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ABSTRACT Smart Energy Applications are particularly impacting, especially due to energy resource
scarcity and its high associated costs. Smart management of energy consumption derives both from the user
lifestyle, in terms of efficient and responsible behaviors, and from automatic algorithms that control and
counteract energy waste and inefficient management. Focusing the attention on the latter, the development
of methodologies and well-working techniques to monitor and optimize consumption often requires an
important effort in long measurement campaigns to get raw data to work with. Whenever this should be
too much expensive or proper instrumentation is unavailable, public datasets could solve the problem.
The current literature review on the dataset availability showed a large presence of information, especially
related to electrical energy consumption. Nevertheless, several limitations affect them, from the low number
of calculated electrical parameters (i.e. 4-5 in most cases) to short analysis periods, passing by the lack
of detailed frequency domain information or poor consumption habit transitions analysis. Accordingly,
this work aims to overcome current dataset limitations, by proposing a real-measurement based simulated
dataset, extracting more than 400 discriminative electrical parameters on 36 different home appliances,
discussing preliminary acquisition set-ups, simulation process, extracted electrical parameters and examples
of applicability to smart energy applications. To provide a data quality index, a validation procedure has
also been carried out, showing how simulated data match real acquisition with a reference measurement
instrument. The produced dataset is available for downloading and analysis in public free access and its
repository link is provided in the reference section.

INDEX TERMS Smart energy, dataset, energy consumption simulator, smart home, load profiling,
non-intrusive load monitoring, energy management systems.

I. INTRODUCTION
Applications related to the smart energy paradigm are
demanding novel devices and techniques for satisfying the
increasing issues of more efficient and sustainable use of
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energy. Nowadays, these applications are attracting more and
more interest, especially due to energy and ecological transi-
tions, whose goals are the reduction of CO2 emissions and the
increase of energy efficiency. As the latter increases, interna-
tional treaties set limits on emissions and global temperature
rise that must be met, such as those defined at COP26 [1].
As an example, in Europe, the development and use of
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intelligent measurement systems and techniques has been
boosted by European directives in recent years. In 2006, the
Directive 2006/32/EC [2] identified the use of intelligent
metering systems as one of the tools to improve energy effi-
ciency through suitable algorithms and techniques. In 2009,
the Electricity Directive 2009/72/EC [3] declared the obliga-
tion for the Member States to ensure the adoption of smart
metering systems. Finally, in 2012 the European Energy Effi-
ciency Directive 2012/27/EU [4] reaffirmed the importance
of using smart meters, with strict requirements for the Mem-
ber States regarding both metering and billing. In this new
paradigm, in which energy efficiency and the development of
new services based on the measurement of energy parameters
are demanding data, the smart meter assumes a key role.
On one hand, it accomplishes the primary task of monitor-
ing energy consumption. On the other hand, it could provide
new quantities useful for modern smart energy applications.
Among these quantities we can mention those related to the
electrical signature of a device, the power quality, and to the
use of energy trends over time, to cite a few, which could
enable the implementation of new high-value services for
energy and plants management. In other words, the smart
meter can be the key-enabling technology to implement mod-
ern algorithms and emerging techniques in the field of smart
energy applications such as loads defragmentation through
the non-intrusive load monitoring (i.e NILM), digital twin of
the equipment, clustering of devices and predictive detection
and diagnosis of faults on both plants and grids. More in-
depth, the above-mentioned techniques are generally based
on machine learning algorithms or on optimization tech-
niques exploiting electrical parameters related to the elec-
trical signature of a load and/or Power Quality parameters.
For example, considering the development of NILM solutions
that is involving many researchers in the scientific commu-
nity, some algorithms are based on the use of Markovian
models (HMM) and their variants [5], [6] [7], while others
prefer signal processing techniques using graphs (Graph Sig-
nal Processing) [8], [9] or Combinatorial Optimization [10].
In recent years, other Machine Learning techniques have
also been applied for non-intrusive monitoring, such as
Multilayer Perceptron (MLP) [11], Convolutional Neural
Networks (CNN) [12], Deep Learning [13], [14], Recur-
rent Neural Network (RNN) [15], Extreme Learning
Machine [16], and Bayes Classifier [17]. Whatever the fol-
lowed approach, all these techniques require two fundamental
steps to be implemented to reliable train and tune the algo-
rithms on the considered case study: a) the accurate mea-
surement of the energy consumption and parameters related
to the power signatures and other parameters relying on the
involved devices, b) the monitoring for a time interval wide
enough for capturing an adequate amount of data. As for the
first step a), it is crucial since it strictly affects the qual-
ity and the quantity of the collected information. It is very
important to have energy measurements characterized by low
uncertainties and, at the same time, to provide several energy
parameters, such as the harmonic and inter-harmonic power,

current and voltage values, the total harmonic distortion, the
power factor, etc. that can characterize how a device, or a
group of devices, is consuming the electrical energy. As for
b), the monitoring for wide time intervals is very important
not only to provide big data to the smart energy algorithms but
also to let the algorithms work on a few operating conditions
able to give reliable information on the monitored process or
equipment. For example, to optimize the energy consumption
of a family it is important to monitor the consumption habits
considering several days and the effects of seasonality. As a
further example, such as diagnosis or predictive maintenance
of devices and grids, to predict faults on equipment, it is
important to have a reliable footprint of its energy status con-
sidering all the possible operating conditions of the involved
device. Since the above-mentioned requirements impose to
perform very expensive and time-consuming measurement
campaigns, in the last years some datasets have been pro-
posed in the literature with the aim of facilitating the develop-
ment of new algorithms addressing the cited emerging needs.
Many are the papers that propose the use of a dataset to
train or tune smart energy algorithms. Examples for NILM
can be found in [18], load profiling can be found in [19]
and predictive maintenance can be found in [20]. In litera-
ture two different types of datasets can be found: real [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31] and
simulated datasets [32], [33], [34], [35]. In particular, real
datasets are composed of data, collected on the field, while
simulated ones are obtained through suitable software simula-
tors. However, these datasets do not meet all the requirements
for effective data usage, i.e. the limited amount of saved elec-
trical parameters, data variability, seasonality, closeness to
real scenarios, and definition of the current operating states
are just some of the missing or not complete information
that makes them poorly suitable for modern Smart Energy
Applications. To overcome such limitations, in this paper we
present an innovative energy dataset. The main advantages of
the proposal are: (i) data variability, in terms of the operating
states of the electrical loads and the adoption of appropriate
consumption models; (ii) the total number of available elec-
trical parameters (433 in our case) enormously larger than
the above-cited datasets, as the full analysis of frequency
behaviors and harmonic computations; (iii) the seasonality
of the data. Furthermore, the presented dataset is a hybrid
solution between the simulated datasets and the ones based
on real data. Indeed, it is generated through simulation, start-
ing by real measurements, and customized by means of an
effective computed variability model. Finally, it has been val-
idated with further a-posteriori measurement campaign on
real loads. The developed dataset, namely eLAMI, is made
publicly available to the whole research community at [36]
(download here) through a modular structure, allowing cus-
tomized downloads and analyses.

The structure of the paper is the following: related
works about some different public datasets is reported in
Section II; Section III describes the design of dataset gen-
erations. The results of the proposed dataset are reported in
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TABLE 1. Main characteristics of some public dataset based on real data.

Section IV and finally in Section V, final considerations are
provided.

II. RELATED WORKS
The growing demand of new monitoring devices with smart
algorithm and technique has led to the development of several
dataset capable to tune the performance. In Tab. 1, some
examples of public datasets with data collected from the field
are shown; they differ for the number of devices, number
and type of provided electrical parameters and length. In the
following they are briefly described.
• AMPds [21] The Almanac of Minutely Power dataset
is a public dataset, published in 2013, containing 1 year
of collected data of residential appliances from a single
household in Canada. This first version contains mea-
surements of electricity, water and natural gas at one-
minute intervals, for a total of 525600 readings per year
per meter.

• AMPds2 [22] This second version of the AMPds dataset
differs from the previous one only in the number of
total readings, 1051200, corresponding to 2 years of
acquisition.

• BLUED [23] The Building-level fully labeled dataset
for electricity disaggregation was released in 2012 by
1 week electricity data from 1 building in the USA. This
dataset contains not only the steady-state, but also the
state transition of each appliance.

• Dataport [24] The Dataport database was created by
Pecan Street Inc and published in 2015. It contains elec-
tricity data from 722 houses and commercial buildings
across different cities in the USA. As it has a sampling
period of 1 min for aggregate and appliance signal, this
is considered a low frequency dataset.

• DRED [25] The Dutch Residential Energy Dataset was
released in 2015 and contains energy consumption data
from a household in Netherlands, with a total duration
over six months. It includes electricity measurements for
the aggregate and submetered signal of each device.

• ECO [26] Electricity Consumption and Occupancy
dataset was collected in 6 Swiss households over a
period of 8 months. It contains data recordings of active
power, voltage and current at low frequency sampling
rate.

• ENERTALK [27] The ENERTALK dataset was created
in Korea from 22 houses with a total period of 1714 days
and it was published in 2019. It provides active and
reactive power measurements (both aggregate and each
device), with a sampling frequency of 15 Hz.

• iAWE [28] Indian Dataset for Ambient Water and
Energy was released in 2013, from recordings electric-
ity, water and ambient data in a house in New Delhi,
for a total duration of 73 days. The electrical data were
recorded with a sampling period from 1 to 6 seconds
over 63 electrical appliances.

• REDD [29] Reference Energy Disaggregation Dataset
has been published in 2011. It contains 119 days of col-
lected data from 6 households in the USA and includes
both high and low frequency recordings.

• REFIT [30] The REFIT Electrical Load Measurements
dataset includes cleaned electrical consumption data
from 20 households in the UK from 2 years of record-
ings in 2016. It contains electrical data with a sampling
period of 8 s and active power as only parameter.

• UK-DALE [31] UK-Domestic Appliance Level Elec-
tricity was published in 2015 and it contains 2247 days
of data by 5 residential buildings in the UK. Just like
REDD, it reports high and low-frequency data and all
appliances are sub-metered.

Collecting data to build a dataset is a fairly complex pro-
cess. As long measurement campaigns have to be carried out,
the process requires a considerable amount of time, effort,
and instrumentation to measure and record data. One of the
main limitations of the real datasets in the literature today is
the small number of reported electrical parameters (at most P,
Q, S, V, I).

This could represent a limitation for algorithms in the field
of Smart Energy. In particular, considering methods for load
profiling, NILM and fault or predictive diagnosis, the optimal
choice of needed parameters is still a research topic: therefore
the availability of a large number of electrical quantities, able
to define the complete ‘‘electrical signature of the load’’,
could help in performing an accurate selection.

Furthermore, real datasets are often characterized by miss-
ing data due to several problems that may occur during
the measurement campaigns, time mismatching between
individual load data and aggregate data or possible errors
due to malfunctioning and inaccuracy of the adopted
instrumentation.

The absence of information about current operating states
of each device can also be a limitation for these datasets,
e.g. in the case of supervised artificial intelligence algorithm
training or in the definition of consumption quality as well as
system efficiency indices. A solution to the aforementioned
problems could be the simulation of data.

A simulated dataset does not require lengthy monitoring
campaigns, saving time, costs, and instrumentation. All these
advantages are provided as long as the simulation process
is correctly implemented, which is not trivial in terms of
suitable modeling and computational costs.
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TABLE 2. Main characteristics of some public dataset based on simulated
data.

In literature, some simulated datasets are presented as
reported in Tab. 2 and discussed below.

• AMBAL [32] Automated model builder for appliance
load dataset was published in 2017 and it comprises
14 domestic loads at a sampling rate of 1 Hz for a time
duration of one day. The AMBAL dataset allows the
user to buildmodels using real energy consumption data,
based on arameterized signature sequences. The main
operational phase of the AMBAL dataset includes pre-
processing, extraction of active segments, segmentation,
and model fitting.

• SHED [33] Simulated high-frequency energy disaggre-
gation dataset, released in 2018. It is a commercial
dataset containing the power consumption of 66 build-
ings at a sampling frequency of 1/30 Hz. The data is gen-
erated synthetically and based on modeling the current
flowing through an electrical device and is matched with
the real model of electrical devices.

• SynD [34] SynD is a synthetic dataset that was pub-
lished in 2020 and simulates readings of electricity con-
sumption for a house for 180 days. The measurements
campaign was based on the monitoring of 21 different
residential devices from 2 households in Austria. In par-
ticular, the consumption patterns were observed, the
absorption profiles of each device were then extracted
and finally the dataset was generated.

• SmartSim [35] A Device Accurate Smart Home Sim-
ulator for Energy Analytics was released in 2016 and
is a simulated dataset of 1 week total duration. It uses
the energy modelling of individual devices to build the
final dataset with the aim of generating accurate domes-
tic energy traces that are qualitatively and quantitatively
similar to real energy data traces.

Despite the large amount of simulated datasets in the lit-
erature, most of them still suffer some of the aforementioned
problems, as limited number of saved electrical parameters,
absence of harmonic and power quality information of sea-
sonality, monthly, daily variability, as well as variability of
operating states; furthermore, they often provide a low likeli-
hood value with respect to real scenario profiles.

III. DESIGN OF DATASET GENERATION
In this section, the design process of the eLAMI (electrical
Loads Acquisition for Monitoring Instruments) dataset and
its implementation is described. At first, main requirements
that a modern energy dataset must have are discussed. Issues
related to the the choice of a simulator and possible solution

are then faced. Chosen electrical loads, along with consump-
tion patterns and the simulator description close the section.

A. REQUIREMENTS
A modern energy dataset for monitoring and investigating
consumers’ energy behaviors must have specific character-
istics. The main requirements are:

a) High number of saved electrical parameters, both in
time and frequency domain;

b) High likelihood to real scenario profiles;
c) Faithful representation of the devices;
d) Considering the metrological performance of com-

monly used energy smart meters;
e) Presence of Power Quality and harmonic data;
f) Appropriate observation times congruent with the

objectives;
g) Current operating state of the monitored device.

As regards a) having a large number of electrical param-
eters allows for a better representation of the electrical sig-
nature of the load. In this way, for example, as also proved
in Section IV, energy efficiency algorithms can drastically
increase their performance. Therefore, in the eLAMI dataset,
433 electrical parameters are calculated at each measure-
ment interval. Furthermore, in our simulated dataset we try
to represent an electrical scenario as faithful as possible to
reality. Specifically, reported consumptions are related to a
2-person-household.

Having a good match between the simulated scenario and
the real one, simply summarized as likelihood, is crucial as it
offers the possibility, for instance, of training AI algorithms
on consistent data, as mentioned in b). This avoids possible
mismatches between performance obtained in simulation and
real scenarios.

As said in c) it is necessary to take into account both how
the electrical energy is consumed, but also how the individual
load behaves in terms of electrical operation in reality. In par-
ticular, in our case we have chosen to represent equipment
as ’state machines’, simulating the corresponding nominal
operating states. We consider this choice to be valid, having
chosen to simulate the assumed scenario under permanent
regime. Of course, in reality, between different ’operating
states’ there are transients that can lead tomore or lessmarked
variations in electrical quantities. As regards d), furthermore,
these variations can also be related to the natural duty cycle of
the equipment or be due to the uncertainty of the monitoring
system used [10]. eLAMI reports this variability thanks to
the mathematical model for generating absorption profiles
implemented.

As said in e) today, given the widespread use of electronic
equipment, we consider the study of the harmonic behavior of
electrical loads to be of great interest. For example, the analy-
sis of the frequency spectra of voltage and current absorption
of devices can provide useful information on the health of
loads and in general of the entire system, also in terms of the
quality of the power supply system (Power Quality). eLAMI
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in this case reports a considerable amount of harmonic and
quality parameters.

With regard to the observation time of the monitored sys-
tem f), it must be chosen in such a way as to meet the
objectives of the applications for which it was hypothesized.
Classification, clustering, NILM, Load Profiling, and energy
retrofit algorithms in most cases aim at analyzing the system
over sufficiently long time horizons. In our case, eLAMI
refers to a time horizon of one year. As regards, g), an oper-
ating state of the monitored device can be defined as a
steady-state voltage and current joint profile, whose avail-
ability allows the dataset user to evaluate the proper load
working cycle and extract electrical signature quality indices
and detecting possible incoming anomalies.

Indeed, referring to ‘‘electrical signature’’, it not only deals
with the typical quantities (P, Q, IRMS, etc.) but with the entire
frequency spectrum of voltage and current profiles absorbed
by the electrical load. Such information are therefore also
state-related, i.e. they can change for each operating state of
the load.

Therefore, the proposed simulatormust be designed to gen-
erate voltage and current profiles under all possible load states
tested and for a predefined simulated time, in order to get the
spectrum information.

An issue raised at this stage is related to the way the fre-
quency spectrum could be faithfully simulated. The approach
here followed is to make measurements on real loads under
different tested operating states and adopt acquired informa-
tion as a basis to generate simulated profiles.

Based on the knowledge of these quantities and the known
usage habits of the electrical loads, it is possible to create the
dataset by using the acquired information.

Any accidental failures or malfunctions that might occur
in the real electrical system are neglected in the current status
of the simulator. This is reasonable as these are very rare
events in reality that, when comparedwith the simulation time
frame, can be neglected. The simulator modular structure
would eventually permit to add such situations in a fairly easy
fashion.

B. ELECTRICAL LOADS DESCRIPTION
According to the aforementioned requirements of a new sim-
ulated energy consumption dataset for the residential appli-
ances with innovative saved electrical parameters, namely
eLAMI, has been developed. The choice of simulating a
residential building consumption profile has the aim to pro-
vide a means with innovative characteristics compared to the
datasets currently present in the literature for the evaluation of
new techniques and algorithms in the field of Smart Energy,
including NILM, Load profiling, Management Systems, and
Energy Efficiency algorithms.

eLAMI refers to 360 days of simulation of a house having
36 connected appliances, as described in Tab. 3. But in the
future other years will be added. The ‘‘ID’’ is the appliance
identifier, NS is the overall discrete number of tested operat-
ing states (including the OFF state) and the PNom is the upper

TABLE 3. Electrical loads specifications. Returns the appliance identifier
(ID), the name of the loads (Appliance), the number of states tested (NS)
and and the maximum active power that each load can absorb (PNom).

bound each appliance can absorb, according to the manufac-
turer’s indications. At each measurement interval, 433 elec-
trical parameters are computed, whose details are reported
in Subsection III-D. In addition to the information on the
individual load, the same parameters are also calculated for
the total aggregate and three partial sub-aggregates consisting
of subsets of loads. In addition to the calculated quantities,
current operating state is also provided.

The partial aggregates are provided for the three different
identified zones of the virtual house. For each zone, a subset
of loads was defined. The combination of loads for each
sub-group was chosen to obtain aggregates with a progressive
number of loads, as shown in Fig. 1. This is an important
feature for the structure of eLAMI as it offers researchers the
possibility to test the algorithms on an increasing number of
loads, therefore on an increasing complexity level.

Although all loads are connected in parallel, their supply
is carried out by means of radial lines. Therefore, in eLAMI,
the voltage at the terminals of each load is not the same but
depends on the load conditions.

Moreover, the reported OFF state, for some devices, is an
indication of a standby state. Therefore, the absorbed current
is slightly different than zero.
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FIGURE 1. House Scheme and Electrical Loads Distribution. The blue zone represents the ‘‘Partial 1’’ with 7 electric
loads; the pink zone represents the ‘‘Partial 2’’ with 10 electric loads; the green zone represents the ‘‘Partial 3’’ with
19 electric loads.

FIGURE 2. Block diagram of data acquisition setup.

C. SIMULATION BASIS: DATA ACQUISITION
In order to define the frequency spectrum of a load, as men-
tioned above, it is necessary to experimentally acquire its
absorption profile. Through a measurement campaign in
IndustrialMeasurement Laboratory (LAMI) in the University
of Cassino and Southern Lazio, 36 residential typical elec-
tric loads (Tab. 3) have been acquired. Current and voltage
waveforms for each devices has been recorded and get the
corresponding reference profiles for use in data generation
software. The block diagram of the experimental setup for
data acquisition is shown in Fig. 2.

The adopted power supply system is a Pacific Smart
Source, an electrical network emulator which allows repro-
ducing any mains profile both in terms of amplitude and har-
monic content [37]. In particular, it has been used as arbitrary
voltage generator to supply the electric loads.

In order to emulate real working conditions, the power
grid voltage was first acquired and the corresponding har-
monic characteristics were calculated up to the 50th harmonic
order. The harmonic coefficients obtained, in terms of ampli-
tude and phase, are used as an input for the Pacific Power
Source.

The emulated mains voltage profiles both with and with-
out load, are shown in Figs. 3, 4 along with the harmonic

FIGURE 3. Emulated Voltage profiles with load and without load.

contents. For clarity we report the distribution of the percent-
ages harmonic coefficients from the 2th to the 13th order.
The harmonic coefficients shown in Fig. 4 were obtained
by extrapolating the characteristics of the harmonics of the
voltage signals and evaluating the amplitudes in percentage
terms with respect to the corresponding fundamental tones.

Furthermore, it can be seen from the figures that there are
differences between the voltages in different load conditions.
In particular, the voltage under load is lower and has a slightly
different distribution of harmonic coefficients. As expected,
the voltage profiles of Fig. 3 do not reproduce a perfect
sinewave, since it contains the harmonics contributions.

In Tab. 4, is reported a numerical comparison between the
main acquired voltage and the emulated one, both with and
without load. The compared values are: the root mean square
(RMS) value (VRMS) of both the overall voltage and only the
voltage first harmonic (VRMS Fundamental). Furthermore, the
offset component (VDC), the peak value (VPK), and the total
harmonic distortion (THD) voltage are also compared.
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TABLE 4. Comparison of some characteristics of the voltages: Acquired main voltage, emulated voltage with load and emulated voltage without load.

FIGURE 4. Percentage harmonic coefficients normalized with respect to
the fundamental frequency.

Through the use of a Tektronix P202A Hall effect
probe [38], powered by a Tektronix 1103 power supply [39],
with a transformation ratio of 100 mV/A, the electrical cur-
rent flowing in the circuit was measured.

Using a Tektronix P5200 differential probe [40], with a
transformation ratio of 1:500, the voltage supplied by the
Pacific to the electrical loads was measured.

A TiePie HS5 [41] was used to acquire the measure-
ments through a customized software developed in MatlabTM

environment. 30 repeated measurements (NACQ) were per-
formed for each operating state tested. The iterated procedure
allowed obtaining the corresponding average absorption pro-
files and the associated standard deviations for voltage and
current waveforms.

The sampling frequency (Fs) used for profile acquisition is
5 kHz. For each acquisition (of each load state) 25000 points
(NP) were acquired.

The amplitude resolution of the acquisition system,
through the TiePie Hs5, was set to 14 bits per channel, with a
full scale of 0.8 for the voltage channel and 2 V for the current
channel. Considering the conversion factors of the probes
used, therefore (1:500 and 100 mV/A) this gives 400 V for
the voltage channel and 20 A for the current channel. Values
are chosen in relation to the electrical systems considered. All
the sampling characteristics are summarized in Tab. 5.

D. SIMULATOR DESCRIPTION
The purpose of this section is to provide a general description
of some of the fundamental parts that make up the innovative
simulator created for the realisation of eLAMI, highlighting

TABLE 5. Sampling characteristics used for the acquisition of electrical
load profiles.

the procedures followed in the simulation. All processing
operations were performed in MatlabTM environment.

The simulator consists of three sections: (1) INPUT,
(2) PROCESSING and (3) OUTPUT.

For each section, the chronological flow and themain oper-
ations are described.
1) The ‘‘INPUT’’ section consists of 4 macro blocks:

1.1) In ‘‘Simulation Parameter’’ block, specifications
for the simulation are defined, e.g. simulation inter-
val (1 year), measurement time (5 s), and aggrega-
tion criteria, just to cite a few. The content in round
brackets is the assignment of possible parameter
values. They are sent to the following blocks, defin-
ing the characteristics of the electrical scenario to be
simulated.

1.2) In ‘‘Electrical Loads Stochastic Model’’, mathe-
matical relations about operating state changes are
defined according to output got by previous surveys
performed by the authors in residential buildings.

1.3) In ‘‘Definition of Consumption Habits’’, taking into
account the many factors influencing the electric
consumption and adopting the mathematical mod-
els defined in the previous block, along with the
hypothesized simulation interval, typical consump-
tion habits, or patterns, are defined and used as
input to generate faithful absorption profiles. The
behavioural consumption patterns, defined for each
load, take into account daily variability and sea-
sonality. This is made possible by the implementa-
tion of a stochastic process, studied ad-hoc for the
assumed dynamic system. To explain the suitabil-
ity of the implemented stochastic model to avoid
a mismatch with real scenarios, in our simulation
framework it is absolutely unlikely that the blender
or hoover will switch on during the night as well as
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FIGURE 5. Block diagram of the simulator composed of three sections: ‘‘INPUT’’, ‘‘PROCESSING’’, and ‘‘OUTPUT.’’

lighting or heating during winter periods for con-
secutive days is more likely than in summer times.
In eLAMI, the defined stochastic model also con-
siders all these factors. In this way, for each load,
the days turn out to be dependent.

1.4) In ‘‘Acquired Absorption Profiles’’ contain the ref-
erence absorption profiles obtained as described in
Section III-C.

2) The PROCESSING section is composed of:
2.1) ‘‘Generation of Absorption Profiles’’ is a block

that, taking inputs as described before, generates
the voltage and current waveforms related to the
conditions to be simulated. Such signals are simul-
taneously sent to both ‘‘Loads Aggregation’’ and
‘‘Features Processing’’ to perform different oper-
ations, as described below. Such waveforms are
referred to the i-th iteration for a specific instant
of a simulated day and condition of each consid-
ered appliance. The compounded values define the
‘‘Current Operating State’’ of each load.

2.2) The ‘‘Loads Aggregation’’ block receives the out-
put of ‘‘Generation of Absorption Profiles’’ and
‘‘Simulation Parameter’’ and aggregates individual
loads in a macro-load condition, i.e. considers all
appliances belonging to a specific category (e.g.
bathroom) as they were one only aggregated load.

2.3) In ‘‘Features Processing’’, all electrical quanti-
ties assumed for individual loads and aggregates
are calculated. For electrical parameters calcula-
tions, our simulator implements the definitions
of Power in IEEE-1459, especially referring to
single-phase non-sinusoidal case [42]. The cal-
culated electrical parameters refer to: VRMS

TOT

and IRMS
TOT, VRMS and IRMS at the fundamental,

of harmonics and DC components alone; active,

apparent, non-active and distorted power; power
factor and harmonics distorted parameters, for a
total of 26 electrical parameters. Furthermore, for
better identification of electrical loads signature,
the simulator also implements the definitions of
measurements in IEC 61000-4-7 Standard [43],
regarding harmonics and interharmonics, including
the rms values of voltage and current groups up
to the 50th harmonic order are calculated, includ-
ing harmonic sub-groups (SubGrV, GrV1. . .GrV50;
SubGrI, GrI1. . .GrI50) and the corresponding phase
values of each group calculated for a total of
202 parameters. In addition, the harmonic index of
the maximum amplitude tones of voltage/current
in each group is also provided, the phase of each
harmonic group and the current operating state,
to achieve further 205 parameters. Considering the
overall processing, the total number of electrical
parameters reported in eLAMI is 433.

3) The ‘‘OUTPUT’’ section is composed of:

3.1) In ‘‘Simulated scenario’’, the computed electrical
parameters are packed considering the ‘‘simulation
interval’’ (e.g. 1 day, 1month, 1 year) parameter and
their size also depends on the measurement time
(e.g. 5 s), which is the time resolution over which
the 433 parameters are computed. Future simulated
years of eLAMI will be added to the main folder.

3.2) In ‘‘Saving Data’’ block, a hierarchical structure
is created for saving the dataset, as illustrated in
Fig. 6. The latter was created to make the data as
much usable as possible for the end user. From a
hierarchical point of view, eLAMI is divided into a
first level ‘‘bymonths’’, then ‘‘by loads’’ and finally
‘‘by calculated electrical parameters’’.
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FIGURE 6. Saving eLAMI structure.

All information are stored in granular ‘‘.csv’’ files,
one for each basic condition (day of the month).

IV. RESULTS
The aim of our work is to provide a dataset with innovative
features compared to datasets currently found in the scientific
literature, for the evaluation and development of new tech-
niques and algorithms in the field of Smart Energy Applica-
tions. Of course, it is of paramount importance that the dataset
is physically consistent with real case scenarios.

To this end, we first validate our dataset simulator; then,
some dataset peculiarities are highlighted, and finally some
examples of eLAMI applications in the field of Smart Energy,
in particular Load Profiling, NILM, and EnergyManagement
systems, are proposed.

A. VALIDATION OF DATASET SIMULATOR
For the technical validation of the simulator and the corre-
sponding consistency of the generated data, a comparison
between the measurements obtained from a real test and a
simulated one has been carried out, by assessing their metro-
logical compatibility. In particular, the electrical scenario
assumed for the test, is composed of 3 real loads of eLAMI
with different electrical characteristics, namely ‘‘Fan’’, ‘‘Fan
Heater’’ and ‘‘Smart TV’’. They have been connected to the
Pacific network emulator [37], then fed in parallel with the
same voltage signal used for the creation of eLAMI refer-
ence profiles III-C. At the same time, the absorption pro-
files, at the ends of every single load and the ‘‘Aggregate’’,
were monitored using a laboratory wattmeter, the Precision
Power Analyzer WT3000 [44]. The same scenario, without
WT3000 measurement instrument, has been replayed in the
simulation environment, by starting from the reference pro-
files previously acquired. Test set-up settings are total test
duration (1 hr), measurement time (5 s), and the total number
of measurement points (720).

At the end of the test, a comparison was made between the
results obtained in the two cases, with the aim of showing:

i) a comparison between variability ranges in the case of
real and simulated data; ii) the metrological compatibility of
the simulated measurements, and thus of eLAMI, with real
acquired values; the combination of i) and ii) leads to state
the validity of the simulator implementation.

Starting from (i), a comparison between the values
obtained in the real and simulated cases is shown in Fig. 7,
in terms of variability ranges. In this figure, the behaviour
of VRMS (7.a), IRMS (7.b), P (7.c) and S (7.d) are reported,
for each individual considered load and its corresponding
aggregate.

In this case, the variability ranges are overlapped, although
WT3000’s related range is almost always narrower than the
simulated one. This is because the WT3000 has a higher
accuracy level than what can be obtained by adopting the
set-up used in the acquired reference profiles for simula-
tion. In any case, since WT3000 has been chosen as a refer-
ence instrument, it is expected that it can exhibit a far better
metrological performance. Furthermore, the reference pro-
files for the generation of eLAMI were constructed to take
into account the variability of the data over a time horizon
longer than 1 hour (total test duration). Of course, increas-
ing the acquisition time would tend to increase the varia-
tion intervals of the WT3000 distributions, due to measurand
variability.

An interesting aspect, that can be seen in this figure
looking at the WT3000 measured values, is the behaviour
of the VRMS (Fig. 7.a)). The 3 loads are simultaneously
supplied by the same power source, each through its own
power line: such a setting can cause a potential voltage drop.
As reported in Fig. 7.c), the Fan Heater is the load with
the highest absorption: consequently, the VRMS at its ends
is the lowest (Fig. 7.a)). Conversely, the WT3000 records
the highest voltage at the ends of the ‘‘Fan’’, which is the
closest to the aggregate’s one, i.e. the power source. Looking
at the voltage behavior of eLAMI, the same trend can be
observed.

To demonstrate (ii), only the mean value and standard
deviation of a few monitored Features for the ‘‘Fan’’ load
are reported, for sake of brevity, in Tab. 6. In particular, the
considered features are: Vrms, Irms, P and S.

The standard deviation values of the measurements
recorded by the WT3000, as we expected, are much smaller
than those related to eLAMI, due to the simulator design
parameters, which had the purpose to replicate a typical com-
mercial smart meter less accurate than the adopted reference
(WT3000). Nevertheless, from a measurement point of view,
the intervals (µ-σ , µ-σ ) belonging to WT3000 and eLAMI
are generally overlapped, demonstrating the validity of the
generated dataset.

The validity of the algorithms implemented in the simula-
tor for the generation of eLAMI is evident when analyzing
the values and behaviors obtained from the features analyzed
in Fig. 7 and Tab. 6. Furthermore, the similarity between the
behaviors of the ‘‘Aggregate’’ highlights the consistency of
the process implemented in the simulator.
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FIGURE 7. Comparison between WT3000 and eLAMI for devices: ‘‘Fan’’, ‘‘Fan Heater’’, ‘‘Smart TV’’ and ‘‘Aggregate’’. Comparison made in terms of
features: a) Voltage RMS - b) Current RMS c) Active power d) Apparent power.

TABLE 6. Comparison of mean and standard deviation values obtained
from WT3000 and eLAMI for the electrical load ‘‘Fan’’. Considered
features: Vrms, Irms, P and S.

B. DESCRIPTIONS OF THE GENERAL CHARACTERISTICS
OF eLAMI
As highlighted above, one of the peculiarities of eLAMI is
the variability of the data, both in terms of operating states
of the monitored devices and consumption habits. Fig. 8
shows the average monthly active energy consumption pro-
files of the aggregate load, for the 24 hours of the day (x-axis),
for each month. In particular, in terms of active energy con-
sumption (y-axis), the curves show: in green, the average
trend, in red the maximum reached for each hourly interval
of the month considered, and similarly in blue the minimum.
First of all, when analyzing the individual month, we can see
the variability of the absorption curve during the 24 hours
of the day, consistent with what happens in the residential
area. In particular, the curve shows an increase in the early
morning hours followed by a rapid decrease until midday
when the second absorption peak occurs. A further decrease

follows this in consumption before arriving at the evening
hours characterized by the highest energy absorption.

In addition to the variability during the day, by compar-
ing the different months, we can value the seasonality of
consumption and thus the variation in electrical-behavioral
habits. In particular, consumption is higher during the winter
months than in the summer months, which is particularly evi-
dent when comparing August and December. This is because
in the winter months, according to defined habits, there is
greater use of certain high-consumption devices, such as
Boiler, Electric Oven andMicrowave. Furthermore, it should
be noted that during the winter months lamp utilization is
higher than in the summer months, which has an impact on
the consumption peaks mentioned above.

A further interesting aspect is a non-zero consumption dur-
ing nighttime hours present in all months, due to the presence
of some devices in standby mode, characterized by minimal
but not zero power consumption. This ceiling does not show
much variability in terms of consumption, as the devices on
stand-by during the night are almost always the same, so the
3 curves (average, minimum and maximum) almost overlap,
with a consumption of less than 0.5 kWh.

In Fig.9 the total electricity consumption for each month
of the simulated year is shown. In this case, the season-
ality of consumption and thus the variation of the energy
absorbed in the different months is particularly evident. Since
there is no cooling system, total consumption is higher in
autumn and winter than in spring and summer. In particu-
lar, starting the year in January, electricity consumption is
high and remains more or less constant until March, and
then begins to decrease in April with the arrival of spring.
The lowest peak is reached in August and then starts to
rise again from September forward. The highest electricity
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FIGURE 8. Average monthly active energy consumption profiles of the aggregate load.

FIGURE 9. Aggregate active energy load curve per months.

consumption is recorded in December, while the lowest is
recorded in August in perfect analogy with what is shown in
Fig. 8.

In Fig. 10 we report the average daily consumption of
4 electrical loads for each month of eLAMI (in terms of
average, maximum and minimum daily consumption), taken
as an example, to show the variation in consumption patterns
in eLAMI. Specifically, the devices are: Boiler (10.a), Smart-
phone Charger (10.b),Fan (10.c),FanHeater (10.d). Analyz-
ing Boiler consumption (10.a), it can be seen that the average
consumption in winter is higher than in summer, where it is
used only for hot water and not for heating. In contrast, the
Fan Heater (10.d) is only used in winter, from October to
April, peaking in February. The opposite behavior is obtained
by analyzing theFan (10.c), which is only used in the summer
months, from June to September, with a peak in August.
Unlike the others, the Smartphone Charger (10.b) does not
show substantial variations in consumption between months.
This is because it is used on average every day of the year in
the same way.

C. SMART ENERGY APPLICATION EXAMPLES
1) LOAD PROFILING
Machine Learning and Artificial Intelligence techniques,
in general, are based on the use of large amounts of input
data. However, if these techniques have input data that do
not correctly describe the phenomenon to be studied, the
output may be far from the desired result. This is why feature
selection algorithms are very often used to find the best set of
features to build useful and robust models of the phenomena
studied [45].

In Fig. 11.a the active power absorbed by the Desk Lamp
in January eLAMI is reported as a function of the corre-
sponding assumed states. As previously verified, state vari-
ability is present. Consequently, the active power P alone is
not able to discriminate the 4 different load operating state
because states 1 and 2, and similarly 3 and 4, overlap in
terms of P. Therefore, in terms of load profiling, other fea-
tures must be found for the correct identification of operating
states. For example, the active power P as a function of the
power factor at fundamental is reported in Fig. 11.b. This
feature is able to discriminate states 1 and 2 better than P
alone, while states 3 and 4 still remain indistinguishable.
Conversely, in Fig. 11.c we see the phase of the 6th harmonic
voltage group identify states 3 and 4 well but not the first two.
Combining the two features identified, power factor at funda-
mental and phase of the 6th harmonic voltage group, Fig. 11.d
shows an optimal situation where 4 operating states of the
load (cluster) considered are clearly visible. It is therefore
very clear how the greater number of electrical parameters
in eLAMI results in a better representation and distinction
between the different electrical signatures of the individual
load.
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FIGURE 10. Seasonality example of some different electrical loads - a) Boiler - b) Smartphone charger - c) Fan - d) Fan heater.

FIGURE 11. Example of load profiling application for desk lamp - a) Power consumption per state b) Active power as a Function of power
factor at 50 Hz c) Phase of 5th voltage Harmonic group as a function of active power d) Phase of 5th voltage harmonic group as a function
of power factor at 50 Hz.

2) NILM
Below is reported an example of application in the NILM
(Non-intrusive Load Monitoring) field. NILM is presented
as a time series classification problem where the objective
is to detect which appliances are active at a given instant and
how much each of them contributes to the total percentage of
consumption. Due to their advantages, techniques based on
the analysis of steady-state features are the most widely used,

typically referring to active power only [46]. This feature,
however, is not always able to distinguish devices that absorb
similar power or have similar operating principles.

In Fig. 12.a we report the total active power obtained from
an aggregation of 3 loads present in eLAMI and in Fig. 12.b
the individual active powers absorbed by the 3 considered
loads, are reported. In particular, in Fig. 12.a and Fig. 12.b the
active power in time, both for aggregate and some example of
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FIGURE 12. Active power in time: a) Aggregate - b) Single loads.

FIGURE 13. Current harmonics of 6th group in time: a) Aggregate -
b) Single loads.

FIGURE 14. Example of forecasting for electric consumption with eLAMI.

single load, are reported. Conversely, Fig. 13.a and Fig. 13.b
show the RMS values of the 6th harmonic current group in
time, both for the individual loads considered above and for
the corresponding aggregate.

It is evident when analyzing the aggregate active power in
Fig. 12.a and the single active power in Fig. 13.b, that the
3 loads are indistinguishable due to the problems mentioned
above. This represents a critical case for NILM algorithms.
Instead, analyzing the current harmonics of 6th group in
Fig. 13.a for the aggregate and in Fig. 13.b for every single
load, three different levels of absorption are present, allowing
for correct identification of the active loads.

3) FORECASTING
In the world of Smart Energy, statistical and forecasting anal-
yses based on time series are often carried out. In particular,

one of the goals of an EnergyManagement System is to create
mathematical models that can simulate trends in electricity
consumption as a function of various factors. Furthermore,
through statistical analysis, it is possible to define statistical
and/or performance indices of the analyzed system. Some
of the benefits of modeling analyzed electricity consumption
are: i) construction of past seasonal trends and consequently
of future ones, ii) definition of energy efficiency and opti-
mization plans, iii) forecast balancing of electricity networks
and performance verification.

To this end, eLAMI also offers the possibility of testing
forecasting and modeling algorithms for electrical systems.
For example, in Fig. 14 based on the knowledge of the first
10 months of the year (300 days) relating to the power con-
sumption trend of the total aggregate, a consumption forecast
was made for the last two months of the year. The mathe-
matical model derived is based on a fitting of the input data.
Using the mathematical model, a band (2*DevStdwidth) was
derived within which the consumption for the 60 forecast
days is estimated. As can be seen from this figure, the real
data falls within the obtained forecast band with an error
of approximately 6.6 %, i.e. 56 days out of 60 estimated
correctly.

Furthermore, in diagnostic and predictive terms, thanks to
the analysis of time series of data, it is possible to estimate the
operating ranges of electrical loads in order to assess and/or
predict any decay in their performance and any drift towards
fault states.

V. CONCLUSION
A novel approach to provide a simulated electrical energy
dataset, from the reference signal acquisition to the data vali-
dation has been reported in this paper. To enforce motivations
leading to its building and to prove its suitability for Smart
Energy applications, a final section regarding examples of
Smart Energy profiling and management is also discussed.
The output data, composed of more than 400 electrical
parameters and reporting one-year period energy profile sim-
ulation of a residential building, are made available for down-
load to enhance research in Smart Energy sector with novel,
detailed, validated and wide-applicable data. The acquisi-
tion set-up has been chosen according to typical meter-
ing capabilities of currently adopted home smart meters.
Voltage and Current signals, produced for 36 home appli-
ances, have been processed both in time and frequency
domain, to provide a comprehensive set of electrical param-
eters composing the electrical signature of each consid-
ered appliance. To be as close as possible to the real sce-
nario, stochastic models have been also implemented to
obtain consumption habits to manage state transitions for
each load. In its current status, only nominal operating con-
ditions have been considered, i.e. no failures have been
hypothesized during the simulation interval. This is, to the
authors’ opinion, still reasonable given the very low fail-
ure rate of the considered apparatuses in the tested period.
The produced data are anyway suitable for most Smart
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Metering Applications. A second release is intended to be
developed, where common failures will be implemented and
its aim would be voted to fault location research efforts: it
could be seen as an appendix to the current dataset, which
results as much complete as possible in terms of detailed
representation of typical operating states of considered
appliances in a home environment.
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