. ct = 0, while the second, zt+1, may contain an 241

unobservable FDI attack, i.e. ct+1 = c. Thus, we obtain 242

1c
4
= ct+1 − ct = c, (9) 243

where c = 0 if there is no attack. It should be noted 244

that this assumption is not restrictive since, in practice, 245

the proposed detection method can be integrated into 246

an adaptive scheme in similar manner to the detection 247
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method outlined in [50]. The adaptive scheme is initial-248

ized by a secure (free of an unobservable FDI attack)249

measurement, and then the system is constantly mon-250

itored by observing the difference between two con-251

secutive measurements. Consequently, only a single252

measurement used for initializing the adaptive scheme253

is required to be free of an attack.254

A.2 Restricted measurements: Since generator buses are255

heavily secured and obtain direct communication to the256

control center [51], [52], we assume that generator bus257

measurements cannot be manipulated. In addition, in a258

similar manner to [52], [53], [54], we also assume that259

zero injection buses, i.e. transition buses in which the260

power injection value is zero [55], cannot be manipu-261

lated. Mathematically, this assumption implies that262

H{{V\L},V}c = 0, (10)263

where the set {V \ L} includes the generators and zero264

injection buses, i.e. all buses except the load buses265

stored in the set denoted by L.266

A.3 State sparsity: The number of manipulated state vari-267

ables is bounded by the sparsity term Kc, which is con-268

sidered to be significantly smaller than the cardinality269

of the node set, |V|, i.e. Kc � |V|. Following this270

sparsity restriction, we define the set271

GKc
4
= {3 ⊂ V : 1 ≤ |3| ≤ Kc}, (11)272

that includes all possible supports of the state attack c.273

As a result, there exists a node subset 3i ∈ GKc , where274

i = 1, 2, · · · , |GKc |, that fully contains the attack and275

satisfies276

HV,Vc = HV,3ic3i . (12)277

It is shown in [3], that this assumption (also used278

in [42]) stems directly from the commonly-used spar-279

sity restriction on the number of manipulated meters,280

which states that the attack vector, a, is sparse (see,281

e.g. [49]).282

A.4 Typical load changes (quasi-static system): Power283

systems under normal conditions are quasi-static sys-284

tems that only change slightly over a short period of285

time [40], [56]. Therefore, it is considered that typical286

load changes satisfy287

||HL,V1θ ||
2 < η, (13)288

where η is a relatively small tuning parameter that can289

be obtained from the system statistics.290

A.5 Typical load changes (structural properties): The291

typical load changes w.r.t. the actual load measure-292

ments at a specific moment are determined by the293

consumption demand [23]. Thus, representing the typ-294

ical load changes in a matrix form will output the295

non-sparse vectorHL,V1θ that is not related to the sys-296

tem topology matrix. As a result, composing the typi-297

cal load changes (not including transition buses with298

zero injection) requires all of the subtopology matrix 299

columns.1 Moreover, a close representation can be 300

achieved only by using the vast majority of the topol- 301

ogy matrix columns, which is equivalent to exclud- 302

ing only a small subset of topology matrix columns. 303

Mathematically, we assume that for any 3i ∈ GKc , 304

there exists a small non-negative parameter εi such that 305

the orthogonal projection matrix, P⊥3i
, is an (1 − εi) 306

`2-subspace embedding of HL,V (see Definition 1 307

in [57], Subsection 2.1): 308

||P⊥3i
HL,V1θ ||

2
= (1− εi)||HL,V1θ ||

2, (14) 309

where 310

P3i

4
= HL,3i (H

T
L,3i

HL,3i )
−1HT

L,3i
(15) 311

is the projection matrix onto the space col(HL,3i ) and 312

P⊥3i

4
= I − P3i is the projection matrix onto the 313

orthogonal space (col(HL,3i ))
⊥. 314

It can be seen that Assumptions A.1-A.3 define constraints 315

on the unobservable FDI attack while Assumptions A.4-A.5, 316

define constraints on the typical load changes. 317

B. STRUCTURAL-CONSTRAINED MODEL 318

In the following, we use Assumptions A.1-A.5 to construct 319

the structural-constrained model. First, following Assump- 320

tion A.1, we consider the difference-based model by taking 321

the difference between two consecutive time samples that 322

satisfy the model in (7), with c = 0 for the first time 323

sample and an arbitrary c in the second time sample. Thus, 324

the difference-based observation model is given by 325

1z = H(c+1θ )+1e, (16) 326

where 1θ is the change in the state vector, θ , between the 327

two consecutive time samples. Furthermore, by assuming that 328

the noises of the two consecutive time samples are indepen- 329

dent, we obtain that the difference-based measurement noise 330

in (16) is distributed according to1e ∼ N (0, 2R), where, for 331

the sake of simplicity, it is assumed that 2R = σ 2
e I. 332

According to AssumptionA.2, only the changes in the load 333

buses’ measurements are relevant for the attack. Thus, the 334

relevant measurement model for the detection of attacks is 335

obtained by taking only the load measurements from (16), 336

which results in 337

1zL = HL,V (c+1θ )+1eL, (17) 338

where HL,V is the associated submatrix of the topology 339

matrix H, and 1eL is the corresponding noise. 340

Assumption A.3 implies that the state attack vector sup- 341

port,3, is in the set GKc . Hence, as shown in (12), there exists 342

1It should be noted that the rows of the full topology matrix,H, associated
with the zero-injection buses are not required for composing the typical
load changes since the power injection in these buses is known to be zero.
Therefore, our model uses the submatrix HL,V , which is only associated
with the system nonzero loads.
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a subset of nodes, 3i ∈ GKc , that fully contains the attack.343

By substituting (12) in (17) we obtain344

1zL = HL,3ic3i +HL,V1θ +1eL. (18)345

Thus, the projection of the measurement vector in (18) onto346

col(HL,3i ) satisfies347

P3i1zL = P3i (HL,3ic3i +HL,V1θ +1eL)348

= HL,3ic3i + P3i (HL,V1θ +1eL), (19)349

where P3iHL,3ic3i = HL,3ic3i results from (15). In addi-350

tion, by substituting the following property of projection351

matrices (see, e.g. p. 46 in [58]):352

||P⊥3i
HL,V1θ ||

2
=||HL,V1θ ||

2
−||P3iHL,V1θ ||

2 (20)353

in (14) from Assumption A.5 and rearranging the equation,354

we obtain355

εi =
||P3iHL,V1θ ||2

||HL,V1θ ||2
. (21)356

Hence, by substituting (21) in (13), we obtain that the pro-357

jection of HL,V1θ onto the column space of the submatrix,358

HL,3i , is bounded by359

||P3iHL,V1θ ||
2
≤ εiη, (22)360

where, according to Assumptions A.4-A.5, εiη is a small361

parameter for any i = 1, . . . , |GKc |.362

Based on (18) and (22), identifying the subset of attacked363

buses, 3i, under the considered model can be formulated as364

the following multiple hypothesis testing problem:365

H0 : 1zL = HL,V1θ +1eL366

Hi :

{
1zL = HL,3ic3i +HL,V1θ +1eL
s.t. ||P3iHL,V1θ ||

2
≤ εiη,

(23)367

where εiη is small for any i = 1, . . . , |GKc |. Each hypothesis368

Hi in (23) assumes a different support, 3i ∈ GKc , for the369

state attack vector, c. The null hypothesis H0 is obtained by370

substituting c = 0 in (18).371

Since εηi is small, we adopt standard practices from the372

CS literature [31], [32], [33], [34], where it is common to373

exclude low amplitude samples from the sparse approxima-374

tion in order to develop tractable methods. That is, instead of375

solving (23) one can solve the following modified hypothesis376

testing problem:377

H0 : 1zL = HL,V1θ +1eL378

Hi :

{
1zL = HL,3ic3i +HL,V1θ +1eL
s.t. P3iHL,V1θ = 0,

(24)379

where i = 1, . . . , |GKc |. The multiple hypothesis testing380

in (24) provides a new framework for identifying the sparse381

state attack vector c from measurements contaminated by382

additive noise and the nuisance parameter 1θ . In the mod-383

ified hypothesis testing in (24), the state attack vector c and384

the load changes 1θ are not in the same subspace. Hence,385

in contrast to the use of (7), under the framework in (24) the386

attack is observable. Consequently, the formulation in (24) is 387

appropriate for the development of unobservable FDI attack 388

identification algorithms such as the GIC-based identification 389

algorithm developed in Section IV and the low-complexity 390

practical algorithms described in Section V. The performance 391

of the proposed methods is examined w.r.t. the values η and 392

εi, i = 1, . . . |GKc |, from the hypothesis testing in (23) in 393

Subsection IV-B and empirically in Section VI (see Fig. 3). 394

A possible interpretation of the problem in (23) and (24) is 395

as a special case ofMatched Subspace Detection (MSD) [59], 396

in which the measurements are composed of two determinis- 397

tic signals and additive noise. In a similar manner to in our 398

framework, one of the two deterministic signals is consid- 399

ered as the target signal (here, the attack) and the other is 400

considered as the background signal (here, the load changes). 401

However, our framework deviates from the standard MSD 402

problem by: 1) the spanning subspace of the target signal is 403

unknown; 2) sparsity restrictions are assumed on the target 404

signal; and 3) the subspace of the target is contained within 405

the linear space that spans the background signal. Thus, stan- 406

dard MSD techniques cannot be applied to solve (23) or (24). 407

A different perspective, presented in Subsection V-B5, is the 408

applicativity of (24) in the context of graph signal processing 409

(GSP), where H is a general graph filter. 410

IV. IDENTIFICATION OF UNOBSERVABLE FDI ATTACKS 411

BY THE GIC APPROACH 412

A. GIC APPROACH 413

In the following, we derive the identification of unobservable 414

FDI attacks by selecting the most likely hypothesis in (24), 415

i.e. the most suitable choice of attack support, 3i, from the 416

set of candidate supports, {GKc ∪ ∅}, given the measurement 417

vector, 1zL. In order to solve (24), we implement the GIC 418

selection rule [43], which is widely employed in signal and 419

array processing. The GIC method chooses the hypothesis 420

Hi which maximizes the sum of two terms: the likelihood 421

term for data encoding, L(·), and a penalty function, τ (·), 422

that inhibits the number of free parameters of the model from 423

becoming very large. For the considered hypothesis testing 424

in (24) and a given difference-based state vector1θ , the GIC 425

statistic is given by 426

GIC(3i, τ (|3i|, |L|))
4
=2L(1zL; ĉ

ML|i
3i

,1θ )−τ (|3i|, |L|), 427

(25) 428

where L(1zL; ĉ
ML|i
3i

,1θ ) is the log-likelihood function of1z 429

under the ith hypothesis, which is associated with the support, 430

3i, and ĉML|i is theML estimation of the state attack vector, c. 431

Therefore, in the general case the GIC statistic is a function 432

of 1θ , which is an unknown deterministic vector. However, 433

as presented in the following, the GIC selection rule in this 434

case is independent of 1θ and, therefore, is a valid rule. The 435

term τ (|3i|, |L|) is a penalty function, which increases with 436

the number of free unknown parameters that is determined in 437

this case by the number of manipulated variables, |3i|, and 438

the number of load buses, |L|. In particular, a special case of 439
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the GIC family is the Akaike information criterion (AIC), for440

which the penalty term is441

τ (|3i|, |L|) = 2|3i|. (26)442

Further discussion on the penalty term is provided in the443

simulation study in Section VI.444

Proposition 1: The GIC statistic in (25) satisfies445

GIC(3i, τ (|3i|, |L|)) =
1
σ 2
e
||P3i1zL||2 − τ (|3i|, |L|)446

+ const, (27)447

where const is a constant term that does not depend on the448

hypothesis, i = 0, 1, . . . , |GKc |.449

Proof: The proof is provided in Appendix A.450

It should be noted that for the null hypothesis in Propo-451

sition 1, in which 30 = ∅, we use the convention that452

P301zL = 0. It can be seen from the GIC statistic in (27)453

that the selected hypothesis is the one that maximizes the sum454

of the two terms: 1) the projection of the load measurements455

onto the associated ‘‘attack subspace’’, col(HL,3i ), by com-456

puting P3i1zL; and 2) a penalty function,−τ (|3i|, |L|), that457

encourages a sparse solution. As a result, the representation of458

the GIC selection rule from (25) by (27) shows that it is not459

a function of the unknown states, 1θ , and therefore, it is a460

valid selection rule. An intuition regarding the GIC selection461

rule in Proposition 1 can be drawn from a comparison of the462

GIC statistic in (27) with the bound in (22). This compari-463

son implies that a high energy level for the projected signal464

in (19), ||P3i1zL||2, cannot be associated with conventional465

states, and thus provides an indication of the presence of an466

unobservable FDI attack in the subspace associated with 3i,467

HL,3ic3i .468

The proposed structural-constrained GIC algorithm for the469

identification of unobservable FDI attacks is provided in470

Algorithm 1 and is based on the GIC statistic in Proposi-471

tion 1. Detection of unobservable FDI attacks is obtained as472

a by-product of the identification solution of Algorithm 1, s,473

where the proposed structural-constrained GIC-based detec-474

tor decides that there is no attack if s = 0 and that an475

unobservable FDI attack is present for the case where s 6= 0.476

Algorithm 1 Structural-Constrained GIC
Input:

- difference-based measurements: 1z
- network parameters: H, L
- set of candidate state attack supports: GKc

- GIC penalty function: τ (·, ·)
Output: selected hypothesis: s
1: for 3i ∈ GKc do
2: evaluate GIC(3i, τ (|3i|, |L|)) from (27)
3: end for
4: return s = arg max

i∈{0,...,|GKc |}
GIC(3i, τ (|3i|, |L|))

The computational complexity of Algorithm 1 is domi-477

nated by Step 2 in the for loop between Steps 1-3, in which478

the GIC statistic in (27) is computed for each3i ∈ GKc , where 479

according to Assumption A.3 480

|GKc | =

Kc∑
k=0

(
|V|
k

)
, (28) 481

and Kc is the maximal sparsity level from (11). For any 482

k = 1, 2, . . . ,Kc, the binomial coefficient,
(
|V |
k

)
, grows by 483

O(|V|k ) (p. 36, in [33]). Thus, the number of times the GIC 484

statistic is evaluated in Algorithm 1, which is the number of 485

elements in (28), is in the order ofO(
∑Kc

k=0|V|
k ). The number 486

of matrix-vector multiplications required for the computation 487

of each GIC statistic in (27) is O(|L||3i|
2
+ (|3i| + 1) 488

|L|2 + |L|). Thus, for large-scale power systems, where |V| 489

and |L| are significantly large compared with Kc, the com- 490

plexity is in the order ofO(|V|Kc (Kc+1)|L|2), and thus it may 491

be infeasible to use the structural-constrained GIC method. 492

In response to this issue, in Section V, we provide two low- 493

complexity approximations. 494

B. PERFORMANCE ANALYSIS OF THE GIC METHOD 495

In this section, we provide a theoretical performance analysis 496

of the GIC method. In particular, we derive: 1) the oracle 497

GLRT detector [33] that has access to the support of the 498

sparse vector,3i ∈ Gkc ; and 2) the clairvoyant detector [60], 499

which is a GLRT detector that has full access to the nui- 500

sance parameters. While both the oracle and the clairvoyant 501

detectors are infeasible since they are based on unavailable 502

information, they provide insights insights with regard to the 503

influence of the approximation error, εiη, in the general case, 504

where the support is unknown. 505

In [61] it is shown that the GIC test provides the same 506

decision rule as the generalized likelihood ratio test (GLRT) 507

for a binary hypothesis testing problemwith a fixed threshold. 508

Hence, by using the GIC test in (27), the GLRT for the asso- 509

ciated binary (modified) hypothesis testing problem in (24) 510

with onlyH0 and a singleHi is given by 511

TGLRT |i =
1
σ 2
e
||P3i1zL||2

Hi
≷
H0

γGLRT , (29) 512

where γGLRT is the oracle detector threshold, which is set 513

to achieve a desired false alarm probability. The following 514

proposition states upper and lower bounds on the probability 515

of false alarm,Pfa, in detecting unobservable FDI attacks with 516

a given support, 3i, for the state attack vector, c. 517

Proposition 2: The probability of false alarm of the GLRT 518

in (29) satisfies the following inequality: 519

Q |3i|
2

(
0,
√
γGLRT

)
≤ Pfa ≤ Q |3i|

2

(√
η

σe
,

√
γGLRT

)
, 520

(30) 521

where Qv(a, b) is the generalized Marcum Q-function of 522

order v [62]. 523

Proof: The proof appears in Appendix B. 524

The upper and lower bounds in (30) describe the influ- 525

ence of η and γGLRT on the probability of false alarm of 526
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the GLRT detector in (29) and are dictated by the property527

0 ≤ εi ≤ 1 shown in Appendix B. Since Qv(a, b) decreases528

as b decreases [62], we obtain the expected result that both529

the upper and lower bounds of Pfa decrease as the threshold530

γGLRT decreases. In contrast, since the function Qv(a, b)531

increases as a increases [62], the upper bound on the r.h.s.532

of (30) increases as η increases. This result indicates that533

when the bound on the nuisance parameter, H1θ , in (13) is534

tighter, we can guarantee a tighter upper bound on the prob-535

ability of false alarm, Pfa. Moreover, under Assumption A.5,536

εi from (21) is expected to be small for all i = 1, 2, . . . , |GKc |.537

Thus, following the derivations in Appendix B, the probabil-538

ity of false alarm is expected to be close to the lower bound539

in (30). In particular, the extreme case of εi = 0 occurs when540

the load changes are outside of the column space col(HL,3i ),541

i.e. P3iHL,V1θ = 0. For this case, the probability of false542

alarm achieves the lower bound in (30), i.e.543

Pfa = Q |3i|
2

(
0,
√
γGLRT

)
,544

and the probability of detection (see (73) in Appendix B) is545

Pd = Q |3i|
2

(
||HL,3ic3i ||

σe
,

√
γGLRT

)
. (31)546

Hence, following the discussion on the properties of the547

generalized Marcum Q function in Appendix B, the prob-548

ability of detection in (31) increases as the attack energy,549

||HL,3ic3i ||
2, increases.550

In the following, we analyze the performance of the asso-551

ciated clairvoyant detector. The clairvoyant detector in the552

general case is the detector obtained by using the otherwise553

unknown signal parameter values of the composite hypoth-554

esis testing (see, e.g., Chapter 6.5, [60] and [63]). There-555

fore, the clairvoyant detector can serve as a reference for556

the achievable performance of practical detectors. In the557

considered model, the clairvoyant detector assumes perfect558

knowledge regarding the nuisance parameter,HL,V1θ . Thus,559

similar to the GLRT in (29), the clairvoyant GLRT is the560

GLRT detector for the binary (modified) hypothesis testing561

problem in (24) with onlyH0 and a singleHi, but now when562

H1θ is assumed to be known. That is, the clairvoyant GLRT563

is given by564

TGLRT |icl =
1
σ 2
e
||P3i (1zL −HL,V1θ )||

2
Hi
≷
H0

γ cl, (32)565

where γ cl is the clairvoyant detector threshold. It should be566

noted that the clairvoyant detector is a theoretical detector567

that provides an upper bound on the performance of the568

probability of detection of practical detectors.569

The following proposition presents a special case in which570

the proposed GLRT in (29) achieves the clairvoyant GLRT.571

Proposition 3: If εi = 0, then the GLRT in (29) coincides572

with the clairvoyant GLRT in (32).573

Proof: In Appendix B it is shown that εi = 0 implies574

that ||P3iHL,V1θ ||2 = 0. Hence, as a result of known575

norm properties we obtain that P3iHL,V1θ = 0. Thus,576

by substituting this result in the clairvoyant GLRT in (32) we 577

obtain the proposed GLRT in (29). 578

As a result of Proposition 3, if εi = 0, then the detection 579

of the attack is not influenced by the presence of the nuisance 580

parameter, H1θ . In other words, the value of H1θ does not 581

affect the performance of the proposed GLRT detector in (29) 582

for the observed case. 583

Similar to the clairvoyant GLRT, we define the clairvoy- 584

ant GIC as the GIC selection rule for the hypothesis test- 585

ing in (23) that assumes perfect knowledge of the nuisance 586

parameter, HL,V1θ . Therefore, similar to the derivation 587

of (27), it can be shown that the clairvoyant GIC is given by 588

GICcl(3i, τ (|3i|, |L|)) =
1
σ 2
e
||P3i (1zL −H1θ )||2 589

− τ (|3i|, |L|)+ const. (33) 590

The performance of the clairvoyant GIC is used as a bench- 591

mark on the performance of the proposedmethods, as demon- 592

strated in the simulations. 593

V. LOW-COMPLEXITY IDENTIFICATION METHODS 594

As shown at the end of Subsection IV, the computational 595

complexity of the structural-constrained GIC method makes 596

it impractical for large power system networks, where |V| and 597

|L| are large. In this section, we develop two low-complexity 598

methods that rely onAssumptionsA.1-A.5: 1) an OMP-based 599

method [44]; and 2) a novel method that exploits the graph 600

Markovian property of order two between the nodes (buses) 601

in the graph representation of the power system [45]. 602

A. OMP METHOD 603

The OMP algorithm in [44] is an efficient method 604

for the recovery of sparse signals. The basic principle 605

behind the OMP algorithm is to iteratively find the support set 606

of the sparse vector. The OMP method proceeds by finding 607

the column of the CS matrix that correlates most strongly 608

with the signal residual. The residual is constructed in each 609

iteration by projecting themeasurements onto the linear space 610

spanned by the remaining columns that were not selected in 611

previous iterations. 612

In this subsection, we apply the OMP algorithm for the 613

sparse recovery of the state attack vector, c, which is a sparse 614

signal as described in Assumption A.3, from the measure- 615

ments in (17). It should be noted that the measurement model 616

in (17) contains a nuisance parameter vector,HL,V1θ , which 617

is not a part of the conventional sparse recovery model. Nev- 618

ertheless, similarly to in the derivations in Subsection III-B, 619

it can be shown that under AssumptionsA.1-A.5 the nuisance 620

parameter has a negligible effect on the OMP selection crite- 621

rion. Thus, the conventional OMP method is valid for this 622

setting. 623

The main iteration of the OMP algorithm, which is per- 624

formed on the load measurements model from (17), is given 625

as follows. Suppose 3(j) is the estimated support set of c in 626
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the jth iterative step. In the (j+ 1)th iteration, we compute627

k = argmax
k̃∈V
||P
{k̃}r

OMP|(j)
||
2, (34)628

where Pk̃ is obtained by replacing 3i = k̃ in (15), and629

rOMP|(j)
= P⊥

3(j)1zL (35)630

is the signal residual at the jth iteration. By substituting (35)631

and P⊥
3(j) = I− P3(j) on the r.h.s. of (34) we obtain632

||P{k}rOMP|(j)
||
2
= ||P{k}1zL − P{k}P3(j)1zL||2. (36)633

By limiting the number of iterations to the maximal sparsity634

level, Kc, we obtain that 3(j)
∈ GKc . In addition, any single635

bus, k ∈ V , is an element in GKc , i.e. k ∈ GKc , as well.636

Therefore, under Assumptions A.1-A.5, we obtain from (22)637

that the nuisance parameter, HL,V1θ , has a minor effect638

on both the terms P{k}1zL and P3(j)1zL. Consequently, the639

nuisance parameter has a minor effect on (36) and, thus, its640

influence on the OMP selection procedure in (34) can be641

neglected. The proposed structural-constrained OMP algo-642

rithm for the identification of unobservable FDI attacks is643

provided in Algorithm 2.644

Algorithm 2 Structural-Constrained OMP
Input:

- difference-based measurements: 1z
- network parameters: H, V , L
- maximal sparsity level: Kc
- stopping rule threshold: γOMP

Output: estimated support: 3̂OMP

Initialize: 3(0)
= ∅, rOMP|(0)

= 1zL
1: for j = 1 . . .Kc do
2: evaluate k from (34)
3: if ||P{k}rOMP|(j−1)

||
2 < γOMP then

4: return 3s = 3̂
(j−1)

5: end if
6: update: 3(j)

= {3(j−1)
∪ k}

7: update: rOMP|(j)
= P⊥

3(j)1zL
8: end for
9: return 3̂OMP

= 3̂(j)

The computational complexity of Algorithm 2 is dom-645

inated by Step 3 (computing (34)), which requires646

O(2|L|2 + 3|L|) matrix-vector multiplications for each k =647

1, 2, . . . , |V|. The loop between Steps 2-8 is performed at648

most Kc times. As a result, the total complexity of Algo-649

rithm 2 is in the order of O(|V|Kc|L|2), which is significantly650

lower than the complexity of the GIC method (see discussion651

after (28)).652

In general, the OMPmethod is used in a variety of applica-653

tions due to its low computational complexity. However, the654

OMP method is a greedy algorithm with no optimal recovery655

guarantees, and usually requires an incoherent dictionary in656

order to provide high performance [32]. In our case, the CS657

matrix is the topology matrix HL,V , which may be highly658

correlated, and thus, with large mutual coherence. In order 659

to address this issue, in the following subsection, we develop 660

a novel low-complexity method that uses the power system 661

graph representation Markovian properties. 662

B. GRAPH MARKOVIAN GIC (GM-GIC) 663

In this section, we develop the low complexity GM-GIC 664

method for the measurement model in (17) and under 665

Assumptions A.1-A.5, which considers the graphical repre- 666

sentation of the power system. Accordingly, in this subsec- 667

tion the system buses are referred to as the graph nodes. 668

The power system graphical representation is utilized in 669

Subsection V-B1 to analyze the affect of an unobservable 670

FDI attack on the measurements. Based on this analysis, we 671

derive the GM-GIC method, which consists of the following 672

four stages: 1) low-scale pre-screening (Subsection V-B2); 673

2) node partitioning (Subsection V-B3); 3) local GIC, on the 674

partitioned subsets; and 4) sparsity correction. The GM-GIC 675

method, including Stages 3 and 4, is summarized in Sub- 676

section V-B4. Furthermore, in Subsection V-B5 it is demon- 677

strated that the GM-GIC method can be applied in GSP 678

applications with sparse signals, in addition to its application 679

for FDI attack identification in power systems. 680

1) ATTACK ANALYSIS 681

In the following, we analyze the effect of an unobserv- 682

able FDI attack on the system measurements. Specifically, 683

we focus on how an attack, with a support 3, affects 684

the single-node measurement subspace, col(HL,m), for any 685

node m ∈ V . Considering the measurement model in (17), 686

the unobservable FDI attack can be linearly decomposed as 687

follows: 688

Hc = HL,3c3 =
∑
k∈3

HL,kck . (37) 689

Based on the decomposition in (37), we can analyze the influ- 690

ence of an attack on a single-node measurement subspace 691

by summing over the individual influences on each node, 692

k ∈ 3. The following proposition evaluates the effect of a 693

single-node attack on a single-node measurement subspace. 694

Proposition 4: The projection of a single-node attack on 695

node k ∈ 3, HL,kck , onto the measurement subspace asso- 696

ciated with node m ∈ V , col(HL,m), satisfies 697

P{m}HL,kck = 0, ∀k,m ∈ V, d(k,m) > 2 (38) 698

and 699

||P{m}HL,kck ||
2
≤ ||P{k}HL,kck ||

2, ∀k,m ∈ V, (39) 700

where P{m} is obtained by substituting 3 = {m} in (15). 701

Proof: The proof appears in Appendix C. 702

This proposition demonstrates that the single-node attack 703

obtains a ‘local’ effect. That is, a single-node attack on node k 704

does not affect the single-node measurement subspace of 705

node m if the geodesic distance (hop distance) [64] between 706
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nodes k and m, d(k,m), is greater than two, d(k,m) > 2.707

By multiplying (37) by P{m} and substituting (38), we obtain708

P{m}HL,3c3 = 0, ∀k ∈ 3, d(k,m) > 2. (40)709

As a result of (40), the single-node measurement subspaces710

affected by the unobservable FDI attack are only those which711

are associated with nodes in the set712

A 4= {m ∈ V : ∃k ∈ 3 s.t. 0 ≤ d(k,m) ≤ 2}, (41)713

where, according to (41), the set A includes the attacked714

nodes, those in 3, and first- or second-order neighbors of715

attacked nodes. This observation can be interpreted as a716

second-order graph Markov property [45].717

In general, the power system network generates a sparse718

graph where nodes are connected to 2-5 neighbors [65]. Thus,719

the nodes in the power system have at most 5 first-order and720

25 second-order neighbor nodes. As a result, the number of721

nodes affected by the attack is bounded:722

|A| ≤ (1+ 5+ 25)Kc, (42)723

where Kc is the sparsity term defined in Assumption A.3 and724

A is defined in (41). Moreover, the power system network725

diplays a local behavior for the connectivity pattern, where726

only substations geographically close are likely to be con-727

nected. Thus, the bound in (42) is not a tight bound, and |A|728

is expected to be significantly lower than the r.h.s of (42).729

In conclusion, it is implied that for large networks |A| � |V|.730

2) PRE-SCREENING731

The first stage of the GM-GIC method is a pre-screening732

stage. In order to evaluate if the dictionary matrix column733

associated with node m ∈ V , HL,m, is correlated with the734

attack, Hc, we derive the GLRT (in a similar manner to735

in (29)) for the associated binary hypothesis testing problem736

in (24) with only H0 and a single Hi, selected as Hi = {m},737

which results in738

||P{m}1zL||2
H1
≷
H0

ρ, (43)739

where ρ is set to determine a desired false alarm rate. Apply-740

ing the GLRT detector in (43) for any node in the system741

yields the following set of suspicious nodes:742

S 4= {m ∈ V : ||P{m}1zL||2 > ρ}. (44)743

Thus, the node m will be included in the set S if abnormal744

energy is detected in the single-node measurement subspace,745

col(HV,m). By considering the hypothesis testing in (24) in746

which 3i = {m}, the projection of the nuisance parameter,747

P{m}HL,V1θ , is negligible. Therefore, the inclusion of the748

node m in the set S indicates that the measurement sub-749

space, col(HV,m), is affected by the attack, i.e. that P{m}HL,3750

c3 6= 0. Thus, from (40), the set of suspicious nodes in (44)751

can be interpreted as an estimator of the set A in (41).752

From (39), it can be seen that the norm of the projected753

single-node attack on single-node measurement subspaces of754

attacked nodes is higher than the norm of the projection onto 755

measurement subspaces associated with other nodes. Thus, 756

considering the discussion after (37), the effect of the attack, 757

HL,3c3, on attacked nodes is expected to be higher than 758

its effect on their first- and second- order neighbor nodes. 759

Therefore, even if the estimator S does not cover all the nodes 760

in A, the attacked nodes are still expected to be included. 761

3) NODE PARTITIONING 762

The second stage of the GM-GIC method is the partitioning 763

of the suspicious set, S, in (44), into disjoint subsets. This 764

partitioning provides the condition that an attack on nodes 765

located in one of the subsets does not affect the measurement 766

subspaces associated with nodes in the other subsets. Accord- 767

ing to the proposed partitioning, a general set S is partitioned 768

into Q disjoint subsets, {Sq}Qq=1, if the following is satisfied: 769

d(k,m) > 2, ∀k ∈ Sq, m ∈ Sp (45) 770

for any two different subsets, Sq and Sp, p 6= q, selected from 771

{Sq}Qq=1, where 1 ≤ Q ≤ Kc. Thus, from (40) and (45), 772

an attack on any node subset in Sq, 3q ∈ Sq, does not affect 773

the column space associated with the nodes in any of the other 774

subsets, e.g. col(HL,Sp ), i.e. 775

PSpHL,3q = 0. (46) 776

Therefore, a node partitioning that satisfies (45) enables iden- 777

tification of the attacked buses in each subset separately, and, 778

thus, reduces the problem dimension. In contrast, the GIC 779

from Algorithm 1 considers the entire node set V . 780

In practice, finding a node partitioning that satisfies (45) 781

is performed as follows. First, based on the graph representa- 782

tion of the given power system, we generate the unweighted 783

undirected graph G̃ = (S, EG̃), where S are the nodes and the 784

set of edges is defined as 785

EG̃
4
= {(k,m) : k,m ∈ S, 1 ≤ d(k,m) ≤ 2}, (47) 786

in which d(·, ·) refers to the geodesic distance measured on 787

the original graph that represents the power system network. 788

Then, we find the connected components of G̃ (e.g. by using 789

theMatlab command conncomp). According to the definition 790

in (47), we obtain that d(k,m) > 2 for any k and m that 791

belong to different connected components of G̃. Therefore, 792

selecting the partition subsets {S}Qq=1 to be the node sets of 793

the connected components of G̃ satisfies (45). 794

4) SUMMARY: GM-GIC METHOD 795

In this subsection we summarize the proposed GM-GIC 796

method. In the first stage of this method, a reduced set, 797

composed of suspicious nodes, S, is extracted from the node 798

set V , according to (44). In the second stage, the set S is 799

partitioned into Q disjoint subsets, {Sq}Qq=1, as described 800

in Subsection V-B3. In the third stage, the GIC method is 801

applied on each subset separately, by replacing the set of 802

candidate state attack supports, GKc , in Algorithm 1 with 803

G Sq
Kc

4
= {3 ⊂ Sq : 1 ≤ |3| ≤ Kc}. (48) 804
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As a result, for each subset Sq we obtain a partial estimation805

of the support set, which is denoted by 3̂q. The total support806

set of the state attack vector is the union of all the partial807

estimates808

3̂GM-GIC
temp =

Q⋃
q=1

3̂q. (49)809

The estimated support in (49) may exceed the sparsity810

limit |3̂GM-GIC
temp | ≤ Kc. Hence, 3̂GM-GIC

temp may include811

node-elements which are not attacked. It should be noted812

that in this stage, Assumption A.2 is relaxed and the sparsity813

restriction is only imposed on the partial (separated) esti-814

mates, i.e. 3q ≤ Kc. In order to reduce the identification815

errors that may be induced by this relaxation, in the fourth816

stage, the estimated support in (49) is corrected to satisfy817

|3̂GM-GIC
| ≤ Kc. This stage is performed by: 1) evaluating818

the state attack ML estimation, ĉML|i
3̂GM-GIC , by replacing 3i819

with (49) in (65) from Appendix VII; 2) sorting ĉML|i

3̂GM-GIC
temp

in820

a descending order:821

I 4= {i1, i2, . . . , i|3̂GM-GIC|} = sort(ĉML|i

3̂GM-GIC
temp

); (50)822

and 3) preserving only the Kc elements with the highest823

absolute values,824

3̂GM-GIC
= {i1, i2, . . . , iKc}. (51)825

The proposed GM-GIC algorithm for the identification of826

unobservable FDI attacks is provided in Algorithm 3.827

The computational complexity of the different stages of828

the GM-GIC method in Algorithm 3 are as follows: 1) the829

pre-screening stage in Step 1 requires O(|V|(2|L|2 + 3|L|))830

matrix-vector multiplications; 2) the node partitioning stage831

in Step 3 is dominated by the graph partitioning, which832

is implemented by the conncomp(·) Matlab command and833

requires O(|S| + |S|2) computations (considering that the834

number of edges in G̃ cannot be anticipated in advance, this835

analysis is based on the worst case in which G̃ is a fully con-836

nected graph); 3) in Steps 4-7 the GIC method is applied on837

each of the subsets {Sq}Qq=1, so that, from Subsection IV, the838

complexity is in the order of O((
∑Q

q=1|Sq|
Kc )(Kc + 1)|L|2);839

and 4) the sparsity correction stage, in Steps 9-12, is domi-840

nated by Step 10, which requires O(Kc(Kc + 1)|L|) matrix-841

vector multiplications. In power systems, the number of load842

nodes (buses) |L| is, in general, in scale with the number843

of nodes |V|. Thus, from Subsections V-B1-V-B2, we obtain844

that |S| � |L| and the total computational complexity of845

Algorithm 3 is O((
∑Q

q=1|Sq|
Kc )(Kc + 1)|L|2).846

The computational complexity of the different methods is847

summarized in Table 1. It can be seen that the computational848

complexity of theGM-GICmethod is significantly lower than849

that of the complexity of the GIC method, but may be higher850

than that of the complexity of the OMP method. Finally, the851

worst complexity for the GM-GIC method is obtained when852

S cannot be partitioned. In this case, the complexity is in853

Algorithm 3 GM-GIC
Input:

- difference-based measurements: 1z
- network parameters: H, V , L
- maximal sparsity level: Kc
- energy threshold: ρ

Output: estimated support: 3̂GM-GIC

1: Pre-screening: evaluate S by (44)
2: if S = ∅ then
3: return 3̂GM-GIC

= ∅

4: end if
5: Node-partitioning: 1) generate G̃ = (S, EG̃) by comput-

ing (47); 2) partition G̃ into its connected components
(e.g. by conncomp in Matlab); and 3) set {Sq}Qq=1 to be
these components

6: for q = 1 . . .Q do
7: generate the graph G Sq

Kc
by (48)

8: compute 3̂q by applying Algorithm 1 with the input

set of candidate state attack supports G Sq
Kc

9: end for
10: compute 3̂GM-GIC by (49)
11: if |3̂GM-GIC

| > Kc then
12: compute ĉML|i

3̂GM-GIC by (65)

13: correct 3̂GM-GIC by (50) and (51)
14: end if
15: return 3̂GM-GIC

the order of O(|S|Kc (Kc+ 1)|L|2), which is still significantly 854

lower than the computational complexity of the GIC method. 855

In contrast to the GIC and the OMP methods, the com- 856

putational complexity of the GM-GIC method also depends 857

on the underlying structure of the power system (and not 858

only the dimensions), which is represented by the topology 859

matrix H. In particular, the results of the pre-screening and 860

node partitioning stages, S and {Sq}q, which are detailed 861

in Subsections V-B2 and V-B3, respectively, depend on the 862

formation of the topology matrix H. The method will per- 863

form effectively when the properties detailed at the end of 864

Subsection V-B1 are satisfied. 865

TABLE 1. Computational complexity of the proposed methods.

5) SPARSE SIGNAL RECOVERY IN GSP APPLICATIONS 866

The proposed GM-GIC heuristic is designed to exploit the 867

graphical properties of power system networks, which are 868

detailted in Subsection V-B1 as part of the attack analysis, 869

and include: 1) graph Markovity; 2) graph sparsity; and 870
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3) local graph connectivity behavior. Thus, the GM-GIC871

method can be utilized for sparse recovery in GSP frame-872

works, where, if Properties 1)-3) are satisfied, the GM-GIC873

method has advantages, compared with conventional sparse874

recovery algorithms, in terms of computational complexity875

and accuracy of the sparse recovery.876

The emerging field of GSP provides new methodologies877

for the analysis of signals in applications with underlying878

relations that could be modeled by a graph [66], [67], [68].879

In particular, the propagation of a process that originates from880

a sparse input through the graph vertex domain is commonly881

modeled in the GSP literature as an output of a graph filter882

[69], [70], [71]; this approach has various applications, such883

as locating the source of a disease [72], [73] or monitoring884

anomalies in sensor networks [74]. The proposed GM-GIC885

method can be applied to this problem of sparse recovery in886

GSP models as follows. Let us assume the graph G = (V, E)887

with the set of nodes (vertices) V and the set of edges E .888

We consider the recovery of a sparse graph signal, x ∈ R|V |,889

s.t. ||x||0 � |V|, from the noisy output of a graph filter,890

F ∈ R|V |×|V |:891

y = Fx+ e, (52)892

where e ∼ N (0, σ 2
n ) is the system noise, and the graph filter893

F is linear and shift-invariant [66], [67], [68], [69]. Hence,894

F is a polynomial in a graph shift operator (GSO), S ∈895

R|V |×|V |, as follows [66], [67], [68]:896

F = h0I+ h1S+ . . .+ h9S9 , (53)897

where h0, . . . , h9 are the filter’s coefficients and9 ≥ 1 is the898

filter’s order. The GSO, S, is defined as a matrix that satisfies899

Sk,m = 0, if d(k,m) > 1, (54)900

∀k,m ∈ V , where d(k,m) is the geodesic distance between901

nodes k and m. In particular, it can be verified that (54)902

implies903

Fn,k = 0, if d(n, k) > 9, (55)904

∀k,m ∈ V , which leads to905

FTV,mFV,k = 0, ∀k,m ∈ V, d(k,m) > 29. (56)906

It can be seen that the problem in (24) is reduced to the907

problem in (52) when the topology matrixH is replaced with908

the graph filter F and when the nuisance parameter is absent,909

1θ = 0.910

It can be seen that for a graph filter of order9 = 1, (56) is911

identical to the property in (78)-(79) fromAppendix C, where912

in this case F = HV,L. The property in (78)-(79) is the basis913

for Proposition 4 that enables the derivation of the GM-GIC914

method. Thus, for this case, the GM-GIC method can be915

implemented (without any change) on (52) for the recovery916

of the sparse graph signal, x, which replaces the state attack917

vector, c, and without nuisance parameters. For the general918

case, where 9 > 1, the GM-GIC method can be applied919

on (52) after replacing the constraint in (47) (that is part of920

the node partitioning stage in Algorithm 3) with the constraint 921

1 ≤ d(n, k) ≤ 29. For this case, in which (56) is considered 922

instead of (79), the condition in (38) from Proposition 4 is 923

changed to d(k,m) > 29. 924

VI. SIMULATIONS 925

In this section, the performance of the proposed methods is 926

demonstrated for the tasks of detection and identification of 927

unobservable FDI attacks. The simulations are conducted on 928

the IEEE-30 bus test case, where the topology matrix and 929

measurement data are extracted using the Matpower toolbox 930

for Matlab [75]. The simulation set-up is described in Sub- 931

section VI-A, while the proposed methods’ performance is 932

demonstrated in Subsection VI-B. 933

A. SET-UP 934

1) MEASUREMENTS 935

The simulation study is conducted on the difference-based 936

model in (16). For the sake of simplicity of implementation, 937

we ensure Assumption A.2 by defining the set Ṽ to include 938

only state variables that are related to load measurements, 939

and then restricting the support of the state attack vector to 940

3 ⊆ Ṽ . In particular, for the IEEE-30 bus test case it can be 941

verified that Ṽ = {14, 16, 17, 18, 19, 20}. In each simulation, 942

we set the cardinality of the state attack support vector to be 943

|3| = Ka and draw the support vector,3, uniformly from the 944

set {3 ∈ Ṽ : |3| = Ka}. The attack values on the chosen 945

support are randomly drawn from the uniform distribution 946

over the interval [−1, 1]. Then, the values are scaled to obtain 947

a desired value of attack norm, ||a||. 948

The difference-based state vector is obtained by first gen- 949

erating the state vectors at times t and t + 1, θ t and θ t+1, 950

respectively, and then subtracting θ t from θ t+1 to obtain 951

1θ = θ t+1 − θ t . The state vector at time t , θ t , is set 952

to the values in the IEEE test case [75]. Based on θ t and 953

considering Assumption A.5, the state vector at time t + 1, 954

θ t+1, is simulated by first updating the load measurements 955

with random scaling: 956

φHL,Vθ t , φ ∼ N (1, σ 2
s I), (57) 957

and then computing θ t+1 by the rundcpf(·) Matpower com- 958

mand in [75]. In addition, throughout the simulations the 959

noise is modeled as in (7) with σ 2
e = 0.01. 960

2) METHODS 961

The proposed methods include the structural-constrained 962

GIC method from Section III, and the low-complexity meth- 963

ods in Section V: the structural-constrained OMPmethod and 964

the GM-GIC method. The penalty function for the GIC and 965

GM-GIC methods defined in (27) is set by 966

τ (|3i|,L) = ζ |3i| + γ
GICδ[|3i|], (58) 967

where ζ and γGIC are user-defined regularization parameters 968

and δ[·] is the Kronecker delta function. The term ζ |3i| is 969

set to encourage sparse solutions for the identification prob- 970

lem, while the term γGICδ(|3i|) is set to maintain a desired 971
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false alarm rate for the detection problem. In particular, the972

probability of false alarm is set to PFA = 0.05 unless stated973

otherwise. Furthermore, by selecting the AIC in (26), the GIC974

tuning parameter in (58) is set to ζ = 2. Themaximal sparsity975

rate is set to Kc = 6.976

The performance of the proposed methods is compared977

with the following methods that were all modified according978

to the difference-based model in (16):979

M.1 The sparse optimization technique in [42], which con-980

siders an `2 relaxation for the attack sparsity restriction981

(denoted as `2).982

M.2 The sparse optimization technique in [40], which con-983

siders an `1 relaxation for the attack sparsity restriction984

(denoted as `1).985

M.3 The GFT-based detector in [47] (denoted as GFT).986

M.4 The energy detector, inspired by the detector in [50],987

which is obtained by comparing T ENG
= ||1z||2 with988

a chosen threshold (denoted as ENG).989

M.5 The BDD detector in (5) (denoted as BDD).990

All numerical results in this section were obtained using at991

least 500 Monte Carlo simulations. The detection thresholds992

were computed from simulated historic data obtained by993

500 off-line simulations of (16) under the null hypothesis.994

The simulations where conducted usingMatlab on an Intel(R)995

Xeon(R) CPU E5-2660 v4@ 2.00 GHz.996

B. SIMULATIONS997

1) DETECTION998

In Fig. 1. the receiver operating characteristics (ROC) curves999

of the proposed methods: GIC, GM-GIC, and OMP, are pre-1000

sented and compared with those of the methods M.1-M.5.1001

The simulations were conducted on the IEEE-30 bus test1002

case with an attack on four state variables, Ka = 4, where1003

the attack norm is normalized to ||a|| = 0.05 Ka. The1004

loads scaling variation in (57) is set to σ 2
s = 0.05. This1005

figure shows that the detection performance of the proposed1006

low-complexity methods, GM-GIC, and OMP, converges to1007

the performance of the optimal GIC method. Furthermore,1008

the proposed GIC, GM-GIC, and OMP methods provide a1009

higher detection probability for any chosen false alarm rate,1010

when compared to the previous methods. It should be noted1011

that the sparse `2 and `1 methods were developed based1012

on models with multiple time measurements and where the1013

sparsity pattern of the attack is defined over both the time1014

and the bus domains. This is in contrast with the considered1015

model, in which only two time samples are provided and1016

where the attack is only sparse in the bus domain. Finally,1017

as expected from Subsection II-C, the BDD method cannot1018

detect unobservable FDI attacks and is no better than flipping1019

a coin.1020

2) IDENTIFICATION1021

The identification performance is measured by the capabil-1022

ity to classify each state variable as manipulated or not.1023

Therefore, we evaluate the identification performance by the1024

FIGURE 1. Unobservable FDI attack detection: The ROC curve of the
different methods for Ka = 4, ||a||

Ka
= 0.05, and σ2

s = 0.05.

F-score classification metric [76]: 1025

FS(3̂,3) =
2tp

2tp + fn + fp
, (59) 1026

where3 is the true support of the state attack vector, c, and 3̂ 1027

is the estimated support by a given method. The terms tp, fp, 1028

and fn, are the true-positive, false-positive, and false-negative 1029

probabilities, respectively. The F-score metric takes values 1030

between 0 and 1, where 1 means perfect identification. 1031

In Fig. 2, the identification performance, measured by 1032

the F-score metric, of the GIC, GM-GIC, OMP, `2, and 1033

`1 methods is examined w.r.t the attack characteristics. Meth- 1034

ods M.3-M.5 are not included in the comparison since they 1035

provide solely detection and do not identify the attacked 1036

buses’ locations. In Fig. 2.a the F-score is presented versus 1037

the normalized attack norm, ||a||Ka
, for Ka = 4 and σ 2

s = 0.1. 1038

In addition, in Fig. 2.b the F-score is presented versus the 1039

number of attacked elements, Ka, for ||a|| = 1.2 and σ 2
s = 1040

0.05. It can be observed from both figures that the proposed 1041

methods have a significantly higher F-score than those of 1042

the previous sparsity-based methods, `2 and `1. In addition, 1043

it can be seen from Fig. 2.a that the performance of all the 1044

methods improves with the increase of the attack measured 1045

by ||a||Ka
. Similarly, Fig. 2.b shows that the performance of 1046

all the methods degrades as Ka increases. Nonetheless, the 1047

F-score of the proposed methods is above 0.8 even when a 1048

considerable portion (>0.2) of the system is attacked. Finally, 1049

it can be seen that both the GM-GIC and OMPmethods show 1050

relatively close results to those of the GIC method, where the 1051

GM-GICmethod provides higher identification rates than the 1052

OMP method. 1053

3) IDENTIFICATION UNDER MISMATCH 1054

The use of the GIC approach for identifying and detecting 1055

unobservable FDI attacks is based on the assumption that the 1056

nuisance parameter H1θ is bounded and small, as described 1057

in (13). In Fig. 3, we illustrate the robustness of the per- 1058

formance to this assumption by evaluating the influence of 1059

the norm of the nuisance parameter, ||H1θ ||, on the identi- 1060

fication performance of the different methods. To this end, 1061
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FIGURE 2. Unobservable FDI attack identification: (a) The F-score of the
different methods versus the normalized attack, ||a||

Ka
, where Ka = 4 and

σ2
s = 0.1; (b) versus the ratio of attacked elements, Ka

V , for ||a|| = 1.2 and
σ2

s = 0.05.

we consider the worst case, in which the equality in (13)1062

holds, i.e. ||HL,V1θ ||2 = η. In particular, the F-score of1063

the different methods, as well as of the clairvoyant GIC1064

from (33), is compared for different rates of η for Ka = 4 and1065

||a|| = 0.05 Ka.1066

Fig. 4 shows that the F-score of the different methods,1067

excluding the clairvoyant GIC from (33), decreases as η1068

increases, due to the model mismatch. The F-score of the1069

clairvoyant GIC is independent of η since it uses the true value1070

of 1θ and is not based on the approximated model, defined1071

by η. It can be seen that this degradation in the identification1072

performance is significantly greater for the sparsity-based1073

methods, `2 and `1, than for the proposed methods. There-1074

fore, the proposed methods are more robust to a mismatched1075

model in comparison to the existing methods. Finally, for1076

small values of η the proposed GIC method converges to the1077

clairvoyant GIC.1078

4) RUN-TIME1079

In Fig. 4, the averaged run-time of the identification methods1080

is presented versus the ratio of node elements attacked, Ka
|V | ,1081

for σ 2
s = 0.05 and ||a|| = 1.2. It can be seen that the GIC1082

FIGURE 3. Unobservable FDI attack identification: The F-score of the
different methods with Ka = 4 and ||a|| = 0.05 Ka.

FIGURE 4. Unobservable FDI attack identification: Run-time of the
different methods versus the ratio of attacked elements, Ka

V , for
||a|| = 1.2 and σ2

s = 0.05.

method requires a run-time which is significantly higher than 1083

those of the other methods. This makes the GIC method 1084

impractical for large networks. The CS methods [40], [42] 1085

have a higher averaged run-time than the proposed low- 1086

complexity methods, GM-GIC and OMP. As expected from 1087

the discussion in Subsection V-B4, the GM-GIC method 1088

requires a significantly lower run-time than the GIC method, 1089

but a higher run-time than the OMP method. 1090

VII. CONCLUSION 1091

In this paper, we introduce novel methods for the identifica- 1092

tion of unobservable FDI attacks in power systems. Unlike 1093

classical BDD methods that depend on measurement resid- 1094

uals and fail to detect unobservable FDI attacks, the pro- 1095

posed methods successfully detect and identify these attacks 1096

by utilizing power system intrinsic structural information. 1097

Specifically, the proposed methods are based on defining 1098

structural constraints on both the attack and the typical load 1099

changes, and then formulating the identification problem as 1100

a model selection problem. We develop the GIC selection 1101

rule for the identification task, as well as two low-complexity 1102

methods: 1) the structural-constrained OMP method, which 1103

is a modification to the standard OMP method that accounts 1104

VOLUME 10, 2022 94181



G. Morgenstern, T. Routtenberg: Structural-Constrained Methods for the Identification of FDI Attacks in Power Systems

for the proposed structural and sparse constraints; and 2) the1105

novel GM-GIC method that exploits the graph sparsity, graph1106

Markovity, and the local behavior of graph connectivity in1107

power systems. As by-products of the identification process,1108

the proposed methods also enable the detection of unobserv-1109

able FDI attacks and PSSE in the presence of these attacks.1110

The low-complexitymethods also enable fast implementation1111

that can be integrated into an adaptive scheme that performs1112

detection continuously to see if an attack is present at any1113

given time. In addition, we show the relations between the1114

assumed problem and the problems of sparse recovery of1115

graph signals and MSD. In particular, the proposed GM-GIC1116

method can be applied for denoising an output of a general1117

low-order GSP filter with a sparse input. This problem arises1118

in a variety of GSP applications, such as epidemiology and1119

anomaly detection in sensor networks. In addition, perfor-1120

mance analysis of the proposed approach is investigated by1121

introducing a clairvoyant and an oracle detector of the con-1122

sidered FDI detection problem. Our numerical simulations1123

show that the proposedmethods outperform existing methods1124

for detection and identification, and are robust to the model1125

assumptions. Moreover, the GM-GIC method, that integrates1126

the structural information regarding the underlying graph1127

behind the data, obtains better performance than that of the1128

OMP method and the existing sparsity-based methods. The1129

OMP and GM-GIC methods require shorter run-time than1130

the GIC method. Finally, the performance of the proposed1131

approaches is compared with the performance of the derived1132

clairvoyant and oracle detectors.1133

APPENDIX A1134

GIC STATISTIC1135

Based on (24) and the noise statistics, 1eL ∼ N (0, σ 2
e I),1136

under each hypothesis, i, the log-likelihood function of the1137

measurements, for a given 1θ , is1138

L(1zL; c3i ,1θ )1139

= −
|L|
2

ln 2πσ 2
e1140

−
1

2σ 2
e
||1zL −HL,3ic3i −HL,V1θ ||

2. (60)1141

Thus, the ML estimator of the state attack vector, c3i ,1142

is obtained by maximizing (60) w.r.t. c3i . Since (60) is a con-1143

cave function w.r.t. c3i , the ML estimator can be computed1144

by equating the derivative of (60) w.r.t. c3i to zero, as follows:1145

∂L(1zL; c3i )
∂c3i

∣∣∣∣
c3i=ĉ

ML|i
3i

1146

=
1

2σ 2
e
HT
L,3i

(1zL −HL,3i ĉ
ML|i
3i
−HL,V1θ ) = 0,1147

(61)1148

which implies that the ML estimator is1149

ĉML|i
3i
= (HT

L,3i
HL,3i )

−1HT
L,3i

(1zL −HL,V1θ ). (62)1150

By using the projection matrix from (15), P3i , and its orthog- 1151

onal projection, P⊥3i
, we can decomposeHL,V1θ as follows: 1152

HL,V1θ = P3iHL,V1θ + P⊥3i
HL,V1θ . (63) 1153

By substituting the constraint from (24), P3iHL,V1θ = 0, 1154

in (63), one obtains 1155

HL,V1θ = P⊥3i
HL,V1θ . (64) 1156

Substitution of (64) in (62) results in 1157

ĉML|i
3i
= (HT

L,3i
HL,3i )

−1HT
L,3i

(1zL − P⊥3i
HL,V1θ ) 1158

= (HT
L,3i

HL,3i )
−1HT

L,3i
1zL, (65) 1159

where the last equality is obtained from the properties of pro- 1160

jection matrices. The generalized log likelihood is obtained 1161

by substituting (64) and (65) in (60): 1162

L(1zL; ĉ
ML|i
3i

,1θ ) 1163

= −
|L|
2

ln 2πσ 2
e 1164

−
1

2σ 2
e
||P⊥3i

(1zL −HL,V1θ )||
2. (66) 1165

Additionally, from the properties of projectionmatrices, it can 1166

be verified that (see, e.g. p. 46 in [58]) 1167

||P⊥3i
(1zL −HL,V1θ )||

2
1168

= ||(1zL −HL,V1θ )||
2
− ||P3i (1zL −HL,V1θ )||

2. 1169

(67) 1170

By substituting the constraint from (24), P3iHL,V1θ = 0, 1171

in (67) we obtain 1172

||P⊥3i
(1zL −HL,V1θ )||

2
1173

= ||(1zL −HL,V1θ )||
2
− ||P3i1zL||2, (68) 1174

∀3i ∈ GKc . By substituting (68) in (66) we obtain 1175

L(1zL; ĉ
ML|i
3i

,1θ ) 1176

= −
|L|
2

ln 2πσ 2
e 1177

−
1

2σ 2
e
||(1zL −HL,V1θ )||

2
+

1
2σ 2

e
||P3i1zL||2, 1178

(69) 1179

∀3i ∈ GKc . By substituting (69) into (25), we obtain that the 1180

GIC statistic satisfies 1181

GIC(3i, τ (|3i|, |L|)) 1182

= −|L| ln 2πσ 2
e −

1
σ 2
e
||(1zL −HL,V1θ )||

2
1183

+
1
σ 2
e
||P3i1zL||2 − τ (|3i|, |L|), (70) 1184

where i = 0, 1, . . . , |GKc |. Since the term 1185

−|L| ln 2πσ 2
e −

1
σ 2
e
||(1zL −HL,V1θ )||

2
1186
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is independent of the hypothesis, i.e. is not a function of 3i,1187

maximizing the GIC rule from (70) w.r.t. i = 0, 1, . . . , |GKc |,1188

is equivalent to maximizing the r.h.s. of (27) w.r.t. the same1189

candidate sets, i = 0, 1, . . . , |GKc |.1190

APPENDIX B1191

ORACLE GLRT1192

While the GLRT in (29) was developed for the binary modi-1193

fied hypothesis testing problem in (24), it should be analyzed1194

based on the binary version of the original hypothesis testing1195

in (23) with only H0 and a single Hi. In this case, the GLRT1196

detector is distributed as follows (see, e.g. Appendix 7B1197

in [60]):1198 
H0 : TGLRT |i ∼ χ2

|3i|

( ||P3iHL,V1θ )||2

σ 2
e

)
Hi : TGLRT |i ∼ χ2

|3i|

( ||P3i (HL,3ic3i +HL,V1θ )||2

σ 2
e

)
,

1199

(71)1200

where χ2
r (λ) denotes a non-central χ -square distribution with1201

r degrees of freedom and a non-centrality parameter λ.1202

From (71) it can be verified that the probability of false1203

alarm and the probability of detection of the GLRT from (29)1204

are given by (see Subsection 2.2.3 in [60]):1205

Pfa = Q |3i|
2

(
||P3iHL,V1θ ||

σe
,

√
γGLRT

)
(72)1206

and1207

Pd = Q |3i|
2

(
||P3i (HL,3ic3i +HL,V1θ )||

σe
,

√
γGLRT

)
,1208

(73)1209

respectively, where Qv(a, b) is the generalized Marcum1210

Q-function of order v [62]. From [62], Qv(a, b) strictly1211

increases as a increases. That is,1212

Qv(
√
a1,
√
b) < Qv(

√
a1 + a2,

√
b) (74)1213

for all a1 ≥ 0 and a2, v, b > 0. Thus, the probability1214

of false alarm in (72) strictly increases as ||P3iHL,V1θ ||1215

increases. Consequently, by considering theworst case in (22)1216

of ||P3iHL,V1θ )||2 = εiη, we obtain that the probability of1217

false alarm in (72) strictly increases as εiη increases.1218

The following proposition defines upper and lower bounds1219

on the approximation error εi.1220

Proposition 5: The approximation error from (21) can be1221

bounded by1222

0 ≤ εi ≤ 1. (75)1223

Proof: By using the properties of projection matrices it1224

can be verified (see Theorem 2.22 in [58]) that1225

0 ≤ ||P3iHL,V1θ ||
2
≤ ||HL,V1θ ||

2. (76)1226

In addition, Assumption A.5 implies that the typical load1227

changes are nonzero, i.e. HL,V1θ 6= 0. By dividing the1228

strictly positive term ||HL,V1θ ||2 from the inequality in (22) 1229

we obtain 1230

0 ≤
||P3iHL,V1θ ||2

||HL,V1θ ||2
≤ 1. (77) 1231

Thus, by substituting (21) in (77) we get (75). 1232

By applying the properties in (74) and (75), from Proposi- 1233

tion 5, on (72), we obtain (30). 1234

APPENDIX C 1235

SINGLE-NODE ATTACK 1236

In Proposition 1 in [45] it was shown that under the assump- 1237

tion that the injected powers in the nodes are Gaussian dis- 1238

tributed and mutually independent, which holds under the 1239

model in (16), the columns of the topology matrix satisfy 1240

HT
V,mHV,k = 0, ∀k,m ∈ V, d(k,m) > 2. (78) 1241

Similarly, the columns of the subtopology matrix associated 1242

with the load buses satisfy 1243

HT
L,mHL,k = 0, ∀k,m ∈ V, d(k,m) > 2. (79) 1244

By substituting (15) with 3i = {m} in the l.h.s. of (38) we 1245

obtain 1246

P{m}HL,kck = HL,m(HT
L,mHL,m)−1HT

L,mHL,kck . (80) 1247

Thus, by substituting (79) in (80) we obtain (38). In addition, 1248

by using the properties of projection matrices it can be veri- 1249

fied (see Theorem 2.22 in [58]) that 1250

||P{m}HL,kck || ≤ ||HL,kck ||, ∀k,m ∈ V, (81) 1251

and 1252

P{k}HL,kck = HL,kck . (82) 1253

Hence, by substituting (82) in (81) we obtain (39). 1254
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