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ABSTRACT In this paper, a novel inverse model is designed for multivariable disturbance observer-
based (MDOB) control system. A new interaction measure, generalized relative input disturbance gain
(GRIDG), is proposed to quantify the disturbance rejection capabilities of different inverse model structures.
Consequently, an inverse model with partially coupled structure can be determined for better disturbance
rejection performance. Besides, by defining a relative input disturbance gain array (RIDGA), the values of
GRIDG under different input-output pairings and structures can be derived in an intuitive manner, which
greatly facilitates the structure selection of the inverse model. And then, to overcome the difficulty of
implementing the partially coupled inverse model, a V canonical structure is used without introducing
model approximation. It also has the advantage of simple calculation and being easy to generalize to high-
dimensional systems. Finally, simulation examples of several multivariable industrial processes are given to
illustrate the design procedure and demonstrate the effectiveness of the proposed strategy.

INDEX TERMS Multivariable disturbance observer, partially coupled inverse model, generalized relative
input disturbance gain, relative input disturbance gain array.

I. INTRODUCTION
Disturbances are widespread in industrial production and
the suppression of disturbances has always been a primary
problem. In process control, the systems commonly encoun-
tered are essentially multivariable systems with complex cou-
plings, which are difficult to analyze and control since each
system output is affected by the other loops. And therefore,
disturbance rejection for multivariable systems is far from a
simple problem. The directionality of multivariable system
means that there are two possibilities for the effect of coupling
on disturbance rejection — detrimental or beneficial. Given
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this, we may improve the disturbance rejection performance
by making good use of couplings. For this purpose, two main
issues need to be considered: (1) how to determine the effect
of couplings on disturbance rejection, and (2) how to deal
with the couplings.

There have been some discussions about the above prob-
lems under the framework of unit negative feedback control.
Some interaction indices are proposed for coupling analysis
from the perspective of disturbance rejection, e.g., Relative
Disturbance Gain (RDG) [1], Disturbance Condition Num-
ber (DCN) [2], Closed Loop Disturbance Gain (CLDG) [3]
and Relative Load Gain (RLG) [4]. With these indices, the
influence of other loops’ couplings can be quantified, and the
multivariable controller utilizing couplings for disturbance
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rejection can be designed. Two of the most widely studied
controller design methods for this situation are the partially
decentralized control [5], [6] (or sparse control [7]) and
the partial decoupling control [8], [9]. The former aims to
improve the disturbance rejection performance by specifying
a particular controller structure, while the latter realizes dif-
ferent treatment of couplings by introducing a partial decou-
pler. Generally, these methods achieve better disturbance
rejection performance than the typical decentralized and fully
decoupled control.

Although in many cases the unit negative feedback control
can eventually suppress disturbances by feeding back the
error signals, the disturbance responses are relatively slow
and the control system design is somewhat conservative.
Thus, more effective disturbance rejection strategies should
be researched and developed.

Disturbance observer-based (DOB) technique, first pro-
posed by Ohnishi and his colleagues [10], [11], is a good
attempt at this. DOB is a control strategy derived from
practice and essentially a feedforward control. An estima-
tion action is performed for disturbances based on the pro-
cess input and output signals, and the estimates are used to
counteract the effects of disturbances. Therefore, DOB can
be applied to situations where disturbances are difficult or
expensive to measure. Besides, the advantages of fast dis-
turbance rejection speed, maintaining nominal performance
in the absence of disturbance and easy implementation make
DOB popular in various fields, such as motion control [12],
process control [13], electrical engineering [14] and net-
worked control system [15], etc.

At present, the research on DOB focuses on single-input-
single-output (SISO) systems. In addition to the minimum
phase (MP) plant [16], DOB design for plants with time
delays [17], right-half-plane (RHP) zeros [18] and poles
[19] are also discussed in detail. Improved DOB control
structures in terms of time delay [17], non-minimum phase
(NMP) dynamic [20] and noise [21] are putted forward.
Analysis of the relationship between system robustness and
bandwidth are carried out for NMP process [22] and system
with real parameter uncertainty [23]. Besides, comprehensive
optimization index [24] and data-driven algorithm [25] are
utilized to further improve the DOB control system design.

Compared with the rich achievements of DOB in SISO
system, the research on multivariable disturbance observer
(MDOB) is still in the exploratory stage. The main difficulty
lies in the design and implementation of the inverse model
when couplings exist. Similar to the idea of decentralized
control, a simple and intuitive way is to construct a diagonal
inverse model based on the main channel transfer functions
of the process, ignoring the couplings [26], [27]. It is a
good solution for moderate interaction situations, but may
cause performance deteriorationwhen interactions are severe,
since the neglected dynamics will burden the DOB for dis-
turbance estimation and suppression. In view of this, another
way for better performance is to obtain a relatively accu-
rate and implementable inverse model by means of matrix

manipulation andmodel approximation techniques [28], [29],
[30]. The inverse model obtained in this way usually has a full
element structure.

These are the two typical ways we currently design inverse
models. Evidently, the diagonal and full element above
are two of the most extreme structures for MDOB inverse
models. Inspired by the partially decentralized controller in
feedback control scheme, inverse model with other possible
structures should also be explored for further performance
improvements. Unfortunately, the authors did not find much
research in this area. Last year, we did some tentative work.
An interaction measure named relative input disturbance gain
(RIDG) is proposed for evaluation of the disturbance rejec-
tion capabilities of MDOB under the two typical inverse
model structures. A partially coupled inverse model with
some rows identical to the full element inverse model and
other rows identical to the diagonal inverse is then derived.
Better disturbance responses have indeed achieved by the
designed inversemodel. Relevant results can be found in [31].
Nevertheless, we should realize that the above inverse model
still does not have a general structure and the RIDG index
is limited to evaluating the two extreme cases. More efforts
should be made in this regard.

In this paper, coupling analysis is carried out for mul-
tivariable disturbance observer-based control system and a
systematic inversemodel design procedure is given. Themain
contributions of this paper are as follows:

1) Relationship between the disturbance rejection capa-
bility of MDOB and different inverse model structures
is explored, and a new interaction measure, GRIDG,
is proposed for performance evaluation and inverse
model structure selection.

2) GRIDG is dependent on input-output pairing and the
specific structure of the inverse model. By defining an
interaction matrix RIDGA, the values of GRIDG under
different input-output pairings and structures can be
derived in an intuitive manner, which greatly facilitates
the structure selection of the inverse model.

3) Based on the RIDGA-GRIDG results, an inverse model
with partially coupled structure can be determined
for better disturbance rejection performance. To our
knowledge, this is the first inverse model with a general
structure, which is different from any existing inverse
model

4) A V canonical structure is used to implement the
inverse model, without involving complicated calcula-
tions and model approximations.

This paper is organized as follows. In Section II, some pre-
liminaries and analysis of MDOB inverse model are detailed.
In Section III, the main points of this paper are elaborated,
where the interaction measures, GRIDG and RIDGA, are
proposed. Based on the evaluation results in Section III,
design and implementation of the DOB filter are discussed in
Section IV. Simulation studies are provided in Section V for
two typical industrial processes. Finally, concluding remarks
and future work are drawn in Section VI.
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FIGURE 1. Basic MDOB control structure.

FIGURE 2. Improved MDOB structure in terms of time delays.

II. CONTROL STRUCTURE AND INVERSE MODEL
ANALYSIS
A. MULTIVARIABLE DISTURBANCE OBSERVER-BASED
(MDOB) CONTROL
The basic block diagram ofMDOB control is shown in Fig. 1,
where r , uc, u, y, d and d̂ are the vectors of reference inputs,
controller outputs, manipulated variables, system outputs,
external and estimated disturbances, respectively; Gp(s) is
the process transfer function matrix; C(s) is the multivariable
feedback controller; G−1m (s) and Q(s) are the inverse model
and disturbance filter respectively, which are the components
of the DOB structure and also the focus of our discussion.

In process control, the model Gm(s) identified from real
process usually contains multiple time delays, which bring
difficulties to the design and analysis of the system. To reduce
the influence of time delays, here, Gm(s) is factorized as

Gm(s) = Ḡm(s)E(s) (1)

where E(s) is a pure delay matrix and Ḡm(s) with
smaller time delays is used for the inverse model design.
Mathematically, Gm(s), Ḡm(s) and E(s) are expressed as
Gm(s) = [gij(s)]n×n, Ḡm(s) = [ḡij(s)]n×n and E(s) =
diag{e−τ1s, e−τ2s, . . . , e−τns}, respectively, where τj =

min{τ1j, τ2j, · · · , τnj} is the minimum time delay of the jth
column ofGm(s). In this case, the control structure ismodified
to Fig. 2.

In Fig. 2, the delay matrix E(s) is placed in the left input
channel of DOB for synchronization and Q(s) is multiplied
together with the inverse model Ḡ−1m (s) for realizability. The
closed-loop transfer function matrices from r and d0 to y are
derived as

y
r
= Gp(I − QE + CGp + QḠ−1m Gp)−1C (2)

y
d0
= Gp(I − QE + CGp + QḠ−1m Gp)−1(I − QE)D (3)

where the disturbance is expressed as a product of a
disturbance transfer function vector D and a normalized

disturbance d0, i.e., d = Dd0, and the Laplace variable s is
omitted for simplicity hereafter. It is evident from (2) and (3)
that setpoint tracking and disturbance rejection are related to
both C and Q, which undoubtedly complicates our design.
Given this, an independent design structure is adopted here,
as shown in Fig. 3. And the input-output relationships become

y
r
= Gp(I − QE + QḠ−1m Gp)−1(I + CGp)−1C (4)

y
d0
= Gp(I − QE + QḠ−1m Gp)−1(I − QE)D (5)

At this point, the disturbance response only depends on fil-
ter Q (see (5)). And therefore, a two-step design strategy can
be used. Design Q first from the perspective of disturbance
rejection. Substitute it into (4) and C is derived for setpoint
tracking then.

In Fig. 3, it should be noted that the model mismatch
is equivalently considered an internal disturbance din (=
(G−1m Gp− I )(u+ d)) here. Since modest uncertainties can be
suppressed by DOB in a similar way to external disturbances,
the discussion carried out following will focus on the external
disturbance rejection problem in the nominal case.

B. INVERSE MODEL OF MDOB
As seen from (5), the inverse model Ḡ−1m has an impact on
disturbance response through (I − QE + QḠ−1m Gp)−1. Let
Ḡ−1x denote an arbitrary stable inverse model. It is obvious
that different Ḡ−1x results in different disturbance responses.
In other words, the disturbance rejection capabilities provided
by different Ḡ−1x are not the same. It is, however, very difficult
to analyze the relationship between the inverse model and
system output directly (see (5)). An intermediate variable, the
estimated disturbance d̂ , is used to simplify the analysis here.
This is feasible because d̂ is related to both the inverse model
and the disturbance estimate error ed = d − d̂ , and the latter
has an impact on system output.

According to the structural characteristics of Ḡ−1x , the
existing MDOB inverse model can be divided into two cate-
gories: (1) diagonal inverse model, whose elements obtained
directly from the main channel elements of the process
model; (2) full element inverse model derived from matrix
manipulation, which usually involves model approximation.
Their specific expressions are shown in (6) and (7), where
gii0 and e−τiis are the delay-free part and time delay of gii,
respectively; the subscripts d and f represent the types of
inverse model, i.e., diagonal or full element.

Ḡ−1d (s) = [g−1ii0 (s)]n×n,Ed (s) = diag{e−τiis}

i = 1, 2, · · · , n (6)

Ḡ−1f (s) = Ḡ−1m (s), i, j = 1, 2, · · · , n (7)

In the case of Ḡ−1f , the estimated disturbance in Fig. 3 is
obtained as d̂ = QEd . Since Q and E are both diagonal
matrices, from the perspective of coupling, we may think that
Ḡ−1f realizes a complete decoupling from d to d̂ . As a result,
the disturbance estimates avoid being affected by the inherent
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FIGURE 3. Modified MDOB control structure for independent design.

couplings of multivariable process and a relatively accurate
d̂ is obtained. On the contrary, Ḡ−1d is designed without any
consideration or treatment of couplings. And the resulting d̂
contains ‘‘full’’ coupling information. Obviously, the above
two inverse models provide two extreme ways to deal with
couplings, at least from the d̂ standpoint. Therefore, an intu-
itive idea is: is there amore general inversemodel be designed
to selectively preserve the couplings in d̂ , so as to achieve bet-
ter disturbance rejection performance? That is, the combined
effect of the couplings in ed and the process itself results in a
smaller disturbance response y (= Gm(ed + uc)). And this is
the starting point of our work for the partially coupled inverse
model. In addition, note that the inverse model structure has a
one-to-one correspondence with its coupling treatment for d̂ ,
the improved MDOB strategy will be developed around the
structure design of the inverse model.

III. DISTURBANCE ANALYSIS INDICES
To find an inverse model structure that provides better distur-
bance rejection performance, an appropriate evaluation index
should be discussed first. In this section, a generalized relative
input disturbance gain (GRIDG) is proposed specifically for
MDOB control scheme to quantify the disturbance rejection
capabilities of inverse model with different structures. It is
actually a generalized version of RIDG that we have defined
earlier [31]. In addition, the matrix form of RIDG in terms of
different loop pairings, relative input disturbance gain array
(RIDGA), is putted forward for easy calculation of GRIDG.

A. RELATIVE INPUT DISTURBANCE GAIN (RIDG)
RIDG is defined as the ratio of disturbance response changes
under two typical inverse models. From (5)-(7), we have( ∂y
∂d0

)
(Ḡ−1d ,Ed )

= Gm(I − QEd + QḠ
−1
d Gm)−1(I − QEd )D

(8)( ∂y
∂d0

)
(Ḡ−1m ,E)

= Gm(I − QE)D (9)

where the subscripts represent the cases of MDOB with
diagonal and full element inverse models, respectively. Thus,
RIDG is derived as

B = [βi]n×1 = [Gm(I − QEd + QḠ
−1
d Gm)−1D]� (GmD)

(10)

where � denotes the element-by-element division and βi is
the ith element of RIDG. Terms (I − QEd ) and (I − QE)
in (8) and (9) can be viewed as the parts of integral action
E(0) = Ed (0) = Q(0) = I and are omitted in the expression
of RIDG. RIDG given in (10) contains the undetermined filter
Q, and therefore the steady-state version is more commonly
used, as shown in (11).

B(0) =
[
β0i
]
n×1 = (Ḡd (0)D(0))� (Ḡm(0)D(0)) (11)

According to the definition of RIDG, the size of |β0i |
relative to 1 can be used to determine which of the two typical
inverse models is recommended for loop i in terms of dis-
turbance rejection. Thus, the RIDG-based structure selection
rules are given as follows: (1) if |β0i | > 1, the couplings
amplify the disturbance response and the full element inverse
model Ḡ−1f is preferable; (2) if |β0i | < 1, the disturbance
response is suppressed by the couplings and therefore the
diagonal inverse model Ḡ−1d is recommended.

B. GENERALIZED RELATIVE INPUT DISTURBANCE GAIN
(GRIDG)
RIDG above only give evaluation for the two typical MDOB
inverse models. In this part, a more general index named
GRIDG is proposed. Different from RIDG, GRIDG mea-
sures the disturbance rejection capability provided by a stable
inverse model with arbitrary structure relative to the full
element inverse model. The ith element of GRIDG is defined
as

β ′i =

( ∂yi
∂d0

)
(Ḡ−1x ,E)( ∂yi

∂d0

)
(Ḡ−1m ,E)

(12)

and the vector forms are

B′ = [β ′i ]n×1 = [Gm(I − QE + QḠ−1x Gm)−1D]� (GmD)

(13)

B′(0) = [β ′0i ]n×1 = (Ḡx(0)D(0))� (Ḡm(0)D(0)) (14)

Compare (10) and (13), we found that RIDG is a special
case of GRIDG when Ḡ−1x is taken as Ḡ−1d (or Ḡx = Ḡd ).
Similar to RIDG, the value of |β ′0i | can be used to determine
the structure of Ḡ−1x . To be specific, the structure giving
smaller |β ′0i | value is better, as there is a quantitative relation-
ship between B′(0) and the integrated error (IE) under certain
conditions.
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W. Cai et al.: Partially Coupled Inverse Model Design for MDOB Control Based on GRIDG

Remark 1: If the DOB filter is Q = diag{Q1,Q2, . . . ,Qn}
with Qi = 1/(λis + 1)ni , and the values of λini are the same
for all of the n loops, we have

IEx � IEf = (Ḡx(0)D(0))� (Ḡm(0)D(0)) = B′(0)

Remark 2: In this paper, the selection of the inverse model
structure is mainly based on the steady-state indices, which
may sometimes lead to inaccurate results. Our next work is
to try to improve the accuracy of the evaluation results by
introducing some available dynamic information.

C. RELATIVE INPUT DISTURBANCE GAIN ARRAY (RIDGA)
GRIDG is dependent on input-output pairing and the specific
structure of Ḡ−1x . However, it is not an easy work to find
the optimal structure by traversing all possible inverse model
structures under certain pairings. In view of this, a matrix
form of RIDG, relative input disturbance gain array (RIDGA)
derived for different pairings, is first defined here. Besides,
to facilitate analysis, the structure selection of Ḡx is discussed
instead that of Ḡ−1x , as there is a correspondence between their
structures.

With the definition of RIDG (shown in (10)), the ith ele-
ment of RIDG for the case of yi − uj pairing, denoted as βij,
is obtained as

βij =
ḡijDj∑n
l=1 ḡilDl

(15)

at low frequencies (E(jω) ≈ I , Q(jω) ≈ I ). And its matrix
form, which is derived for different input-output pairings,
is defined as

BM , [βij]n×n = Ḡm ⊗ [ce(dg(D))]⊗ [re([dg(ḠmD)]−1)]

(16)

The second equation in (16) can be used to calculate
RIDGA, where dg(·) is an operator that converts a vector into
a diagonal matrix with the elements at diagonal positions;
ce(·) and re(·) expand a diagonal matrix into a full element
matrix whose ith column and row elements are all equal to
the corresponding diagonal elements, respectively.

At this point, it is time to discuss the relationship between
GRIDG, RIDGA and inverse model structures. First, to char-
acterize the structure of Ḡx , a structure selection matrix 0 =
[κij]n×n is defined, where κij is a bool variable. Two cases,
κij = 0 and κij = 1, indicate the ijth entry of Ḡx is picked
up or ignored, respectively. By this, Ḡx of a specific structure
can be taken as

Ḡpc = Ḡm ⊗ 0 (17)

where⊗ is the Hadamard product. The corresponding inverse
model Ḡ−1pc obtained in this way is referred to as the partially
coupled inverse model in this paper. And then, deduced from
(13), the ith element of GRIDG for Ḡpc (or Ḡ−1pc ) is obtained as

β ′i,pc =

∑n
k=1 ḡikκikDk∑n
l=1 ḡilDl

=

n∑
k=1

[
ḡikDk∑n
l=1 ḡilDl

]
=

n∑
k=1

βikκik

(18)

at low frequencies. Simple calculations performed in (18)
shows that β ′i,pc is numerically equal to the ith row sum of
matrix BM ⊗ 0 (= [βijκij]n×n). In this case, the GRIDG of
an inverse model with any possible structure can be easily
calculated by RIDGA. Some rules for Ḡpc structure selection
are summarized as follows:

1) Calculate RIDGA by (16) and GRIDG of a specific
structure can be derived directly (row sum).

2) The selected structure should has GRIDG elements
closest to 0.

3) GRIDG elements β ′0i,pc greater than 1 or less than −1
should be avoided.

Remark 3: To simplify the design and ensure the
non-singularity of the inverse model, all diagonal elements
are picked up for Ḡpc in this work, i.e, κii = 1, i = 1, · · · , n.

To illustrate the above design procedure, a four-roomHeat-
ing Ventilation and Air Conditioning (HVAC) system [32] is
discussed here, as shown in (19), at the bottom of the next
page.

The system is assumed to be disturbed by a unit
step normalized disturbance d0 = 1/s with D =

[−1 0.5 0.6 0.8]T . Substituting Ḡm(0), Ḡd (0) and D
into (11), the steady-state RIDG is calculated as B(0) =
[1.6897 2.3958 0.7321 0.8789]T . Similarly, based on (16),
we have

BM =


1.6897 −0.3103 −0.1448 −0.2345
−2.2396 2.3958 0.3437 0.5000
−0.1435 0.0957 0.7321 0.3158
−0.1322 0.0763 0.1770 0.8789


And as expected, the elements of B(0) are equal to the diago-
nal elements of BM .

With BM , the structure giving smaller values of row sums
is specified as

0 =


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


and accordingly, the partially coupled model is determined as

Ḡpc = Ḡm ⊗ 0 =


ḡ11 ḡ12 ḡ13 ḡ14
ḡ21 ḡ22 0 0
ḡ31 0 ḡ33 0
ḡ41 0 0 ḡ44

 (20)

Here, to verify the relationship between GRIDG and
RIDGA, B′(0) derived from BM and 0 is [1 0.1562 0.5886
0.7467]T , which is consistent with that of B′(0) calculated
directly from (14). It is clear that the structure selection of
Ḡpc can be easily carried out by the RIDGA-GRIDG method
presented above.

IV. DESIGN OF THE INVERSE MODEL AND FILTER
The partially coupled inverse model is usually difficult to cal-
culate and implement. In this paper, a V canonical structure
is utilized to describe Ḡ−1pc . It has the advantage of simple
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calculation and being easy to generalize to high-dimensional
systems.

A. PARTIALLY COUPLED INVERSE MODEL
Generally, the matrix inversion and model approximation
techniques can be used to derive Ḡ−1pc . These methods, how-
ever, involve complex calculation and the resulting error
increases with the system size, which inevitably deteriorate
the system performance. Fortunately, the V canonical struc-
ture is an effective solution for this problem. In Fig. 4, QḠ−1pc
is replaced equivalently by the structure in the dotted box,
where the V canonical structure is implemented by matrix
D1 in the direct path and D2 in the feedback path. One may
note that a new filter Q′ is used here instead of Q, which
allows for more flexibility in designing matrices D1 and D2.
Based on Fig. 4, for disturbance rejection, it requires

QE = Q′D1(I − D2D1)−1Gm (21)

Take the inverse of both sides of (21) and perform simple
operations, we have

D−11 − D2 = ḠmQ−1Q′ (22)

Equation (22) can be used to determine matrices D1 and
D2. To simplify the design and for the convenience of cal-
culation, D1 is selected as D1 = diag{δ1, δ2, . . . , δn} and
D2 is a matrix with zero elements at diagonal positions, i.e.,
D2 = [ρij]n×n, ρii = 0. Filters Q and Q′ are expressed as
Q = diag{Q1,Q2, . . . ,Qn} and Q′ = diag{Q′1,Q

′

2, . . . ,Q
′
n},

respectively. Thus by (22), δi and ρij can be derived as
δi =

1
ḡii

Qi
Q′i

ρij = −ḡij
Q′j
Qj
, i 6= j

i, j = 1, 2, · · · , n (23)

where ḡij is the ijth elements of Ḡm. Define fi = Qi/Q′i, (23)
simplifies to

δi =
fi
ḡii

ρij = −
ḡij
fj
, i 6= j

i, j = 1, 2, · · · , n (24)

In (24), fi appears in both the numerator of δi and the denom-
inator of ρij. To guarantee the realizability of δi and ρij, some
requirements should be satisfied by fi. Specifically, the time

delay, relative order and multiplicity of RHP zero of fi should
satisfy (25)-(27) respectively, where θ (x) represents the time
delay of a transfer function x, deg(x) and ηk (x) denote the
relative degree and multiplicity of the kth RHP zero of x,
respectively.

θ (ḡjj) ≤ θ(fj) ≤ min
i6=j

θ (ḡij) (25)

deg(ḡjj) ≤ deg(fj) ≤ min
i6=j

deg(ḡij) (26)

ηk (ḡjj) ≤ ηk (fj) ≤ min
i6=j

ηk (ḡij) (27)

Sometimes, not all the conditions given by (25)-(27) can
be satisfied. In this case, a diagonal compensator N =

diag{N1,N2, . . . ,Nn} needs to be introduced. A general form
of Ni is shown below.

Ni =
1

(βis+ 1)ri

k∏
j=1

(
−s+ zj
s+ z∗j

)tij
e−τNi s (28)

There are three parts of Ni: a low-pass term 1/(βis+ 1)ri
for properness, an all-pass term

∏k
j=1[(−s + zj)/(s + z∗j )]

tij

for stability and an additional time delay e−τNi s for causality.
In this way, the compensated process model becomes GNm =
NGm, and a new matrix ḠNm factorized from GNm (= ḠNmE

′)
is used instead to design the inverse model. Accordingly, the
elements of D1 and D2 are modified to

δi =
fi
ḡNii

ρij = −
ḡNij
fj
, i 6= j

i, j = 1, 2, · · · , n (29)

where ḡNij is the ijth element of ḠNm .
One should note that the pure time delay matrix E ′ here

may not equal to the original E , and equation ḠNm = NḠm
does not hold. The reason is that the introduction of N may
change the size of the common delay of each column. In view
of this, a tactic for compensator introduction and inverse
model design is given below.

The requirements shown in (25)-(27) can be used for
pre-checking of compensator introduction by replacing ḡij
with gij and omitting the inequalities about fi. This is feasible
because the separation of E from Gm will not affect the
relative size of the ith column elements in terms of the time
delay, relative order or multiplicity of the RHP zeros. Thus,



−0.098e−17s

122s+ 1
−0.036e−27s

149s+ 1
−0.014e−32s

158s+ 1
−0.017e−30s

155s+ 1
−0.043e−25s

147s+ 1
−0.092e−16s

130s+ 1
−0.011e−33s

156s+ 1
−0.012e−34s

157s+ 1
−0.012e−31s

153s+ 1
−0.016e−34s

151s+ 1
−0.102e−16s

118s+ 1
−0.033e−26s

146s+ 1
−0.013e−32s

156s+ 1
−0.015e−31s

159s+ 1
−0.029e−25s

144s+ 1
−0.108e−18s

128s+ 1


(19)
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FIGURE 4. Modified MDOB based on the V canonical structure.

for a given process Gm, we may first check whether the
constraints given by (25)-(27) are satisfied. If not, introduce
the compensator N . Then, the factorization of time delay,
design of the inverse model and filter are performed based
on the compensated ḠNm . In this way, some repetitive design
procedures can be omitted.

From (29), Ni and fi should be specified to obtain δi and
ρij. Let us focus on the design of Ni first. Based on the above
derivation, Ni actually compensates all the ith row elements
of Gm. Therefore, parameters of Ni, i.e., ri, tij and τNi , should
be tuned to satisfy (25)-(27) for every j(j = 1, 2, · · · , n).
Besides, additional dynamics should be introduced as little
as possible for design complexity and performance reasons,
namely, smaller values of ri, tij and τNi are preferable. Thus,
the issue of determining the parameters of Ni can be for-
mulated as a linear programming problem shown in (30),
where xi represents ri, tij or τNi , i, j = 1, 2, · · · , n; x =
[x1, x2, · · · , xn]T is the parameter vector to be solved; A and
b are the coefficient matrix and vector, respectively. The
modified MDOB structure with a compensator is depicted in
Fig. 5.

min
n∑
i=1

xi s.t. Ax ≥ b, xi ≥ 0 (30)

As for fi, a simple but not unique way is to take fi = ḡNii .
In this case, D1 reduces to a unit matrix and the elements of
D2 are

ρij = −
ḡNij
ḡNjj
, i 6= j, i, j = 1, 2, · · · , n (31)

Remark 4: The V canonical structure cannot be applied to
the case where the determinant of Ḡpc contains RHP zeros
because this would cause system stability problems. Never-
theless, this method can be applied to a special case where
the RHP zero appears in the same row of Ḡpc.

B. MDOB FILTER
After obtaining the inverse model, the design of the MDOB
filters, Q and Q′, are studied in this part. According to equa-
tions fi = Qi/Q′i and fi = ḡNii , Q

′
i can be derived as

Q′i =
Qi
fi
=

Qi
ḡNii

(32)

That is, Q′i is determined by a given Qi. A simple and
commonly used low-pass filter form is adopted for Qi here,
as shown in (33), where ni is the order ofQi and should satisfy
the requirement given by (34) to ensure the properness of Q′i;
λi is the undetermined filter constant, which will be discussed
in detail next.

Qi =
1

(λis+ 1)ni
(33)

ni ≥ deg(ḡNii )− ri (34)

Considering that robustness and performance have always
been two major issues in control system design, and they
usually have opposite requirements for the filter parameters,
the selection of λi should give a good trade-off between these
two aspects. Here, for robustness, the multiplicative input
and output uncertainties, GIP = Gm(I + 1I ) and GOP =
(I + 1O)Gm, are considered. The control system shown in
Fig. 5 is transformed into the M − 1 structure for analysis,
as illustrated in Fig 6. According to the small gain theorem,
the necessary and sufficient condition for robust stability is

σ̄ (Mε(jω)) <
1

σ̄ (1ε(jω))
, ε = I ,O, ∀ω (35)

where matricesMI andMO are derived as (36). The negative
signs are omitted, as they would not affect the stability con-
dition.

MI = [I − QE + Q′D1(I − D2D1)−1NGm]−1

·Q′D1(I − D2D1)−1NGm
MO = Gm[I − QE + Q′D1(I − D2D1)−1NGm]−1

·Q′D1(I − D2D1)−1N (36)

In terms of performance, the sensitivity function is
known as a good measure and is obtained as (37), based
on (5) and (21).

S = [I − QE + Q′D1(I − D2D1)−1NGm]−1(I − QE) (37)

At last, the concrete value of λi can be determined by
solving the optimization problem shown below.

min λi

s.t.


σ̄ (Mε(jω)) <

1
σ̄ (1ε(jω))

, ε = I ,O

σ̄ (S(jω)) <
1

σ̄ (WP(jω))

∀ω (38)
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FIGURE 5. Modified MDOB structure with a compensator.

Continue with the previous HVAC example, we now con-
sider the implementation of the partially coupled inverse
model and compare the system disturbance rejection perfor-
mance under different inverse model structures. The design
procedures are given below.

1) Determine whether a compensator needs to be intro-
duced. The elements of Gm (see (19)) are checked
for the requirements given by (25)-(27). And it is
found that there is no need to introduce a compensator,
namely, N = I .

2) Determine the structure and concrete expression of Ḡpc.
Gm is written as

Gm = ḠmE

=


g110 g120e−11s g130e−16s g140e−12s

g210e−8s g220 g230e−17s g240e−16s

g310e−14s g320e−18s g330 g340e−8s

g410e−15s g420e−15s g430e−9s g440



·


e−17s 0 0 0
0 e−16s 0 0
0 0 e−16s 0
0 0 0 e−18s

 (39)

and the Ḡpc with selected structure, which is shown in
(20), can be derived accordingly.

3) The V canonical structure is used to implement Ḡ−1pc .
Let fi = ḡii, i = 1, 2, · · · , 4, based on (29), matrices
D1 and D2 are determined as

D1 = I ,

D2 =


0 ρ12 ρ13 ρ14
ρ21 0 0 0
ρ31 0 0 0
ρ41 0 0 0

 (40)

where the expressions of ρijs are collected in Table 1.
4) Filter Q = diag{1/(λis + 1)}, i = 1, 2, · · · , 4, is used

and Q′ is obtained accordingly, as shown in (41). Filter
parameters here are specified the same as reference [32]
for simplicity, i.e., λi = 45, i = 1, 2, · · · , 4.

Q′ = diag
{
−(122s+ 1)
0.098(λ1s+ 1)

,
−(130s+ 1)
0.092(λ2s+ 1)

,

−(118s+ 1)
0.102(λ3s+ 1)

,
−(128s+ 1)
0.108(λ4s+ 1)

}
(41)

TABLE 1. Elements of D2 for HVAC.

TABLE 2. IE values and disturbance evaluation indices for HVAC.

Fig. 7 depicts the disturbance responses provided by the
diagonal, full element and the proposed partially coupled
inverse model structures. Evidently, Ḡ−1pc achieves better per-
formance than the other two types. The IE and GRIDG values
are collected in Table 2. And the quantitative relationship
between them has been confirmed in this specific case.

V. SIMULATION RESULTS
In this section, two examples are performed to illustrate the
design procedure and effectiveness of the proposed strategy.
The output response is evaluated by two commonly used
metrics: the integrated absolute error (IAE) and total variation
(TV). And the robustness index γ [33] is used to quantify the
system robustness. Their definitions are shown below.

IAE =
n∑
i=1

IAEi, IAEi =
∫
∞

0
|ei(t)|dt

TV =
n∑
i=1

TVi, TVi =
n∑
i=1

|ui(k + 1)− ui(k)|

γ = min
ω

(1/||M (jω)||), ∀ω (42)

A. SIMULATION RESULTS OF VINANTE AND LUYBEN
COLUMN
Consider the Vinante and Luyben (VL) column [34] (the time
scale is in minutes):

Gm(s) =


−2.2e−s

7s+ 1
1.3e−0.3s

7s+ 1
−2.8e−1.8s

9.5s+ 1
4.3e−0.35s

9.2s+ 1

 (43)
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FIGURE 6. M-Delta structure of the modified MDOB.

Assume the disturbances occurring at the input are unit step
signals with D(s) = [1 0.3]T .
First of all, based on (16), RIDGA is calculated as

BM =
[
1.2155 −0.2155
1.8543 −0.8543

]
and the structure 0 = {(1, 1), (0, 1)} giving small values in
GRIDG is selected. The requirements shown in (25)-(27) are
checked and we find that g22 does not satisfy the time delay
condition. Therefore, a compensator N (s) = diag{e−0.05s, 1}
is introduced. Design of the inverse model will be carried out
based on this compensated GNm .

Next, as stated, GNm is factorized as

GNm (s) = ḠNm (s)E(s) =


−2.2
7s+ 1

1.3
7s+ 1

−2.8e−0.75s

9.5s+ 1
4.3

9.2s+ 1


·

[
e−1.05s 0

0 e−0.35s

]
(44)

and accordingly, ḠNpc for deriving the partially coupled inverse
model is determined as

ḠNpc(s) = ḠNm (s)⊗ 0 =

 −2.27s+ 1
1.3

7s+ 1

0
4.3

9.2s+ 1

 (45)

For ease of calculation and implementation, let fi(s) = ḡNii (s),
we haveD1 = I and ρ12(s) = −ḡN12(s)/ḡ

N
22(s) = −0.3(9.2s+

1)/(7s+ 1) based on (31).

FIGURE 7. Disturbance responses under different inverse model
structures.

Finally, filterQ(s) = {1/(λ1s+1), 1/(λ2s+1)} is used and
Q′(s) is

Q′(s) =


7s+ 1

−2.2(λ1s+ 1)
0

0
9.2s+ 1

4.3(λ2s+ 1)

 (46)

By solving the optimization problem shown in (38), parame-
ters λi, i = 1, 2 are obtained as λ1 = 0.7 and λ2 = 1 under
the following multiplicative uncertainties and performance
matrices:

1I (s) = diag
{ s+ 0.2
1.2s+ 2

,
s+ 0.3
1.2s+ 2

}
1O(s) = diag

{
−
s+ 0.3
2s+ 1

,−
s+ 0.1
2s+ 1

}
WP(s) =

10s+ 7
25s+ 0.03

· I
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FIGURE 8. Disturbance responses for Example 1.

FIGURE 9. Control signals for Example 1.

TABLE 3. Performance and robustness indices for Example 1.

Since the improved design of MDOB and disturbance
rejection are the main objectives of this paper, the above
method is compared with other two typical MDOB control
strategies given by Chen et al. [26] and Zhang et al. [29].
The disturbance responses and control signals are plotted in
Figs. 8 and 9, respectively. Note from Fig. 8 that satisfac-
tory dynamics are provided by our scheme, especially for
the second loop. And a slightly aggressive control signal
for loop 2 is observed in Fig. 9. This is acceptable, since
the smallest IAE values are obtained and the TV value of
the proposed strategy is moderate (listed in Table 3). Apart
from performance, the robust stability regions provided by
these methods are depicted in Fig. 10. The minimums of
these curves, which indicate the maximum magnitudes of the
uncertainties that the system can tolerate, are also collected

FIGURE 10. Robust stability bounds for Example 1.

in Table 3. Obviously, our control strategy gives the largest γ
values for both input and output uncertainties, indicating the
strongest stability robustness among them.

B. SIMULATION RESULTS OF OGUNNAIKE AND RAY
PROCESS
Consider the Ogunnaike and Ray (OR) process given in
reference [35], (47), as shown at the bottom of the page.

The input disturbance vector is assumed to be D(s) =
[0.5 0.2 − 2.5]T . Similar to the above design procedure
for VL, the main design steps are as follows:

1) GRIDG-RIDGA based structure selection.
By (16), RIDGA is obtained as

BM =

 1.4983 −0.5539 0.0556
5.1389 −4.3704 0.2315
1.6876 −0.8993 0.2117


An appropriate structure giving smaller GRIDG values,
i.e., B′(0) = [0.9444 0.7685 0.2117]T , is deter-
mined as 0 = {(1, 1, 0), (1, 1, 0), (0, 0, 1)}.

2) Analysis and introduction of the compensator.
By checking the conditions in (25)-(27), there is no
need to introduce a compensator, that is, N (s) = I .

3) Inverse model implementation based on the V canoni-
cal structure.
As before, the process model Gm(s) is factorized as a
time delay part E(s) pre-multiplies a remaining matrix
Ḡm(s). For OR column, it is

Gm(s) = Ḡm(s)E(s)

=

 g110 g120e−0.5s g130
g210e−3.9s g220e−3s g230e−0.2s

g310e−6.6s g320e−6.4s g330



Gm(s) =


0.66e−2.6s

6.7s+ 1
−0.61e−3.5s

8.64s+ 1
−0.0049e−s

9.06s+ 1
1.11e−6.5s

3.25s+ 1
−2.36e−3s

5s+ 1
−0.01e−1.2s

7.09s+ 1
−34.68e−9.2s

8.15s+ 1
46.2e−9.4s

10.9s+ 1
0.87(11.61s+ 1)e−s

(3.89s+ 1)(18.8s+ 1)

 (47)
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·

 e−2.6s 0 0
0 e−3s 0
0 0 e−s


The partially coupled model Ḡpc(s) is then determined
by Ḡm(s) and 0:

Ḡpc(s) = Ḡm(s)⊗ 0

=

 g110 g120e−0.5s 0
g210e−3.9s g220e−3s 0

0 0 g330

 (48)

To implement Ḡ−1pc (s), fi(s) = ḡii(s) is selected as usual.
And in this case, D1 = I and the elements of D2 are
calculated as

ρ12 =
−ḡ12
ḡ22
=
−0.61(5s+ 1)e−0.5s

2.36(8.64s+ 1)

ρ21 =
−ḡ21
ḡ11
=
−1.11(6.7s+ 1)e−3.9s

0.66(3.25s+ 1)

4) Filter parameters tuning.
At last, the diagonal weights for uncertainties and per-
formance are specified as

1I (s) = diag
{
s+ 0.3
s+ 25

,
s+ 0.2
s+ 25

,
s+ 0.2
s+ 25

}
1O(s) = diag

{
−
s+ 0.2
8s+ 20

,−
s+ 0.3
8s+ 20

,−
s+ 0.3
8s+ 20

}
WP(s) =

s/2.2+ 0.04
25s+ 0.15

I

respectively.Q(s) has the same form as that of Example
1 and the parameters are tuned as λ1 = 3.1, λ2 = 3.1,
λ3 = 3.2 to satisfy the robust stability and performance
requirements above.

Figs. 11 and 12 depict the system outputs and disturbance
estimates under different inverse model structure cases. The
corresponding IAE values are collected in Table 4. Obviously,
form Fig. 11 and Table 4, the partially coupled inverse model
we designed provides the best disturbance responses for all
of the three loops in terms of the magnitudes, convergence
speed and the error integral indices. Part of the reason is
revealed in Fig.12 that almost the same disturbance estimates
are produced by Ḡ−1m and Ḡ−1pc for loops 1 and 2, while a poor
disturbance estimates is deliberately obtained by Ḡ−1pc for loop
3. The purpose of this action is to preserve the couplings that
are beneficial to disturbance rejection. Besides, the simula-
tion results verify that the RIDGA-GRIDG rule provides a
simple and correct instruction for Ḡ−1pc structure selection.

The proposed strategy is compared with other multivari-
able control methods, i.e., the MDOB based decoupling con-
trol [29], enhanced decentralized control with DOB [13],
sparse control [36] and centralized control [37]. The distur-
bance responses and control signals are plotted in Figs. 13 and
14, respectively. Table 5 lists the performance indices of
these strategies. It is observed from Fig. 13 that the smallest
overshoots of loops 1 and 2 and amoderate magnitude of loop

FIGURE 11. Disturbance responses under different inverse model
structures for Example 2.

FIGURE 12. Disturbance estimates under different inverse model
structures for Example 2.

TABLE 4. Performance indices for Example 2 under different structures.

TABLE 5. Performance indices for Example 2.

3 are obtained by our method. Besides, relatively fast conver-
gence speed also indicates the superior dynamic responses
of the proposed strategy. It should be noticed that the sparse
control gives much better dynamic performance and indices
(shown in Table 5) than other methods for loop 3, but almost
the worst disturbance responses for loops 1 and 2. That is, the
sparse control cannot provide a good balance between control
loops for this case. As for the control signals, Fig. 14 and
Table 5 show that our strategy provides smoother inputs and
smaller TV value than other methods except the decoupling
control. It is, however, observed from Fig. 13 that the decou-
pling control approach suffer from a major disadvantage that
the disturbance response presents poor dynamics and the IAE
values are relatively large.

Fig. 15 depicts the robust stability regions of the above
methods, and values of the robustness index γ are listed in
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FIGURE 13. Disturbance responses for Example 2.

FIGURE 14. Control signals for Example 2.

FIGURE 15. Robust stability bounds for Example 2.

TABLE 6. Robustness indices for Example 2.

Table 6. A relatively large γI , which is larger than that of
other strategies except the decoupling control, is obtained by
our approach. And for the output uncertainties, the proposed
method also provides a moderate γO.

VI. CONCLUSION
In this paper, a modified inverse model design method is
proposed for DOB strategy in cases of stable multivariable

systems with time delays. Two main issues: the structure
selection and implementation of the inverse model, are dis-
cussed in detail. Specifically, relationship between the dis-
turbance rejection capability of MDOB and different inverse
model structures is investigated. An interaction measure
GRIDG is proposed for performance evaluation and inverse
model structure selection. To facilitate the calculation of
GRIDG, RIDGA is developed. As a result, GRIDG of differ-
ent inverse model structures can be derived by calculating the
corresponding row sums of RIDGA. Based on the RIDGA-
GRIDG indices, rules for structure selection of the inverse
model are provided. And a partially coupled inverse model
can be determined for better disturbance rejection perfor-
mance. This modified inverse model is implemented by a
V canonical structure, which has the advantage of simple
calculation and being easy to generalize to high-dimensional
systems. Design of matrices D1 and D2 are discussed and a
compensator will be introduced if necessary. Finally, filter
parameters are tuned to satisfy both the performance and
robustness requirements. The effectiveness and superiority of
the proposed strategy is verified by simulation results.

The structure selection rules for MDOB inverse model
proposed in this paper are mainly based on the steady-state
forms of GRIDG and RIDGA. In future work, some available
dynamic information will be introduced into the metrics to
improve the accuracy of the evaluation results. Besides, other
effective indices and inversemodel designmethods ofMDOB
systems are also our next step to study.
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