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ABSTRACT Software Defined Networking (SDN) is a new architectural paradigm that enables
programmable control of a network to make it more flexible and easier to manage. SDN architectures
decouple control and forwarding functionalities, and enable switches and routers to be remotely config-
urable/programmable in run-time by a controller. Modeling and optimization of such modern heterogeneous
network infrastructures are key factors to achieve better performance, e.g. in terms of traffic flow improve-
ment while reducing bandwidth allocation. Identifying an accurate model of a network device in SDNs (e.g.,
a switch or a router) is crucial in order to apply advanced techniques such asModel Predictive Control (MPC).
However, such a problem is very challenging due to non-linearities and unavailability of internal variables
measurements in real devices. To this aim, a promising direction is given by an appropriate integration
of System Identification and Machine Learning techniques to obtain predictive models using historical
data collected from the network thanks to the SDN paradigm. In this paper we apply a novel data-driven
methodology to learn accurate models of the dynamical input-output behavior of a network’s switch device
by appropriately combining AutoRegressive eXogenous (ARX) model identification with Regression Trees
(RTs) and Random Forests (RFs). The advantage of such model is that it can be directly used to apply MPC
(which just requires Quadratic Programming to be solved) to optimally control the queues’ bandwidth of
the switch ports within the SDN paradigm. We validate our approach on an experimental emulation setup
using theMininet network emulator environment and a real dataset obtained frommeasurements of an Italian
Internet Service Provider (Sonicatel S.r.l.). To this aim, we first develop a model of a real network switch,
then implementMPC using the RYU controller, and finally demonstrate the benefits of the proposed dynamic
queueing control methodology in terms of packet losses reduction and bandwidth saving, i.e. in terms of
improvement of the Quality of Service.

INDEX TERMS Software defined networking, machine learning, system identification, network
optimization.

I. INTRODUCTION
Communication networks involve the interconnection of a
large number of devices, protocols and applications as well as
specific Quality of Service (QoS) and Quality of Experience
(QoE) requirements. The heterogeneity and complexity of
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such infrastructures pose a number of challenging problems
in terms of modeling, managing and optimizing network
resources (see e.g., [1], [2], [3], and references therein). In this
scenario computing technologies, such as graphic and tensor
processing units, represent a good opportunity to implement
advanced control and machine learning techniques, such as
Model Predictive Control (MPC), Decision Trees, Neural
Networks, etc., in communication networks [4], [5], [6], [7].
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Indeed, Machine Learning (ML) approaches applied to
communication networks have been widely investigated over
the past years. As an example, in [8] a Knowledge Plane
(KP) approach has been proposed to enable automation, rec-
ommendation and intelligence by applying ML and cogni-
tive techniques. However, the KP approach has been neither
prototyped nor deployed because each node of traditional
network systems, such as routers or switches, can only view
and act over a small portion of the system. This implies that
each node can learn only from a (small) part of the complete
system. Thus, as shown in [9], it is very complex to design
control algorithms beyond the local domain.

More in general, the infrastructure complexity, also due
to the fact that currently data planes and control logics are
packed together, brings to a very hard management of the
networks. This makes actions like network configuration,
with predefined policies, or reconfiguration, to face network
issues (e.g., faults, changes, etc.), arduous if not impossible.

In this context, during the last decade, the new paradigm
of Software Defined Networking has been developed and
started to spread [10], [11], [12], [13], [14]. Such paradigm
is mainly based on the separation of the network control
plane from the data plane, i.e. the underlying structure made
by routers and switches to manage the traffic flow. In this
way, network switches only have the simple task to forward
traffic, while the control logic can be implemented by an
independent controller. This features provide the capacity to
monitor and collect, in real-time, data of the network state
and configuration, as well as packets and flow-granularity
information [15], [16].

This new architecture opens a wide range of opportunities
in terms of network management and run-time control. One
among them is to improve the characteristics of each network
device throughML algorithms, thus giving the opportunity to
optimize network efficiency and performance. In particular,
it enables the possibility to learn dynamical network models
starting from historical data collected from the network to be
used for management and optimal control purposes. More in
details, a SDN controller device can configure the forwarding
state of each switch by using a standard protocol called
OpenFlow (OF) [17]. Thanks to the OF counter variables
(e.g., flow statistics, port statistics, queue statistics, etc.),
the controller can retrieve information (feedback) from the
network devices, and store/process them for modeling and
optimization purposes [18].

On this new paradigm, a vast amount of research has
already been done trying to exploit its advantages. For exam-
ple, in [19] a predictive model for estimating QoS in order to
detect the need for a re-routing strategy due to link saturation
is introduced. However, such framework cannot be used to
apply traffic optimization techniques. In [20] an initial effort
is conducted to derive a general hybrid system framework to
model the traffic flow in communication networks. In [21],
using hybrid systems, the authors provided a first formulation
and implementation of a mathematical and simulative envi-
ronment to formally model the effect of router/link failures

on the dynamics of TCP and UDP packet flows belonging
to different end-user services (i.e., http, ftp, mailing and
video streaming). However, even though hybrid systems are
very effective in modeling a network of routers, using such
framework to implement traffic optimization is out of ques-
tion due to computational complexity issues. In [22] the
authors focused on designing strategies for periodic updating
of network models to maintain good performance despite the
evolution of the real system.

It is clear from all these studies, and many others [23],
[24], [25], [26], [27], that the use of historical network data
to derive accurate dynamical models of communication net-
works that can be directly used to setup optimal control prob-
lems, such as segment routing and/or queue management, is a
challenging open problem.

A. MAIN CONTRIBUTION
In this paper we tackle the above problem and provide a
methodology, based on algorithms from Machine Learning
in synergy with methods from Control theory, to construct
an input-output model of a switch device compliant with
the SDN OpenFlow paradigm: such model is constructed so
that MPC can be directly applied to such device to opti-
mize the Priority Queueing performance just via Quadratic
Programming solvers. To the best of the authors’ knowl-
edge, the state of the art (discussed in detail in Section II)
still lacks of methods in this respect. In particular, all pre-
vious approaches require to directly measure the internal
queues status, while from SDN devices this is not possible
as one can only measure the input and output traffic of each
queue. Furthermore, in the SDN OpenFlow paradigm it is
not possible to directly control the queues schedule, but it is
only possible to control minimum and maximum bandwidth
bounds associated to each queue. In summary, none of the
approaches in the existing literature proposes an input-output
model identification technique or a control approach that is
directly applicable to the input-output signals available in the
SDN OpenFlow paradigm, and there is no straightforward
way to extend existing techniques to our setting. On this line,
the main contributions of this paper can be summarized as
follows:

1) We apply theoretical results that we recently developed
in [28] to combine Control theory (ARX identification)
and Machine Learning (Regression Trees and Random
Forests) in order to derive an accurate input-output
model of a switch device compliant with the SDN
OpenFlow paradigm to predict the queues states inside
the switch ports using input/output (traffic flows) his-
torical data. Note that, as discussed in Section II, previ-
ous approaches need access to the queue buffer data to
identify the model and, at least with commercial SDN
hardware, this is not possible. We use our model to
set up an MPC problem to optimally control queues
scheduling via bandwidth allocation, and implement
such controller in the RYU SW environment [29]: this
guarantees that our technique is directly applicable
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to a real SDN network without any need of SW
integration;

2) We validate our techniques on an experimental setup
consisting of a packet-level network emulation envi-
ronment and real traffic data from network measure-
ments provided by an Italian Internet Service Provider
(Sonicatel S.r.l.). Having used such validation setup,
we also guarantee that the control code developed in
this paper can be directly applied on a real SDN net-
work based on the OpenFlow paradigm;

3) We compare the predictive accuracy of our RT- and
RF-based techniques with Neural Networks (NNs):
we show that, while NNs provide a slightly better
preditctive accuracy, they are practically useless for
optimal control purposes via MPC as they require to
solve non-linear optimization problems, while using
our methodology (based on RTs and RFs) MPC can be
efficiently solved via Quadratic Programming. We also
show that our methodology quickly improves its per-
formance as soon as new data are available, bringing
to an improvement of both model accuracy and control
performance.

The present work is based on the preliminary confer-
ence paper in [30], which has been improved and extended
in the following aspects: (i) the effect of iterative model
updates using on-the-fly new data in the prediction accuracy
is demonstrated; (ii) the effect of predictive models of future
incoming traffic is tested; (iii) the accuracy of the predictive
models is validated over a real dataset obtained from net-
work measurements of an Italian Internet Service Provider
(Sonicatel S.r.l.).

B. PAPER ORGANIZATION
The paper is organized as follows. In Section II a survey
on the related work is provided. In Section III the network
emulation environment is illustrated. In Section IV the model
identification technique together with the MPC problem for-
mulation is addressed. Finally, in Section V the methodology
validation is provided showing results in terms of prediction
accuracy and control performance.

II. RELATED WORK
The problem of modeling, managing and optimizing
resources in a heterogeneous communication network is a
very challenging engineering problem because of its inherent
complexity [1], [2], [31], [32], [33]. Indeed, one of the most
difficult challenges to be addressed to apply optimization
techniques to the management of such complex networks
is to derive predictive models of the queues of the switch
behaviour [34], [35], [36], [37], [38], [39]. Numerous studies
have also been conducted to maximize the performance of
the controller and OpenFlow switch of SDNs. In particular,
in the analysis of the literature regarding traffic management
in SDNs and priority queueing we can distinguish three main
different approaches: heuristic, parametric, and model-based.

Heuristic approaches are those where the algorithms to
identify queue traffic models and control the queue traffic
are based on rule-of-thumbs and empirical approaches that do
not take into account any particular model. In [40] a heuristic
method is proposed to balance the packet load among queues
in order to reduce packet losses, although it does not aim at
providing an optimal solution. In [41] the authors provide a
scheduling algorithm to handle the incoming data traffic by
enqueuing packets into the corresponding queue based on
priority: High Priority queue is dequeued first. In [42] the
authors define multiple queues with different priority classes,
which are used to prioritize VoIP packet based on delay, and
the controller decides where to enqueue the packet based on
delay and considering 5 different decision thresholds.
Parametric approaches are those where the control of

queues is based on less heuristics and more methodologi-
cal solutions. More precisely, one or more parameters that
describe the QoS of an SDN are chosen, and an optimization
is performed based on static models characterized by such
parameters. In [43] and [44] the authors consider different
approaches to model and control queuing delays with specific
network parameters. In [45] QoE is taken into account in the
context of VOIP, and the decision metric to select the best
link to establish a new VoIP call is based on the MOS quality
metric, which is a typical measure of the user’s satisfaction
level of the quality of a call. All these approaches, despite
the fact that they are easy to understand and implement, may
not be often suitable to describe and control traffic flows in
large and complex networks, as they are not based on network
dynamical models.
Model-based approaches are those where a mathemati-

cal model of packet flows within a queue is considered.
In classical literature of queuing theory, in particular applied
to SDNs, most of the approaches are based on classical
modeling structures (see e.g., [46]), and many techniques
are exploited to estimate the parameters and the state of
a queue [47]. In [48] the authors emphasized that switch
performance depend on multiple factors, such as flow-table
size, packet arrival rate, etc., and they took these key fac-
tors into account to design their M/Geo/1 system where the
arriving packets follow a Poisson distribution and the ser-
vice times follow a Geometric distribution. In [49], beside
describing a comprehensive review of the literature (mostly
M/M/k and M/G/k, i.e. specific queue models), the authors
derived a new model for queueing networks based on Quasi
Bird Death (QBD) processes. Another approach based on
dynamical modeling for MPC is described in [50]. Here the
authors derived a Discrete-time Markov Jump Linear System
to model a queueing network with the aim of defining pre-
dictive control policies. In [51] the authors propose a new
congestion control algorithm based onMPC, calledMPAQM,
where the queue length is predicted based on the extended
TCP/AQM system model and on a state estimator. The main
drawback of the approach proposed by the authors is that
they linearize and discretize the model of a TCP/AQM inter-
connection system as in [52]: this is not always an effective
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solution, since linearizing a model of a complex system does
not always ensure adequate control performance, especially
when the system is going to operate far from the linearization
point. As an alternative nonlinear MPC can be applied, but
the resulting optimization problemwould be computationally
intractable in general, and would not always guarantee a
(global) solution.

Model-based methods are clearly the most related
approaches with respect to the methodology proposed in this
paper. For this reason, we want to provide a list of technical
reasons that make our approach novel with respect to the state
of the art:
• As already discussed in the previous section, the first
and most relevant drawback of the existing model-based
methods is related to the identification procedure of the
queueing model: all of them need access to queue buffer
data to identify/parameterize the model and, at least
with commercial SDN hardware, this is not possible.
In general, all the methodologies proposed in the related
work do not allow to derive input-output models that
enable direct exploitation of MPC while guaranteeing
both good modeling accuracy and a tractable compu-
tational complexity (i.e., using Quadratic Programming
(QP) solvers).

• The methods previously discussed are usually designed
to provide best accuracy for a one step prediction. How-
ever, when dealing with MPC, a model to accurately
predict the value of state variables over a finite future
time horizon of arbitrary length N is needed. Classical
approaches use the prediction computed at step k + 1,
and then iterate the model to predict the state at steps
k + 2, . . . , k + N . However, this approach can suffer
of several issues when N is large and the system is
complex, such as numerical inaccuracies, error propa-
gation, and additional uncertainties. In such situations,
learning different models to predict the evolution of the
state over different steps of the horizon (as we propose
in this work) can increase MPC performance [28], [53].
Moreover, as we show later on in the paper, the addi-
tional computational complexity related to the number
of models used for the prediction over the N steps of the
horizon is negligible, thanks to the binary structure of
the decision trees and to standard parallel computation
techniques.

III. NETWORK EMULATION ENVIRONMENT
In this paper we use the Mininet environment [54] to emulate
a SDN network to validate our methodology in terms of
prediction accuracy and control performance.

This software runs a collection of virtual network elements
(i.e., end-hosts, switches, routers, and links) on a single Linux
kernel using lightweight virtualization. To generate traffic
we use the Distributed Internet Traffic Generator (D-ITG)
generator [55], [56], [57].

For the purposes of this work, we tested various network
configurations: since similar results have been obtained on all

FIGURE 1. Mininet emulated network architecture. Packets generated by
network n2 are sent to network n1 (red line) through switch s0. Each
packet is sorted by the DSCP flow tables and sent to the appropriate
queue on Port 2 according to the packet’s priority level. Switch ports,
represented by the white triangles, are for Input and Output.

configurations, we consider the generic case of the architec-
ture depicted in Figure 1, which aims to represent a portion of
a larger network where a bottleneck occurs. More precisely,
we emulated a switch s0 with one input port and one output
port, and a remote controller [29], [58], that dynamically
manages the configuration of the queues of s0. The input of
s0 is fed with more instances of D-ITG generating stochastic
traffic, whose mean value follows the pattern of a real dataset
(where packets are differentiated by their Type of Service
(ToS) priority index) extracted from two days of logs of
a large service provider network router. The original real
dataset contains traffic data of a real network incoming from
a source geographic area and terminating in a destination
geographic area, and is divided for each value of Differen-
tiated Services Code Point (DSCP) with a sampling time of
5minutes [59], [60]. As depicted in Figure 1 D-ITG generates
traffic from both networks, but only the packets generated
from n2 to n1, represented by the red arrow, are sorted into
the queues in Port2 of s0 according to the rules set by the
flow tables. The switch ports are for both Input and Output,
and are represented by the white triangles.

DSCP is the modern definition of the ToS field in which
the first 6 bits are the Differentiated Services field that are in
common with ToS field, while the last 2 bits regard explicit
congestion notification. The ToS field can specify the priority
of a datagram and the request for a low delay addressing a
high throughput or a high reliability service. Following the
implementation of many national service provider networks
(see e.g., [61]), the 8 different values of the DSCP has been
partitioned in three classes, and thus their relative packets
are routed in three different queues with a different priority:
the Default class (DSCPs 0, 1, 3) with a queue bandwidth
of 20% of the port bandwidth, the Premium class (DSCPs
2, 4, 6, 7) with the 80% of the port bandwidth, and the Gold
class (DSCP 5) with the 100% of the port bandwidth in a
preemptive mode. This static implementation described in
technical report [61] depicted in Figure 2, is the one used
by Telecom Italia in real networks and is thus the one we
consider to compare with.
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We used the D-ITG Sender and Receiver modules to estab-
lish a connection between networks n1 and n2. In particular,
16 D-ITG modules have been initialized: 8 for each network,
and one for each DSCP index within each network. These
modules handle the sampling time interval (5 minutes), the
inter-departure time stochastic distribution associated with
the packet rate, the packet size stochastic distribution, the IP
and port destinations, and the DSCP index.

On the controller side we used RYU, which provides
software components with well defined Application
Programming Interfaces (APIs) that give the possibility to
easily create new network management and control applica-
tions, and supports various protocols for managing network
devices, such as OpenFlow, Netconf, OF-config, etc. About
OpenFlow, RYU supports fully 1.0, 1.2, 1.3, 1.4, 1.5 and
Nicira Extensions: for the considered test-bed, the 1.3 version
has been chosen. In particular, we used the APIs in [62]
and [63] for queue control and counter recovery from the
switches. The feedback information collected for the pur-
poses of this work are the descriptions of switches, ports and
queues, the number of packets received and transmitted on
each port of a switch, the packets passing through the flow
tables, the packet rate values of each queue, and the packets
transmitted by each single queue. In summary, the variables
associated to the traffic and control signals in the closed-loop
architecture, at each time step k , are the following:
• d(k) ∈ R10 is a measurable disturbance vector, i.e. rep-
resenting variables that cannot be controlled. The first
8 components d1(k), . . . , d8(k) consist of the number
of packets incoming in the switch s0 differentiated with
respect to 8 different values of DSCP numbers. d9(k) and
d10(k) are proxy variables, i.e. the hours and minutes of
the day, which are very useful to the predictive model
since traffic dynamics are tightly correlated with them,
e.g. they are substantially different between night and
day;

• y(k) ∈ R3 is the measured output vector, i.e. the vari-
ables to regulate. They consist of the number of packets
outgoing from switch s0 differentiated with respect to
the corresponding service class: y1(k) is the Default
Queue output, y2(k) is the Premium Queue output and
y3(k) is the Gold Queue output;

• u(k) ∈ R3 is the control input vector. Each component
corresponds to the queue configuration of each service
class: u1(k) is the Default Queue configuration, i.e. the
maximum admitted bandwidth; u2(k) is the Premium
Queue configuration, i.e. the maximum admitted band-
width; u3(k) is the Gold Queue configuration, i.e. the
minimum admitted bandwidth;

In this work the static control of the queues used in the
Italian service provider network of Telecom Italia [61] has
been first applied in the chosen emulative scenario, which is
depicted in Figure 2. To this aim, 3 queues in s0 have been
defined and configured as follows: packets with the DSCP
values 0, 1 and 3 (Default queue) are routed via queue 0, with
maximum rate u1(k) = 20MB/s,∀k; packets with values 2,

FIGURE 2. Telecom Italia [61] static queues rate in terms of percentage of
the total amount of MB/s for a SDN switch port and packets identified by
their DSCP numbers and routed relatively to their priority through each
queue.

4, 6 and 7 (Premium queue) are routed on queue 1, with max-
imum rate u2(k) = 80MB/s,∀k; packets with value 5 (Gold
queue) are routed on queue 2, with minimum rate u3(k) =
100MB/s,∀k . To obtain this prioritization it has also been
necessary to set the flow tables of s0 to discriminate incoming
packets based on the DSCP value and the destination IP
address, and re-route them to the desired queue. Moreover,
to obtain a bottleneck situation in s0, the bandwidth of the out-
put port of switch s0 has been set to 100MB/s, also to respect
the limitation of Mininet in terms of CPU usage. Using this
configuration, queue 2 uses the maximum capacity of the port
to forward packets with preemptive priority, while the other
two queues use the remaining bandwidth from 0 MB/s to the
specified maximum bandwidth based on needs.

As will be shown in Section V, using static priority control
the queues will not be able to send all the packets incoming
from network n1, and a dramatic amount of packets will
be lost. This motivates the application of optimization tech-
niques, which are enabled by the predictive models derived
using the methodology described in the following section.

In order to not to degrade the performance of the SDN
network with the computation of the prediction model and
of the control inputs at each instant k , the use two different
computers has been chosen, as shown in Figure 3. In PC1
the python scripts useful for the establishment of the SDN
network, the generation of a traffic pattern based on real data
and the RYU controller are implemented. The latter takes care
of saving in a local folder all the data useful for the creation
of the prediction model by adding the measurements made at
instant k inside specific files. Once the dataset is sufficiently
populated, PC2 with Matlab software is used to compute
a model with adequate prediction accuracy. This model is
then used in real time to compute, and immediately apply,
the control input u(k) at each measurement instant k starting
from the knowledge of the incoming traffic (d(k)) and of the
outgoing packets from the queues (y(k)). The exchange of this
information between Matlab and RYU is carried out through
files saved on a shared folder on the internet (Dropbox).

IV. SWITCHED AFFINE MODELING VIA RTs AND RFs
In this section, we introduce a methodology to apply the
results proposed in [28] and [64] to identify, starting from
a set of collected historical data D = {y(k), u(k), d(k)}`k=0,
a switching ARX model of the input-output behavior of the
traffic flow in a switch of an SDN network. Such model has
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FIGURE 3. Interactions between PC1, where SDN Network resides, and
PC2, that is responsable of offline calculation of the forecast model. The
information exchange between Matlab and RYU is carried out through
files saved on a shared folder on the internet (Dropbox).

the following form:

x(k + j+ 1) = A′σj(x(k),d(k))x(k)

+

j∑
α=0

B′σj(x(k),d(k)),αu(k + α)

+ f ′σj(x(k),d(k)), (1)

j = 0, . . . ,N − 1, where x(k) .
= [y>(k) · · · y>(k −

δy) u>(k − 1) · · · u>(k − δu)]> ∈ Rnx is the extended
state that characterizes the switching ARX model, xι(k)

.
=

[yι(k) · · · yι(k−δy) u>(k−1) · · · u>(k−δu)]> ∈ Rδy+1+3δu ,
ι = 1, 2, 3, and σj:Rnx+10 →M ⊂ N is a switching signal
that associates an operating mode in a finite set M, to be
computed via RTs and RFs, to each pair (x(k), d(k)) and each
prediction step j of the horizon. N is the chosen predictive
horizon, and represents the number of steps of the prediction
in terms of sampling time instants. Its value in terms of time
depends on the choice of the sampling time, e.g. in Section V
we have a dataset of measurements sampled at 5minutes, thus
with a choice of N = 5 we are considering a prediction over
an horizon of 25 minutes. Once identified, model (1) can be
used to setup the following optimization problem, which can
be solved using standard Quadratic Programming (QP):
Problem 1:

minimize
u0,...,uN−1

N−1∑
j=0

((
xj+1 − xref

)>Q (xj+1 − xref)+ u>j Ruj)
subject to

xj+1 = A′σj(x0,d0)xj

+

j∑
α=0

B′σj(x0,d0),αuα + f
′

σj(x0,d0)

uj ∈ U
x0 = x(k), d0 = d(k)

j = 0, . . . ,N − 1.

As it is well known [65], Problem 1 is solved at each time step
k using QP to compute the optimal sequence u∗0, . . . , u

∗

N−1,
but only the first input is applied to the system, i.e. u(k) = u∗0.
Note that, for any prediction step j, xj+1 only depends on the
measurements x0 = x(k), d0 = d(k) at time k , since they are
the only available measurements at time-step k . MatricesQ �
0 and R � 0 are, as usual, chosen to trade-off the reference
tracking and the control effort.

A. RTs AND RFs BACKGROUND
Let us consider a dataset {y(k), x1(k), . . . , xη(k)}`k=0, with
y, x1, . . . , xη ∈ R. Let us suppose to estimate, using Regres-
sion Trees, the prediction of the (response) variable y(k)
using the values of predictor variables x1(k), . . . , xη(k). The
CART algorithm [66] creates an RT structure via optimal
partition of the dataset. It solves a Least Square problem
by optimally choosing recursively a variable to split and a
corresponding splitting point. After several steps the algo-
rithm converges to the optimal solution, and the dataset is
partitioned in hyper-rectangular regions (the leaves of the
tree) R1,R2, · · · ,Rν . In each partition y(k) is estimated with
a different constant ŷi, i = 1, . . . , ν, given by the average of
the samples of y(k) falling in Ri, i.e.

ŷi =

∑
{k|(x1(k),...,xη(k))∈Ri}

y(k)

|Ri|
(2)

Random Forests [67] are instead an averaging method that
exploits a combination of tree predictors such that each tree
depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest.
The output prediction is given by averaging the predictions
provided by all trees in the forest. It is possible to show
that the error introduced by the forests quickly and almost
surely converges to a limit as the number of trees in the forest
becomes large. Such error also depends on the strength of
the individual trees in the forest and the correlation between
them. Thus, due to the Law of Large Numbers, RFs (differ-
ently from RTs) do not suffer much variance and overfitting
problems. For more details the reader is referred to [66] and
[67], while a more brief and concise description can be found
in the Appendix of [53].

B. SWITCHING ARX (SARX) MODEL IDENTIFICATION VIA
RTs
To derive a model as in (1), the main idea is to exploit
the RT structure provided by CART to create a switching
modeling framework. This can be done in two steps: (i) we
split the dataset separating the control and non-control vari-
ables; (ii) we change the constant prediction provided by the
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tree with a dynamical model in each leaf, hence creating a
switching behavior.

To this aim, a new dataset X .
= {x(k), u(k), d(k)}`k=0

has to be defined starting from D. In order to apply MPC,
a model for each component of y(k) that can predict system’s
dynamics over a horizon of length N is needed. To this
aim, the idea is to create 3N predictive trees {Tι,j}, ι =
1, 2, 3, j = 0, . . . ,N−1, each one used to predict the 3 output
components of the system over the N steps of the horizon.
To create the tree structure the RTs algorithm (CART) par-
titions the dataset X into regions Xi such that

⊎
Xi = X ,

where
⊎

denotes the disjoint union, and assigns to each
region a constant value given by the average of the output
values of the samples that ended up in that leaf. In run-time,
once the trees are created, and given a real-time measurement
(x(k), u(k), d(k)) belonging to leaf i, the CART algorithm
provides as a prediction the averaged value associated to the
leaf as in (2). However, since the prediction provided by the
RT is a constant value, it cannot be used to setup an MPC
problem, thus the learning procedure needs to be modified to
identify a modeling framework as in (7). To this end, X is
partitioned in two disjoint sets Xc = {u(k)}`k=0, of data asso-
ciated to the control variables, and Xnc = {(x(k), d(k))}`k=0,
of data associated to remaining variables. Then, the CART
algorithm is applied only onXnc (this is to avoid that theMPC
problem turns out into a Mixed Integer Quadratic Program,
see [28], [64] for details); thus, 3N RTs {Tι,j} have been
created, each constructed to predict the variable yι(k+ j+1),
and consequently xι(k+ j+ 1). In particular, to each leaf ι, ij,
corresponding to the partition Xnc,ι,ij , of each tree Tι,j, the
following affine model is associated:

xι(k + j+ 1) = A′ι,ijx(k)+
j∑

α=0

B′ι,ij,αu(k + α)+ f
′
ι,ij , (3)

where the coefficients of matrices A′ι,ij , B
′
ι,ij,α and f ′ι,ij in

Eq. (4), as shown at the bottom of the next page, are obtained
in each leaf ι, ij by fitting the corresponding set of samples
solving the Least Squares Problem 2.
Problem 2:

minimize
ξι,ij

‖3ι,ijξι,ij − λι,ij‖
2
2

subject to fmin ≤ f ≤ fmax

amin ≤ a ≤ amax

bmin ≤ bι,α ≤ bmax, (5)

where ξι,ij , λι,ij , and3ι,ij contain respectively the parameters
of matrices in (4), the predictions xι(k+ j+1), and the current
measurements of x(k) and u(k + α). Linear inequalities (5)
are used to constrain elements in ξι,ij to take into account
physical system constraints and improve prediction accuracy.
Model (3) can be easily compacted in the following form
taking into account all the states ι = 1, 2, 3:

x(k + j+ 1) = A′ijx(k)+
j∑

α=0

B′ij,αu(k + α)+ f
′
ij . (6)

In particular, with the specific choice of δu = 0 model (1) can
be rewritten in the following state-space formulation

x(k + j+ 1) = Aσj(x(k),u−(k),d(k))x(k + j)

+Bσj(x(k),u−(k),d(k))u(k + j)

+ fσj(x(k),u−(k),d(k)), (7)

where u−(k) = [u>(k−1) · · · u>(k−δ)]> is the vector with
the regressive terms of the input used to only grow the trees,
and σj : R3(δy+1)+3δ+10→M ⊂ N.

Thanks to this new formulation the following proposition
shows that model (6) is equivalent to model (7) for any initial
condition, any switching signal and any control sequence.
Proposition 1 [28]: Let A′ij , B

′
ij,α and f ′ij , α = 0, . . . , j,

j = 0, . . . ,N − 1, be given. If A′ij is invertible for j =
0, . . . ,N − 1, then there exists a model in the form

x̄(k + j+ 1) = Aσj(x̄(k),u−(k),d(k))x̄(k + j)

+Bσj(x̄(k),u−(k),d(k))u(k + j)

+ fσj(x̄(k),u−(k),d(k))

such that for any initial condition x̄(k) = x(k) = xk , any
switching sequence i0, . . . , iN−1 and any control sequence
u(k), . . . , u(k+N−1), then x̄(k+ j+1) = x(k+ j+1), ∀j =
0, . . . ,N − 1.
As discussed in [28], from experimental findings it is

possible to notice that the contribution in terms of model
accuracy introduced by the choice of δu = 0 is negligible,
since previous control inputs are already considered in the
tree structure choosing δ > 0. Thus, in the rest of the paper
we will consider δu = 0 and δ > 0.

C. SARX MODEL IDENTIFICATION VIA RFs
RF-based models can be constructed exploiting the RT-based
formulation: in particular, let us consider 3N RFs Fι,j, ι =
1, 2, 3, j = 0, . . . ,N − 1. For each tree T Fι,j

τ of the forest
Fι,j, it is possible to estimate the coefficients a∗, b∗ and f in
(4) for each leaf ι, j, iτ , i.e. ξ̃ι,j,iτ , solving Problem 2. With a
small abuse of notation, let us indicate by |Fι,j| the number
of trees in the forest ι, j. Then ∀ι, j, the parameters to build
matrices in (9) can be obtained by averaging parameters a∗,
b∗ and f , ∀τ = 1, . . . , |Fι,j|, i.e.

ξ̃ι,j =

|Fι,j|∑
τ=1

ξ̃ι,j,iτ

|Fι,j|
, (8)

over all the trees of forestFι,j. At this point, starting from (3),
it can be easily construct the following model, as in (6) to be
used in theMPC formulation by combining for ι = 1, 2, 3 the
matrices in (4) coming either from the RTs or from the RFs:

x(k + j+ 1) = A′ijx(k)+
j∑

α=0

B′ij,αu(k + α)+ f
′
ij . (9)
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D. MPC PROBLEM FORMULATION
We use model (9) to formalize Problem 1 according to the
SDN priority queueing problem in Problem 3.
Problem 3:

min
u

N−1∑
j=0

[
(xj+1 − xref,j)>Q(xj+1 − xref,j)+ u>j Ruj

]
s.t. xj+1 = Aσj(k)xj + Bσj(k)uj + fσj(k)

1umin
ι ≤ uι,j − uι,j−1 ≤ 1umax

ι

umin
ι ≤ uι,j ≤ umax

ι

u1,j + u2,j ≤ 100

x0 = x(k), u−0 = [u>(−1) · · · u>(−δ)]>,

d0 = d(k),

j = 0, . . . ,N − 1, ι = 1, 2, 3,

where σj(k) = σj(x(k),u−(k), d(k)) (with a slight abuse of
notation), uι,j is the ιth component of the input u at time k+ j;
1umin

ι and 1umax
ι are used to limit large variations on the

inputs in 2 consecutive steps, in order to avoid that the queues
drastically set to the minimum value and thus potentially
increase packet losses during the next period; umin

ι and umax
ι

define the bandwidth limits induced by the QoS requirements
of the corresponding priority class. At each time step k the
measurements of the variables in Xnc are collected, select
the current matrices of (9) narrowing down the leaves of the
trees, for j = 0, . . . ,N − 1, solve Problem (3), and finally
apply only the first input of the optimal sequence u∗ found,
i.e. u(k) = u∗0.

As it is well known, Problem 3 represents a quadratic
optimization problem, and its solution can be found with high
efficiency with standard algorithms. This is a big advantage
in terms of implementation on hardware platforms of our
methodology, which is a future direction of this work. For this
reason, we chose a quadratic function for Problem 3 as a good
trade-off between control performance and computational
complexity. However, the flexibility of the proposed method-
ology allows to change the objective function, for example
with a linear, a nonlinear, or any other kind of function, clearly
changing the trade-off between computational complexity
and control performance. We refer the reader to [65] for
further details on MPC complexity.

E. DISTURBANCE FORECAST
The knowledge at each time k of the future input traffic
(d(k + 1), . . . , d(k + N − 1)) can greatly improve the MPC
performance. However, while the future values of the proxy
variables (hours and minutes) are clearly well known, the
knowledge of the future values of the first 8 component
of the disturbance, i.e. number of packets incoming in the
switches for each DSCP index are unknown at the current
instant k . To address this problem, 8(N − 1) RFs Fd

ι,j, ι =

1, . . . , 8, j = 0, . . . ,N − 1 have been built in order to
provide a prediction d̂ι(k+j) of the 8 disturbance components
dι(k + j) over the future time horizon: as widely illustrated
in [28], [64] the technique previously described can be easily
modified by appropriately redefining the dataset as X =

{(x(k), u(k), d(k), . . . , d(k + N − 1))}`k=1 for the training
phase, and considering a switching signal in (7) given by

A′ι,ij =



a1 a2 · · · aδy aδy+1 bδy+2 · · · bδy+1+3(δu−1) · · · bδy+1+3δu
1 0 · · · 0 0 0 · · · 0 · · · 0
...

...
. . .

...
... 0 · · · 0 · · · 0

0 0 · · · 1 0 0 · · · 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0
...

...
. . .

...
...

...
. . .

...
. . .

...

0 0 · · · 0 0 0 · · · 1 · · · 0


,

B′ι,ij,α =



b1,α b2,α b3,α
0 0 0
...

...
...

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
...

...
...

0 0 0


, α < j, B′ι,ij,j =



b1,α b2,α b3,α
0 0 0
...

...
...

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0


, f ′ι,ij =



f
0
...

0
0
0
0
0
...

0


, (4)
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Algorithm 1 Data-Driven MPC With Regression Trees
1: Design time: Offline
2: Input: datasets Xnc = {(x(k), d(k))}`k=0 and Xc =

{u(k)}`k=0
3: procedure Training LTI models in leaves
4: Build 3N trees Tι,j using Xnc, each to predict
yι(k + j+ 1);

5: for all j = 0, . . . ,N − 1 do
6: for all ι = 1, 2, 3 do
7: for all leaves ι, ij ∈ Tι,j do
8: Compute ξι,ij by solving Problem 2;
9: end for

10: Build matrices A′ij ,B
′
ij,α, f

′
ij in (4) using ξι,ij ;

11: end for
12: end for
13: end procedure
14:

15: Run time: Online
16: Input: matricesA′ij ,B

′
ij,α, f

′
ij , ∀ ij, α, constraint parameters

1umin
ι , 1umax

ι umin
ι , 1umax

ι , and weight matrices Q,R
17: procedureModel Predictive Control via SARX-RT
18: while k ≥ 0 do
19: for all j = 0, . . . ,N − 1 do
20: Using x̄(k),u−(k), d(k)) narrow down each

tree and determine ι, ij;
21: Determine Aσj (k), Bσj (k), fσj (k);
22: end for
23: Solve Problem 3 using QP to determine optimal

inputs u∗k , . . . , u
∗
k+j;

24: Apply the first input u(k) = u∗k ;
25: end while
26: end procedure

σj(k) = σj(x(k),u−(k), d(k), d̂(k + 1), . . . , d̂(k + j)),∀j =
0, . . . ,N −1, i.e. also depending at time k on the future input
traffic.

The whole procedure, consisting on both the offline model
identification and the online control parts, has been summa-
rized in Algorithm 1. In particular, the algorithm is given for
the RTs, but it can be trivially generalized for the RFs.

V. SIMULATION RESULTS
In this section simulation results of the application of the
proposed approach to SDN Priority Queueing identification
and control is provided.

Standard RFs are used to derive models to forecast the dis-
turbance components d1(k), . . . , d8(k), i.e. the switch input
differentiated for each DSCP index, so as the predictive
models for the output variable y(k) following the approach
described in Section IV. For both cases, the validation of the
predictive accuracy is performed. In particular, the predictive
models (based on RTs and RFs) are compared with Artificial
Neural Networks, showing that RFs-based models represent
the ideal solution both in terms of prediction accuracy and

computational complexity. Then, the effect of iterative dataset
updates in the prediction accuracy, both with and without
forecast of the disturbances, is illustrated. Finally, the pro-
posed predictive models are used to setup an MPC problem
(Problem 3), and the control performance in terms of packet
losses reduction and bandwidth saving, both with and without
forcast of the disturbances, are investigated.

Results will show that, as expected, using accurate pre-
dictive models in the proposed MPC framework provides an
important reduction of packet losses and an increase of band-
width saving with respect to the static bandwidth allocation
policy used in the Service Provider Networks as described in
Section III: even thought this result is not surprising, it is
very useful to show how better performance can be obtained
in real networks only collecting historical data and applying
a controller that can be directly implemented using the pro-
posed identification procedure and Quadratic Programming
solvers (which are well known to be very efficient).

In each of the aforementioned validations, 4 different pre-
dictive models have been exploited, using iteratively enriched
datasets. As a training dataset we used a set composed by
63 days of data sampled every 5minutes. In particular, to sim-
ulate a procedure that allows to update the models as soon
as new data are available, we split the training dataset into
4 different subsets. We define by OLD the predictive model
identified with a dataset consisting on the first 5124 collected
samples (about 18 days), collected from network emulation
with random values of the input u(k). Then, we consider the
availability of new measurements over time: by 1UP (first
update) we consider the predictive model identified with the
OLD dataset enriched with 3456 new samples, i.e. a total of
8580 samples, about 29 days, obtained from network emula-
tion when applying closed-loopMPC to define the input u(k);
by 2UP (second update) we consider the predictive model
identified with the 1UP dataset enriched with 3168 new
samples, i.e. a total of 11748 samples, about 40 days, obtained
from network emulation when applying closed-loop MPC to
define the input u(k); and by 3UP (third update) we consider
the predictive model identified with the 2UP dataset enriched
with 6336 new samples, i.e. a total of 18084 samples, about
63 days, obtained from network emulation when applying
closed-loop MPC to define the input u(k).

As a testing dataset, we considered a different set com-
posed by 6 days of data sampled every 5 minutes, i.e.
1684 samples, that we used to validate the learned models.

All simulations have been ran on a UDOO x86 Advanced
with an Intel Braswell N3160 processor up to 2.24 GHz
and 4 GB of RAM [68].

A. TRAFFIC PREDICTIVE MODEL VALIDATION ON
EMULATION ENVIRONMENT
Having an accurate forcast of the variable d(k) (i.e. the switch
input differentiated for each DSCP index) can be helpful
to improve the model identification performance, other than
improving the tracking of the reference input xref,j, j =
1, 2, . . . ,N in Problem 3. In this section, the standard RFs
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FIGURE 4. NRMSE of the disturbance predictive models over a time
horizon of N = 5 (e.g. 25 minutes). Every model update improves the
prediction accuracy for each DSCP service.

algorithm is applied with a regression of 15 on the vari-
ables di, and 30 trees for each forest, to obtain models to
produce the disturbance forcasts over a predictive horizon
of N = 5 (25 minutes). As intuitive, considering a large
predictive horizon could generate a predictive model with
low accuracy in terms of prediction, hence ruining the MPC
performance. Furthermore, the larger N the higher the com-
plexity of the closed-loop control, although the solution of
the quadratic MPC would still be efficient. To test such
hypothesis, we ran several simulations varying the value of
N. Results confirmed our thoughts, thus we found N= 5, i.e.
25 minutes, to be a good trade-off between model accuracy
and control complexity. Nevertheless, the choice of the value
for N is strictly related to the quality and amount of data, and
to the nature of the system under consideration, thus its best
value depends on the system and on the control goal.

Figure 4 shows the Normalized Root Mean Square Error
(NRMSE) of the models of the disturbance signals (one for
each of the 8 DSCP indices) over a time horizon of N = 5:
the prediction error is worse for Service 0 (4 − 6%) since
it includes the majority of the packets that transit through
the switch. For other services the NRMSE is at most 2.2%
(Service 7) over all the predictive horizons. The improvement
of the model accuracy when using larger (updated) datasets
is evident, until a saturation is reached and further data do
not help to improve the model accuracy: the NRMSE signif-
icantly reduces and for Service 0 it is even halved. We chose
the NRMSE metric to emphasize the deviation in percentage
of our model predictions from the real measurements. Thus,
the error normalization facilitates the comparison between
datasets and models with different scales. Figure 5 shows, for
Service 0 and in a time window of 500 samples (almost two
days), the predictions of OLD, 1UP, 2UP and 3UP as well
as the original data. In this case, the more packets prediction
overlap the real data (yellow line) and the more the prediction
is considered accurate. This result clearly highlights the better
prediction accuracy provided with 2UP and 3UP with respect
to OLD and 1UP.

1) TRAFFIC PREDICTIVE MODEL VALIDATION ON REAL
NETWORK DATA
In addition to the validation of our predictive models of the
incoming traffic over the Mininet environment, the accuracy

FIGURE 5. Comparison between Service 0 measured traffic (yellow line)
and its traffic prediction for each model. The more a prediction overlaps
the measured traffic, the more the prediction is accurate.

has been also tested on data measured from a real network
device (Ubiquiti EP-16) of an Italian internet provider (Son-
icatel S.r.l.). Data collection has been performed using the
software Cacti [69].

Since this device is part of a running commercial network,
some constraints in data collection have forced to only mea-
sure the sum of all packets entering and leaving the device,
and it has been possible to extract from such traffic only
incoming VOIP packets, i.e. it has not been possible to extract
packets differentiated for each DSCP. Moreover, it is not
currently possible to apply any type of closed-loop control
on the network device. For the above 2 reasons the control
performance validation in the following sections is not based
on this real traffic dataset.

For the validation procedure we split the dataset into a
training set and a testing set. The training dataset consists
of the first 53 days of data measurements (from 3rd of March
to 19th of April 2020), that corresponds to 15264 samples,
while the testing dataset consists of 3 days of data measure-
ments (from 20th to 22thof April 2020), that corresponds to
864 samples. We use the training set to learn RFs models
and the testing set to validate the models. Figure 6 shows the
prediction on three classes of packets: all packets received,
all packets transmitted, VOIP packets received.

Although the errors grow quite rapidly, such results are
promising towards the experimental direction. The first rea-
son is that we can see how the errors are below the 10% at
the first step, that is the most important prediction in terms of
control, as the first input is the one that is applied during the
control-loop. The second reason is that, as mentioned above,
such results are obtainedwith a limited amount of data: we are
currently extracting a larger dataset and expect much better
performance when more data will be available, e.g. packets
differentiated for each DSCP and this is material for future
works.

B. QUEUES PREDICTIVE MODEL VALIDATION
In this section a comparison of the accuracy of RTs and RFs
predictive models with Artificial Neural Networks is shown.
A neural network is a collection of algorithms that identify
underlying relations in a dataset: it consists of groups of
connected neurons organized in layers, where the connec-
tions between neurons are modeled using weights. The signal
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FIGURE 6. NRMSE of the packets predictive model over a time horizon of
N = 10 (e.g. 50 minutes) with real dataset harvested from Italian internet
provider (Sonicatel S.r.l.) network.

TABLE 1. Identification parameters.

produced with this linear composition is then fed into an
activation function that is in general nonlinear. The reader
is referred to [70] and references therein for more details.
A wide number of tools to build Neural Networks have been
developed during recent years, e.g. [71], [72], [73] just to
mention a few: in this work it is exploited the Deep Learning
Toolbox of Matlab to compare predictive models based on
NNs with the methodology proposed in this paper, based on
ARX combined RTs and RFs. It is considered here just OLD
as the learning dataset and a predictive horizon N = 5.
To identify a RTs (resp. RFs)-based predictive model of

the queues, a RT (resp. RF) is trained for each output and for
each time horizon, with a total of 15 trees (resp. 15 forests
each consisting of 30 trees). The main parameters used for
the identification algorithm (see Section IV and Problem 2)
are summarized in Table 1. In particular, as done with δ in
Equation (7), parameters δx and δd are considered as regres-
sive terms of the state and disturbance that will be only used
to grow the trees and the forests, i.e. σj(k) = σj(x(k), . . . , x
(k − δx),u−(k), d(k), . . . , d(k − δd )). The regressive terms
(δd , δy, δx , δu, δ) and the minimum number of samples for
each tree of each forest (MinLeaf) have been chosen, with a
trial and error approach, considering that very small regres-
sive horizons and very large values for MinLeaf may lead
to inaccurate prediction (as they do not provide sufficient
information on the past) but very large regressive horizons
and very small values forMinLeaf also lead to inaccurate pre-
diction (as they interpolate very old data that might negatively
affect the results and produce overfitting).

FIGURE 7. NRMSE over an horiozn of N = 5 and for each priority queue
for RTs (blue), RFs (red), NN with sigmoids as activation function (yellow)
and NN with hyperbolic tangent as activation function (black).

Regarding specific parameters used for running NN, and
for the sake of a fair comparison, they have been tuned to
obtain the best performance: in particular shallow networks of
2 layers are considered since deeper networks did not improve
the accuracy and, instead, have the negative effect of increas-
ing the sensitivity of the accuracy with respect to the initial
conditions of the weights. The first layer with 20 neurons has
17 input, while the output layer has 3 neurons. Among the
many algorithms for optimizing the weights of the neurons,
the following will be considered: Scaled conjugate gradient
back-propagation described in [74], which provided the best
accuracy with respect to the dataset considered. Regarding
the activation functions, both the classical sigmoid function
(LogSig) and the Hyperbolic tangent sigmoid transfer func-
tion (TanSig) are used, while for the output layer a linear
activation function has been used.

As a metric of the prediction accuracy in Figure 7 is shown
a comparison between the Normalized Root Mean Square
Errors (NRMSE) of the different identification approaches
for each priority class and over a horizon up to N = 5.
Regarding queue 0 (Default) NNs perform better than RTs
and RFs, but in queues 1 (Premium) and 2 (Gold), charac-
terized by higher priority, RFs provide the best performance.
Queue 0 is characterized by a larger NRMSEwith all identifi-
cation techniques: this is due to the fact that, having the lowest
priority, it suffers more packet losses and this can negatively
affect the prediction accuracy. The validation emphasizes
that RTs, even thought very simple and fast to compute,
are often affected by overfitting and variance issues, i.e.
small variations of the training data result in large variations
of the tree structure and, consequently, of the predictions.
Regarding NNs, they provide a less accurate model in 2 cases
over 3. Indeed, by analyzing the dataset distribution, it is
possible to notice a peculiar regular grid pattern that can
be very well approximated by hyper-rectangles: since RTs
and RFs base their prediction on hyper-rectangular dataset
partitions, the better performance with respect to NNs is rea-
sonable. For queue 0, even thought NNs perform better, it is
important to remark that their predictive model is based on
nonlinear functions: this makes the derivedmodel impractical
for real-time control as the corresponding MPC formulation
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FIGURE 8. Comparison between NRMSE of the queues output predictive
models over a time horizon of N = 5, without taking into account in the
model computation the prediction of future disturbances.

FIGURE 9. Comparison between NRMSE of the queues output predictive
models over a time horizon of N = 5, including in the model computation
the knowledge of the disturbance forecast over 4 steps (20 minutes) of
the horiozn.

turns into a nonlinear optimization problem, for which there
is no approach that can guarantee neither a global optimal
solution nor a reasonable computation time. In addition to
this, even obtaining a closed mathematical form of the pre-
dictive function of a Neural Network starting from neurons
and weights is not always an easy task, because of the highly
nonlinear interconnections between the different layers.
Remark 1: For all these reasons it will be only used, from

now on, RF-based models which provide the best choice both
from the accuracy and the computational complexity points of
view.

Figure 8 and Figure 9 plot the NRMSEs respectively with-
out and with prediction of the future disturbances showing
the effect of iterative dataset updates. The assumption of
future disturbance forecast, as expected, providesmuch better
prediction accuracy. The positive effect of updated datasets
is also clear, providing accuracy improvements up to 50%:
as will be also discuss in the next section, the most relevant
prediction accuracy improvement takes place moving from
OLD to 1UP or from 1UP to 2UP, while the 3UP model does
not improve much.
Remark 2: In the emulations shown in this work, data are

generated without major modifications of the traffic daily
pattern: for this reason enriching the dataset converges to a
saturation of the model accuracy, as discussed above. Never-
theless, the capability of the proposed methodology to iter-
atively learn from new data is fundamental as, in real life,

TABLE 2. Constraints in Problem 3.

there are changes in traffic patterns, and model updates are
necessary to maintain the model accuracy and the control
performance.

C. CONTROL PERFORMANCE
In this section a closed-loop control strategy is setup, where
the (Mininet) network emulator and the (RYU) controller run
in two different computers and synchronize/exchange data
using a shared file. Namely, the SW controller module is
ready to be directly used on a real SDN-based network, with
just some minor modifications in the data exchange with
the switch devices. The controller implements the optimal
control strategy using the predictive models validated in the
previous sections: at each time step, it solves Problem 3
and updates the bandwidth of the different queues. The cost
matricesQ and R of Problem 3 respectively weight the output
y(k) of the system (i.e., the packet transmission rate for each
queue) and the control input u(k) (i.e., the bandwidth assigned
to each queue). Since R is required to be positive definite, but
it makes no sense to assign a penalty to the choice of u(k),
the choice has been R = 10−5 · I, where the identity matrix
I multiplies a very small value. Matrix Q = diag(1, 104, 10)
has been assigned as a diagonal matrix, where the choice of
the different diagonal components is related to the priority
level of each queue. N = 5 has been chosen as the predictive
horizon. The remaining constraints of Problem 3, reported
in Table 2, have been selected to provide a queue band-
width value range around the static values used by Telecom
Italia [61] without damaging the QoS or the priority of each
service. Such range is necessary in the optimization problem
in order to allow for a trade-off in terms of performance.
Clearly, the range can not be too large to avoid the risk to
have a bad QoS or a bad priority of each service.

In what follows the control performance, both without and
with forecast of the future disturbances, is validated. The
values of xref,j in the optimization problem represent the
reference values chosen for tracking system output: indeed,
as the objective is to minimize packet losses, it is minimized
the difference between the packets received by the hosts d(k)
and those transmitted by the queues y(k) over the horizon N .
In case there are no prediction of future disturbances, xref,j =
xref = d(k) will be equal to the current disturbance measure-
ment and constant over all the predictive horizon; if instead
there is a prediction of future disturbances, xref,j will be equal
to such forecast. In this section only models OLD, 1UP and
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FIGURE 10. Comparison between Cumulative Packet Losses without
knowledge of disturbance forecast for different models.

FIGURE 11. Comparison between Cumulative Packet Losses with (solid
lines) and without (dashed lines) knowledge of disturbance forecast.
If the disturbance forecast is not available, similar control performance
can be obtained via one update of the model without the knowledge of
disturbance.

2UP are compared, since model 3UP does not provide any
substantial improvement.

Figures 10 and 11 plot the cumulative packet losses respec-
tively without and with prediction of the future disturbances.
The packet loss rate when the control is performed exploiting
the OLD model and without disturbance forecast is around
123% larger than all other cases (and, of course, incompa-
rably smaller than the static control case [61]). It is also
clear from the plots that 1UP and 2UP without disturbance
forecast and OLD, 1UP and 2UP with disturbance forecast
provide very similar performance. Authors’ interpretation
is that OLD models without disturbance forecast have not
enough information to provide good accuracy, but they can be
easily improved either with a dataset update (which however
requires 10 days for 1UP and 20 days for 2UP of additional
data) or using a disturbance model. This means that the inclu-
sion of disturbances prediction within the prediction model
calculation provides optimal control performances even with
relatively small training datasets, which supports the use of
this type of control in real contexts.

Figure 12 illustrates the bandwidth savings showing the
recurrence of the different bandwidth usage during the simu-
lations, respectively without and with prediction of the future
disturbances. Without disturbance forecast it is exploited up
to 25MB/s using the OLDmodel, while it is exploited at most
22MB/s and 21MB/s respectively for models 1UP and 2UP.

FIGURE 12. Bandwidth saving comparison without (a) and with
(b) prediction of the future disturbance. Each slot represent the
recurrence of the different bandwidth usage during the simulations.

FIGURE 13. Red line shows incoming traffic, blue line shows sum of the
packets sent from the queues. Their difference represents packet losses.
The approach based on static queues is applied on the first 400th

samples (implemented as in [61]): many packet losses are generated due
to queues saturation. Then MPC is activated: packet losses are drastically
reduced.

Using disturbance forecast, as expected, even less bandwidth
is used.

In conclusion to this section, we show the gap between
priority queueing control performance of MPC, obtained
solving Problem 3 and based on the proposed RFs predic-
tive model, with the static control policy adopted by service
provider networks in [61]. Figure 13 highlights the dramatic
improvement of MPC with respect to static control: the red
line shows the incoming traffic, the blue line shows the sum
of the packets sent from the queues, and their difference
represents packet losses. Until the 400th sample static control
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has been implemented as in [61], generating many packet
losses due to queues saturation. From that sample to the end
of the experimentation MPC is implemented using RF-based
model, and the packet loss is drastically reduced: quantita-
tively, after 700 sampling periods the cumulative number of
dropped packets with the static policy is about 5.5·108 versus
6.6 ·106 with MPC, with a decrease of 5.434 ·108 lost packets
(−88%).

Even thought the improvement of the MPC strategy with
respect to the static control is not surprising, much better
performance can be obtained in real networks just collecting
historical data and applying a controller that can be directly
implemented using the accurate models of the proposed iden-
tification algorithms and Quadratic Programming standard
solvers.

VI. CONCLUSION
In this paper a methodology to derive mathematical mod-
els for priority queueing in Software Defined Networks is
presented and implemented, with the final aim of enabling
the application of advanced optimization control techniques,
such asMPC, in this context. The approach has been validated
over the Mininet packet-level network emulator framework
and using real data measured from the network of an Ital-
ian Internet Service Provider (Sonicatel s.r.l.). The control
code has been implemented in the RYU SW environment:
this guarantees that our technique is directly applicable to
a real SDN network without any need of SW integration.
The validation results have shown good performance in terms
of prediction accuracy both for the incoming traffic flow
and for the input/output behavior of a switch device in the
proposed SDN-based setup. Such results have also provided
promising insights on the potential impact of data-driven
predictive models combined with MPC in terms of packet
losses reduction and bandwidth savings in real networks.
In future work, we plan to validate the control performance
over a real network instead of using the Mininet emulator.
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