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ABSTRACT A compact ultra-wideband printed ridge gap waveguide directional couplers for
millimeter-wave applications are presented in this paper. A multi-layer coupling technique between two
resonant patches is adopted to achieve a wider operating bandwidth with better amplitude and phase balance
compared to single-layer technology. For this purpose, a systematic design procedure is deployed to achieve
several coupling values in the range of 3-10 dB over a wide frequency bandwidth centered at 30 GHz. A 3-dB
hybrid coupler is fabricated and measured, where a bandwidth of 12 GHz (about 38 % fractional bandwidth)
from 25GHz to 37GHz is achieved. In addition, the phase balance is 90o± 5o over 38% fractional bandwidth
with an amplitude balance of 3.4 ± 0.5 dB over a 26.5% centered at 30 GHz. The proposed couplers with
superior characteristics such as compactness, low loss, and low dispersion are considered a good candidate
for millimeter-wave applications such as the fifth-generation (5G) wireless communications.

INDEX TERMS Hybrid coupler, printed ridge gap waveguide, multilayered structure, proximity coupling,
resonating patches, millimeter waves, fifth-generation (5G) cellular.

I. INTRODUCTION
T here is a growing interest in the fifth-generation (5G) of
wireless communication systems as it is considered one of
the most promising technology in the near future. This new
technology can accommodate a large number of subscribers
with small latency time, high data rate, and reliable connectiv-
ity [1]. 5Gwill use spectrum in the current frequency range of
Long-Term Evolution (LTE) (600 MHz to 6 GHz) and also in
millimeter-wave (mm-wave) bands (24-86 GHz). However,
the implementation of the 5G communication systems is
limited due to the lack of high-performance components,
especially in the millimeter-wave range. Furthermore, 5G
systems will need smart subsystems like beam-switching to
improve the reliability of communication links [2].
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The Beam-switching network is realized through the
integration of different components including transitions,
crossovers, couplers, and phase shifters [3], [4]. Among
all these components, a directional coupler is consid-
ered the essential passive microwave component of any
millimeter-wave system for getting a sample of the input
power. Directional couplers are commonly designed using
multi-layer planar technology where the input signals are
coupled between the lines through a non-resonant aperture
or proximity coupling of resonant patches [5], [6]. They can
be designed and implemented using either traditional technol-
ogy such as microstrip line [7], [8] or modern guiding struc-
tures, such as substrate integrated waveguide (SIW) [9], [10],
[11]. These guiding structure technologies have well-known
limitations including large material and radiation losses, that
limit their operation at mm-wave frequencies.

Recently, the ridge gap waveguide (RGW) technology
has emerged as an alternative technology, which overcomes
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TABLE 1. Performance comparison between hYBRID rgw coupler configurations.

major flaws in excising technologies [12], [13], [14], [15],
[16], [17], [18], [19]. The gap waveguide technology relies
on using two parallel layers, where the upper plate is a
perfect electric conductor (PEC), and the lower is designed
as a regular periodic surface acting like an artificial mag-
netic conductor (AMC) [20]. Guiding structures in the gap
waveguide technology is realized by inserting a ridge, groove,
or microstrip line into the AMC layer [21], [22]. In this way,
a propagatingwave is confined in the air gap between the PEC
layer and the provided guiding element in the AMC layer.
Therefore, gap waveguide structures are realized without any
contact between the two layers. Hence, they are considered
a cost-effective manufacturing process and fully open struc-
tures to improve heat transfer. In addition, the dielectric losses
are minimal as signals are propagating inside an air gap
between PEC and a ridge introduced into the AMC. Due to
these advantages, the ridge gap waveguide technology has
been proven to be very promising for directional coupler
design, as many well-functioning measured coupler configu-
rations have been reported in [23], [24], [25], [26], [27], [28],
[29], and [30].

Many hybrid directional coupler configurations imple-
mented based on metal RGW have been presented in the
literature [23], [24]. One featured type of hybrid coupler is
based on the branch line configuration, which achieves a
low loss for x-band applications [23]. However, a narrow
bandwidth, large size, and high fabrication cost are the main
disadvantages of this coupler. Another technique for metal
RGW coupler is to deploy a rectangular junction with capac-
itive domes [24]. Although this technique achieves a compact
size and low insertion loss, it has a narrow bandwidth. Groove
gap waveguide (GW) is considered among the modern guid-
ing structure that is used to implement a hybrid coupler,
which is based on the continuous coupling between adjacent
grooves [25]. Although this configuration exhibited a low
insertion loss and high isolation, it has a moderate bandwidth,
and large size, and its propagating mode is TE, which has
more dispersion. It is worth mentioning that a complicated
fabrication process is mandatory to realize the aforemen-
tioned couplers since a high precision Computer numerical
control (CNC) machine is mandatory to realize them, which

increases the overall cost of this type of directional cou-
plers. Therefore, several hybrid coupler configurations have
been presented based on printed ridge gap waveguide [26],
[27], [28], [29], where a low-cost conventional printed cir-
cuit board (PCB) fabrication process is used to fabricate
them. Single-layer technology has been deployed to imple-
ment PRGW coupler, where several configurations have been
reported in the literature [26], [27], [29]. In [26], the first
single-layer PRGW hybrid coupler has been proposed. Even
though it has a compact size, a narrow bandwidth with a large
amplitude imbalance is achieved. An improved design based
on increasing the size of the rectangular coupling section has
been presented to enhance the bandwidth [27]; however, the
amplitude imbalanced bandwidth is narrow. Another single
layer PRGW coupler formed by a square patch with one
diagonal slot is proposed in [29]. Although this coupler has
a compact size, a narrow bandwidth with a large amplitude
balance is achieved. Most of the previously discussed articles
are based on single-layer PRGW technology, where a narrow
bandwidth and large amplitude imbalance are the common
disadvantages of these configurations. To improve the ampli-
tude imbalance, a multi-layer configuration has been intro-
duced in [30]. Although this coupler provides a flat 3-dB
coupling, it still has a narrow bandwidth and a large size,
which limits its deployment in practical applications. Based
on the authors’ knowledge, the design of PRGW hybrid cou-
plers having a wide bandwidth and compact size with small
amplitude and phase imbalance has not been addressed yet in
the literature.

This paper presents a compact ultra-wideband millimeter-
wave quadrature hybrid coupler using a printed ridge gap
waveguide for 5G communication applications centered
at 30 GHz. The main contribution and novelty of this work
is the introduction of a new coupling mechanism in PRGW
technology that provides a flat 3-dB forward coupling with
superior electrical characteristics in the mm-wave frequency
range compared with the published ones in the literature,
where their performances are discussed and summarized in
Table 1. Furthermore, the analysis and systematic design
procedure are provided, where a class of wideband directional
couplers achieving different coupling levels in the range
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FIGURE 1. Geometry of the proposed PRGW directional coupler.

of 3-10 dB is proposed. The proposed couplers are charac-
terized by their compact size allowing the integration with
other components and reducing the total cost of the system.
In addition, the proposed 3 dB coupler has a 38% fractional
bandwidth with a low phase and amplitude imbalance capa-
ble of covering the operating bandwidth of 5G applications
at 30 GHz.

This paper is organized as follows: Section II presents the
directional coupler configuration. This is followed by a direc-
tional coupler analysis and design procedure in Section III.
In Section IV, the measured and simulation results of the
proposed coupler are presented. Finally, a summary of the
paper’s findings and conclusion is given in Section IV.

II. DIRECTIONAL COUPLER CONFIGURATION
The proposed coupler implementation based on the printed
ridge gap waveguide (PRGW) technology is shown in Fig. 1.
The proposed PRGW directional coupler design is based on
multi-layer proximity coupling of resonant patches through a
coupling slot, where more details on the coupling patch and
slot are shown in Fig. 2(a). The propose structure is designed
using a dielectric substrate Rogers RT6002 with thickness
Hs = 0.762 mm, permittivity εr = 2.94, and dielectric loss
tan δ = 0.0012. The cell design and simulation process as
well as the related realized bandwidth have been covered
in numerous articles and theses [40], [41]. Periodic bound-
ary conditions are used to model the whole EBG unit cell
structure as shown in Fig. 3(a). The described design process
makes getting the cell dimensions quite simple, where the
geometrical parameters of the unit cell are designed to obtain
a wide bandgap that covers the frequency range 22-40 GHz
as shown in Fig. 3(b). In this case, the height of the air gap
is Ha = 0.254 mm, while the dimensions of the mushroom
inclusions are the following: the period between unit cells d
= 1.62 mm, the lateral dimension W = 1.42 mm, and via
radius Rv = 0.19 mm. The proposed coupler design simply
consists of two elliptical patches facing each other on the
top and bottom layers and connected to the input and output
PRGW lines. The proximity coupling between these patches

FIGURE 2. Geometry of the proposed PRGW directional coupler. (a) Top
view of coupling patch and slot layers. (b) MSL to PRGW transition.
(c) Cross-section view.

is achieved by cutting an elliptical slot in both ground planes
of a thin RT6002 substrate withHg = 0.13 mm. The coupling
slot is surrounded by vias to confine the field on the slot.
The geometric parameters of coupler elliptical patches are
the width Wp and the length Lp, while the elliptical coupling
aperture has a width and length of Ws and Ls, respectively.
The width of the PRGW lines at the top and bottom layers
WR = 1.5 mm is chosen to give an input impedance of
50 �. To experimentally evaluate the directional coupler,
a microstrip line (MSL) to PRGW transition is deployed and
printed on Rogers RT6002 substrate with a thickness ofHt =
0.254 mm as shown in Fig. 2(b).

III. DIRECTIONAL COUPLER ANALYSIS AND DESIGN
PROCEDURE
Due to the reciprocal and symmetrical nature of the proposed
coupler, the even and odd mode analysis is deployed to calcu-
late the even- and odd-mode characteristic impedances [31],
[32], [33], [35]. The even and odd mode analysis of the
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FIGURE 3. Unit cell design and simulation response. (a) Unit cell
simulation setup. (b) Dispersion diagram of PRGW line.

FIGURE 4. Electric field lines for odd- and even-mode excitation.

equivalent rectangular-shaped directional couplers imple-
mented using traditional techniques such as microstrip lines
have been discussed in the literature [36], while either the
implementation or the analysis of such coupler realized using
PRGW technology has not been addressed yet. As a result,
in the following subsections, the even- and odd-mode charac-
teristics in the coupling region will be evaluated. This gives
the initial dimensions for a class of directional couplers capa-
ble of providing coupling between 3-10 dB with a reduction
in the design time frame.

A. EVEN AND ODD MODE ANALYSIS
Fig. 2(c) shows the cross-sectional view for the proposed
patch coupler, where AA′ is the symmetry plane used for the
even/oddmode analysis. For oddmode, a perfect electric con-
ductor (PEC) boundary condition is applied at AA′ as shown
in Fig. 4. It can be observed that the existence of the slot in
the common ground plane results in odd mode characteristic
impedance Zodd that depends only on the coupling patch
width Wp. In addition, the odd mode operation and electric
filed distributions are similar to those for the printed ridge
gap waveguide. A perfect magnetic conductor (PMC) bound-
ary condition is applied at AA′ to calculate the even mode

FIGURE 5. Electric and magnetic field illustration for the even mode
impedance calculation.

characteristic impedance Zeven, which is affected by both
coupling patch width Wp and coupling slot width Ws. Due
to the difficulty to obtain closed-form formulas for even and
odd characteristic impedances of the PRGW configurations
shown in Fig. 4, the CST Microwave Studio simulator [36]
is used to calculate both Zodd and Zeven through applying a
magnetic wall and electric wall as a boundary condition at
the plane of symmetry AA′. Figure 5 demonstrate the electric
and magnetic field distribution, where a Z = V/I model
to calculate the characteristics impedance is used, where
V =

∫
Eydy and I =

∫
Hxdx are the voltage and current

in the transverse plane defined by x − y plane. Several E
and H-field probes at the center operating frequency are dis-
tributed along the PRGW coupling section, where the fields
are integrated by using the CST post-processing yields to
the desired impedances. Figs. 6(a) and 6(b) show the even
and odd mode characteristic impedances for various coupling
patch width Wp and slot width Ws. These main parameters
Wp andWs can be adjusted to guarantee a backward coupling
behavior. This can be achieved for any value of the coupling
patch and slot lengths when:

Zo =
√
ZevenZodd (1)

where, Zo is the input line impedance, which is plotted
for various coupling patch width Wp and slot width Ws in
Fig. 6(c), where its calculations give an initial step to design
the matching transformers.

For the maximum amount of coupling between port 1 and
port 3, the lengths of both the coupling patch Lp and slot Ls
are selected to equal the quarter free space wavelength at the
center operating frequency 30GHz [34], [35], [36], [37], [38].
Hence, the coupling value can be related to the even and odd
impedance as follow [31]:

CdB = −20log10
Zeven − Zodd
Zeven + Zodd

(2)

where, Fig. 7 shows the coupling value for various coupling
patch widthWp and slot widthWs.

B. DESIGN PROCEDURE
Based on the even and odd analysis discussed in the previous
subsection, the design procedure for the proposed coupler
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TABLE 2. Final design values of the proposed PRGW directional couplers.

FIGURE 6. Results of even and odd analysis. (a) Even mode impedance.
(b) Odd mode impedance. (c) Line impedance.

FIGURE 7. Coupling results of even and odd analysis.

can be described s shown in Fig. 8. In this work, the line
impedance Zo is selected to be larger than 50 � in order to
allow deploying impedance transformers to match Zo to a
50� input PRGW line, as shown in Fig.2. Although the trans-

FIGURE 8. Proposed coupler design procedure.

former section increases the size of the design, it provides
a degree of freedom to achieve deep matching and isolation
levels. Table 2 shows the values of even- and odd-mode
characteristic impedances and the coupling section dimen-
sions of 3 dB, 6 dB, and 10 dB PRGW directional couplers,
where the corresponding simulated S-parameters are plotted
in Figs.9(a),9(b), and 9(c). The proposed couplers achieved a
deep matching level and isolation below −15 dB, which can
be improved by using more than two matching transformers
that will increase the size correspondingly. On the other hand,
the proposed 6 dB and 10 dB couplers achieved more than
10 dB directivity over the whole operating frequency band.
In addition, the proposed couplers provide a flat coupling
response with a variation of ± 0.5 dB over the operating
frequency bandwidth. These results emphasize the validity of
the proposed design procedure that achieved a class of PRGW
directional couplers having a wide bandwidth, high isolation
with small amplitude imbalance.

IV. EXPERIMENTAL VALIDATION
The performance of the proposed PRGW directional cou-
plers is experimentally validated through the fabrication and
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FIGURE 9. Simulated S-parameter for the proposed PRGW directional
couplers. (a) 3-dB directional coupler. (b) 6-dB directional coupler.
(c) 10-dB directional coupler.

measurement of a 3-dB PRGW hybrid coupler, where the
prototype is shown in Fig. 10. The detailed dimensions of the
proposed coupler are listed in Table 2. The fabricated parts

FIGURE 10. Photograph of fabricated coupler prototypes.

FIGURE 11. Comparison between simulated and measured results of the
proposed 3dB PRGW quadrature hybrid coupler. (a) S-parameters.
(b) Amplitude and phase imbalance.

of the proposed PRGW directional coupler are assembled
using epoxy at high temperature and pressure [39]. A TRL
calibration kit is deployed to eliminate the effect of the
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connectors and microstrip line transition for accurate perfor-
mance evaluation of the proposed coupler. The S-parameters
are measured using the (N52271A) PNA network, where the
comparison between the measured and simulated results is
shown in Fig. 11(a). A good agreement between themeasured
and simulated S-parameters can be observed, where a relative
bandwidth of 38% is achieved at 30 GHz. However, it can
be noticed that there is a mismatch in the measured results
from 25 to 26 GHz, which is mainly related to the fabrication
tolerance and the glue used to assemble the fabricated lay-
ers. Both amplitude and phase imbalance are calculated and
presented in Fig. 11(b). It can be observed that the proposed
coupler achieves a quadrature phase between the output ports
with± 5o over the whole operating bandwidth. Furthermore,
the through and the coupled port amplitudes are balanced
within ±0.5 dB from 26 GHz to 34 GHz.

V. CONCLUSION
In this paper, a novel class of ultra-wideband printed ridge gap
waveguide directional couplers for millimeter-wave appli-
cations has been proposed. A systematic design procedure
has been deployed for the design of the proposed PRGW
directional couplers with coupling values in the range of
3-10 dB over a wide frequency bandwidth centered
at 30 GHz. The proposed couplers have been implemented
based on a multi-layer technique between two resonant
patches coupled through a slot in a common ground plane.
It has been validated that the proposed multi-layer tech-
nique can achieve better performance in terms of bandwidth,
phase, and amplitude balance compared with other couplers
implemented with single-layer technology. A prototype of
a 3-dB hybrid directional coupler has been fabricated and
measured. The obtained results have shown that the proposed
coupler design has achieved a compact size, low loss, and
relative bandwidth of 38% at 30 GHz. In addition, a good
amplitude (3.4 ± 0.5 dB) and phase balance (90o ± 5o) have
been achieved over the operating bandwidth. The proposed
directional coupler can be considered a good candidate for
the implementation of millimeter ultra-wide bandwidth beam
switching networks for 5G applications.
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