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ABSTRACT This paper designs and implements a robust and Time-varying Constrained Model Predictive
Controller (TCMPC) for the translational and attitude control of a real quadrotor. The proposed approach
considers online optimization to find solutions through the hard and soft constraints. All the controller
parameters were derived from the experimental test setup and took into consideration the various restrictions
and physical constraints associated with the hand-made quadrotor. The proposed controller can possibly
linearize and discretize the nonlinear dynamicmodel of the quadrotor at every sampling time if all constraints
and physical restrictions are considered. The performance of the proposed approach was assessed using both
a simulation study and a practical implementation. The simulation study considered a quadrotor hovering
mode in the presence of wind gusts and encompassed a comparison analysis with a well-tuned Proportional-
Integral-Derivative (PID) controller, an Advanced Error model predictive control (AEMPC), and an Efficient
MPC (EMPC) approach. For the real-time implementation, an online optimization algorithm was used and
tested on the high clock processor ARM A53 on a new attitude test setup. The experimental results, showed
that the proposed controller outperformed the unconstrainedMPC, the well-tuned PID controller, and EMPC,
especially in terms of rejecting the external wind disturbances. The proposed method real-time TCMPC)
approach has the advantages of greater robustness and is not heavily dependent upon the accurate dynamics
of the model.

INDEX TERMS Quadcopter UAV, constrained MPC, external disturbance, control design, real-time
implementation.

I. INTRODUCTION
Over the past two decades, Unmanned Aerial Vehicles
(UAVs) have received much attention from both academia
and industry. This is mainly due to their broad applications,
which include environmental monitoring [1], [2], cultural
heritage frames [3], [4], rescuing [5], target tracking [6],
pesticide spraying [7] and Value Added Internet of Thing
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approving it for publication was Qi Zhou.

services (VAIOTs) from the sky [8], [9], [10]. Quadrotors,
otherwise known as a type of UAVs, have some unique
and inherent advantages which make them an important
research topic in the field of control engineering. Among their
advantages are a) simple mechanical structures, b) proper
maneuverability, c) highly nonlinear dynamics of the model,
d) low-cost structures, and e) many civil or defense applica-
tions. More importantly, their advantage of vertical take-off
and hovering can enable quadrotors to maintain relative
flexibility [11], [12], [13], [14], [15].
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When the quadrotors are in their flight missions, they need
to precisely follow the set trajectory. Hence, the attitude con-
trol of quadrotors plays a crucial role in UAVs when it comes
to the accuracy, efficiency, and safety of mission execution.
That is, the attitude subsystem of a quadrotor is the vital
part of the flight control. There have been many researches
into the methods used to control the nonlinear dynamics
of the quadrotors. The well-tuned PID, also known as a
commercial and popular method on UAVs, Efficient MPC
[16], and Advance Error MPC [17], are all used as attitude
controllers for quadrotors. However, a major drawback of
the above@hyphementioned approaches is the fact that their
performance decreases in the presence of disturbances such
as wind gusts and parameter uncertainties.

Model Predictive Control (MPC) has proven to be a
promising and powerful tool in controlling quadrotors [18],
[19]. The remarkable success of MPC hinges on its capability
to handle the constraints whilst systematically optimizing the
performance in parallel [18], [19]. Moreover, it is capable
of tackling problems associated with both the soft and hard
constraints on outputs or inputs [17], [20]. MPC has been
used to solve many problems pertaining to UAV control such
as formation flight control [21], [22], [23], [24], [25], [26],
path-planning [5], [27], [28], [29], and trajectory tracking
[30], [31]. Nonetheless, standard MPC has high computa-
tional complexity [32], [33] since it can predict the future of
system behavior [33]. The main advantage of the MPC con-
troller compared to linear controllers is the tuning efficiency.
MPC controller has a simpler setup, as object parameters are
determined directly. The length of the prediction horizon and
the control horizon in this case are determined depending on
the time for which the parameter to be monitored must take a
given value. While, when setting up the linear controllers, the
object parameters are not explicitly taken into account [34].

In [16], the Efficient Model Predictive Control (EMPC)
algorithm was used to establish the linear internal model
with the dynamics of a quadrotor taken into account. This
was to better reduce the prediction points. In the EMPC
method, the future output of the quadrotor was calculated
with a closed-loop prediction structure based on a linear
internal model. Due to this linear structure, the computational
time was reduced greatly for the standard MPC. This method
was tested on a real quadrotor and demonstrated satisfactory
tracking performance while the standard MPC, in contrast,
failed to work [16]. Another method is the Advanced Error-
based MPC (AEMPC) presented in [17], which adopted
an augmented model to remove the tracking error caused
by external disturbances. To better reduce the computation
time, the control input sequence in MPC was estimated
with Laguerre function, which also helped to improve the
closed-loop performance. As a result, AEMPC proved to be
effective when it comes to disturbance rejection, trajectory
fast tracking and quadrotor stability. Reference [30] intro-
duced a high-level lateral-directional trajectory-tracking con-
troller embedded in a nonlinear MPC (NMPC) structure for
fixed-wingUAV trajectory tracking inwind and arbitrary path

combinations. It was proven that the method could produce
better results of trajectory tracking. In addition, [5] used
NMPC for navigation and obstacle avoidance of an UAV.
This method can also avoid dynamic obstacles. Besides, this
method was designed to be compatible with a classification
scheme that predicts the positions of possible obstacles. The
study into the trajectory tracking of ducted fan aircrafts was
conducted by [31]. This article proposed a Compound Flight
Control (CFC) technique based on the concept of MPC for
attitude control of ducted fan aircrafts. As a result, they
achieved flight robustness and adequate tracking without
compromising the nominal performance. In [35], the authors
combined Gaussian Process (GP) with MPC to develop an
accurate real-time feedback controller. The simulation results
indicated significant reduction in trajectory tracking errors.
A hybrid model was proposed by [36] so as to compensate
residual and uncertain dynamics within the system. In com-
parison with the GP model, this hybrid model showed more
accurate predictions of the quadrotor dynamics. The NMPC
model in agile quadrotor flight was studied by [37], which
proposed a hybrid adaptive NMPC, called L1-NMPC. This
hybrid method can learn model uncertainties online and com-
pensate them immediately, thereby resulting in more flexibil-
ity and robustness in comparison with non-adaptive NMPC.

Although these papers demonstrated very good simulation
results in this regard, their efficiency in real world experi-
ments are still vague, especially in the presence of external
distances. These methods have limitations such as high com-
putational time, the need for an accurate dynamic model of
a drone, and the consideration given to the constraints of all
motors and sensors. To better reduce these problems, several
famous drone companies have managed to use well-tuned
PID controllers as commercial flight controllers [38].

This paper presents a practical time varying constrained
MPC control method.

The main contributions of this article are as follows:

1. Designing a time-varying model predictive controller with
the consideration given to full input/ output constraints of
the quadrotor with online optimization.

2. Designing a new attitude control test platform for quadro-
tors with the equality of rotation and mass center
consideration.

3. Extraction of the dynamic model parameters of our hand-
made quadrotor through experimental and simulated tests.

4. Comparison analysis with EMPC, AEMPC and a well-
tuned PID.

The remainder of this paper is organized as follows. First,
discussions on the nonlinear dynamics of the quadrotor are
provided in Section 2. Section 3 deals primarily with the
mathematical formulation of the specific controller, which
was designed based on the concept of our proposed MPC.
Section 4 includes simulation and experimental studies with
multiple test cases involved to validate the effectiveness of
the proposed method. Finally, the conclusion is drawn in
Section 5.
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TABLE 1. Extracted parameters of the dynamic model of a quadrotor.

FIGURE 1. The designed quadrotor configuration frame system.

II. DYNAMIC MODELING OF THE QUADROTOR
The hand-made quadrotor and its coordinate system are
depicted in Fig1. This figure demonstrates the body-fixed
frame (BFF) {XB,YB,ZB}, quadrotor coordinate system, and
Earth-fixed frame (EFF)

{
Ex ,Ey,Ez

}
. As shown in this fig-

ure, there is angle differences between the sensor coordinate
frame and the body frame {Xs,Ys,Zs}.
Considering the model dynamics of the quadrotor, some

assumptions are made to simplify the dynamic equations: a)
The structure of the quadrotor and propellers are rigid and
symmetrical b) The quadrotor structure is balanced to match
the center of mass with the center of rotation c) Each pair of
motors with the same direction of rotation are aligned in one
axis extending from the center of rotation. These assumptions
lead to a nonlinear six degrees of freedom dynamic equation
of the quadrotor model, which is expressed in Equation (1)
[39]. In this Equation, m is the mass of the system, g the
gravitational acceleration in local position, and U1 the total
thrust that the quadrotor can hover. U2, U3, and U4 are the
inputs of the roll, pitch, and yaw channels respectively. More-
over, ux and uy are sub-inputs to position channels, which are
derived from Equation (2). Moreover, the disturbance vector[
0 ωϕ 0 ωθ0 ωψ 0ωz 0 ωx 0ωy

]
, is considered and added to

the model which could affect the rates of states
[
ϕ̇ θ̇ ψ̇ ż ẏ ẋ

]
in attitude and position equations [39]. �r is considered as a
disturbance caused by the angular velocities of four motors,

and other parameters are provided in Table 1.



ϕ̇

ϕ̈

θ̇

θ̈

ψ̇

ψ̈

ż
z̈
ẋ
ẍ
ẏ
ÿ



=



ϕ̇

θ̇ ψ̇

(
Iyy − Izz
Ixx

)
+θ̇

Jr
Ixx
�r+

l
Ixx

U2

θ̇

ϕ̇ψ̇

(
Izz − Ixx
Iyy

)
−ϕ̇

Jr
Iyy
�r+

l
Iyy
U3

ψ̇

θ̇ ϕ̇

(
Ixx − Iyy
Izz

)
+

l
Izz
U4

ż

−g+
(CosϕCosθ)

m
U1

ẋ
ux
m
U1

ẏ
uy
m
U1



+



0
ωϕ
0
ωθ
0
ωψ
0
ωz
0
ωx
0
ωy



(1)

ux = (Cos(j)Sin(q)Cos(y)+ Sin(f )Sin(y))

uy = (Cos(j)Sin(q)Sin(y)− Sin(f )Cos(y)) (2)

U =


U1
U2
U3
U4

 =


b b b b
0 −b 0 b
b 0 −b 0
−d d −d d



ω2
1

ω2
2

ω2
3

ω2
4

 (3)

Rotor rotation creates vertical forces corresponding to the
thrust (T). In addition, each rotor produces a moment per-
pendicular to the plane of the propeller rotation leading to the
horizontal movement (H). Aerodynamic forces like thrust and
drag are proportional to the square of the propeller’s speed.
A full and detailed explanation of these forces can be found
in [39].
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FIGURE 2. (a) Simulated quadrotor with CATIA software, (b) experimental
setup to achieve thrust parameter.

To achieve the correct value of these parameters like
moments of inertia, experimental tests were implemented
and compared with Catia software calculation results. These
experimental tests were repeated to show the repeatability of
the achieved results.

The results of Catia’s software calculation were almost
the same as the experimental test results, thus, verifying
the accuracy of the experimental tests. The achieved model
parameters via experimental tests are illustrated in Table 1.

As it can be seen from Equation (1) [39], the attitude
subsystem equations are nonlinear and continuous. To control
the attitude sub-system by the MPC method, linearization
and discretization are required according to the sampling
rate (Ts).

XAt (k + 1) = A∗j XAt(k)+ B∗j U(k)+WAt

YAt (k) = C∗j XAt (k

j ∈ {0,Ts, 2Ts, . . . , kTs} , k ∈ Z+ (4)

A∗j =



0 1 0 0 0 0

0 0 0 a2�r + a1x6 0 a1x4
0 0 0 1 0 0

0 a3x6 − a4�r 0 0 0 a3x2
0 0 0 0 0 1

0 a4x4 0 a5x2 0 0



B∗j =


0 0 0 0
0 b1 0 0
0 0 0 0
0 0 b2 0
0 0 0 0
0 0 0 b3


C∗j =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



WAt =


0
ωϕ
0
ωθ
0
ωψ

 (5)

The state-space representation is shown in Equation (4)
[39], where the matrices B6×4 and C3×6 are derived from
linearization and discretization, U is defined as U =

[δu1 δu2 δu3 δu4] and �r is a constant disturbance. The
matrix A∗j is discretized and linearized around the operat-
ing points

[
0 φ̇◦ 0 θ̇◦ 0 ψ̇◦

]
and in every iteration (j), new

state feedback updates A∗j matrix which is a time-varying
matrix. This time dependency helps the quadrotor to have
high maneuverability and robustness against wind gusts.

III. THE PROPOSED METHOD
The proposed controller uses a time-varying linear model of
the handmade drone, and considers the parameters generated
in the previous section. The controller updates the nonlinear
attitude subsystem at every sampling time around a new
equilibrium point. This enables a time-varying model of the
MPC to maintain high precision and stability thereby making
it suitable for environments with disturbances and system
constraints [40]. Moreover, this controller uses Hildreth as
the online optimization method. This latter is considered as a
powerful way of solving a large system of inequalities with
sparse matrices without the involvement of any matrix inver-
sion [41]. The online optimization algorithm is more complex
because this algorithm requires a large amount of calculation
so as to better solve time-varying systems with different types
of constraints. The presented method can possibly augment
the state-space matrices if the integrator effect is applied to
do so. This enables the system to track the reference point
more stably with approximately zero steady-state error.

The optimal control signal was achieved by optimizing the
desired cost function. The presented controller was based on
the MPC principle so required the nonlinear model of the
quadrotor with real physical parameters. Nonlinear dynamic
equations were converted to nonlinear state-space equations
and then discretized. After discretization, the achieved model
was linearized around the operating point with respect to the
time. The state-space matrices were augmented and used to
generate optimal control signals that restricts the quadrotor’s
motion. The whole process should be repeated in each itera-
tion with respect to each sampling time (Ts). The augmented
state-space composed from extracted matrices, A∗j and B

∗
j of

the nonlinear model are shown in Equation (6).

x(k+1)︷ ︸︸ ︷[
1xm (k + 1)

y (k + 1)

]
=

A︷ ︸︸ ︷[
A∗j 0Tm

C∗j A
∗
j Iq×q

] x(k)︷ ︸︸ ︷[
1xm (k)

Y (k)

]

+

B︷ ︸︸ ︷[
B∗j

C∗j B
∗
j

]
1u (k) (6)

y (k) =

C︷ ︸︸ ︷[
0m Iq×q

] [1xm (k)

y (k)

]
(7)

where x(k) is the state vector, 1u(k) is control action rate
defined as: {

1u (k) ∈ U ⊆ <4

x (k) ∈ X ⊆ <6 (8)
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The sets X and U specify possible state and input rate
constraints.

[
A∗j ,B

∗
j ,C

∗
j

]
specify the matrices which are lin-

earized around the operating point
[
0, φ̇◦, 0, θ̇◦, 0, ψ̇◦

]
at

instant kTs. In practice, many control algorithms exhibit
decreased performance and even fail when considering
quadrotor’s mechanical and electrical restrictions. Hence,
actuator saturation and restricted mechanical motions should
be considered as constraints when deriving an optimal control
input. In this pape, constraints on the quadrotor’s output
states, control effort signals and their variation have been
illustrated in Eq. (9). The matrix C ′9×12 consists of outputs
that must be constrained. All constraints can be written in a
more compact form


H1
H2
...

H15
H16

1U ≤



umax
1
...

umax
4

1umax
1
...

1umax
4

ycu − u (k − 1)
ycd − u(k − 1)


(9)

All states and input constraints have been combined by
using a set of Hi zeroed 2× (m+ n)matrices. m is number of
state vector of x(k) and n is the number of control actions.

Some experimental tests are carried out to calculate the
rotor torque. Then, the ranges of variation are determined
for the system states, which are considered asoutputs of the
system, and control effort signals as well. The proposed
controller tries to minimize the cost function subject to the
following constraints:

Min J (1u) =
1
2
1uTE1u+1uTF

Subject to : Hi1u ≤ b (10)

We define the cost function J that reflects the control objec-
tive as Eq (10) where the first term reflects the consideration
given to the size of 1U when the objective function J is
made to be as small as possible and second term is linked to
the objective of minimizing the errors between the predicted
output and the set-point signal. E is a diagonal matrix that
tuned for the desired close loop performance.

In every iteration, the cost function is minimized and the
optimal 1u is calculated. There is a tradeoff between the
set point tracking errors and the produced optimal control
signals. The block diagram at Fig (3) shows the proposed
controller functionality in more clear way.

E =
(
H ′H + λ

)−1 F = −
(
H ′W − HfXf

)
(11)

where λ(Np×n)×(Nc×m) is a parameter that can change the men-
tione trade-off. H(Np×n)×(Nc×m), f(Np×n)×(Nc×m) are matrices
including augmented matrices shown in Eq. (6). The number
of approximations of the nonlinear model (j) depends on
flight time (kTs). Note that system stability when switching
between linear models is not approved, but no stability issues
were observed in any experimental tests.

FIGURE 3. Block diagram of the proposed controller.

IV. SETUP AND RESULTS
In this section, flight experiments and numerical simula-
tions are explained to verify the performance of the TCMPC
algorithm in quadrotor attitude and position tracking. The
parameters of the hand-made quadrotor are taken from
Tables 1 and 2.

A. SIMULATION RESULTS
The attitude, position model, and controllers of the quadrotor
are implemented in MATLAB/Simulink. Then, the perfor-
mance of the TCMPC is compared with AEMPC, EMPC,
and PID methods. Since the quadrotor is an under-actuated
system, the inner loop controller should be at least four
times faster than the outer loop controller if the purpose is to
better control the position of the quadrotor by attitude system
(TsAttitude =0.02s, TsPosition = 0.2s). The constraints on the
effort signals rate (1Ui=1,2,3,4 ) depend on the time constant
of the speed controllers ofmotor propeller systems and affects
the transient performance of the quadrotor. The constraints
on the inpu and the output states are computed based on a)
The drag and thrust factors, b) the specifications of the IMU
sensor used, c) the torque produced by the motors, d) the
quadrotor’s mass and moments of inertia.

The flight scenario description is provided as follows: At
the beginning, th quadrotor goes up from the initial point
to the target point, as shown in Fig 4. When the quadrotor
reaches to a height of 0.7 meters, the wind as a disturbance
wAt starts blowing to the quadrotor. For the better under-
standing of this to occur, the origin bounding control inputs
and its rates are considered as an equilibrium state with
u(0)=0. Based on the motors’ angular velocities, �k, k =
1, . . . , 4 and �k ∈ [0, �max

k ], the effort signals bounding set,
Uk=1,2,3,4, are derived (36).
The constraints are define in Equation (13):

0N ≤ U1 ≤ 12N
−5N ≤ U2 ≤ 5N
−5N ≤ U3 ≤ 5N
−0.5N .m ≤ U4 ≤ 0.5N .m
−0.5N ≤ 1U1 ≤ 0.5N
−0.5N ≤ 1U2 ≤ 0.5N
−0.5N ≤ 1U3 ≤ 0.5N
−0.1N .m ≤ 1U4 ≤ 0.1N .m

(12)
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

−
π
4

−0.75
−
π
4

−0.75
−π

−1
−3
−3
−3


≤ y =



φ(rad)
φ̇( rad

s

)
θ(rad)
θ̇( rad

s

)
ψ(rad)
ψ̇( rad

s

)
ż(ms )
ẋ(ms )
ẏ(ms )


≤



π
4

0.75
π
4

0.75
π

1
3
3
3


(13)

Regarding the EMPC method [16], this method uses the
simple linear dynamic model of quadrotor, which changes
during flight time to generate the prediction points with-
out using an online optimization algorithm. The EMPC
needs some prediction points while the TCMPC, in contrast,
requires the first prediction point from the augmented model.
Hence, the iteration time, otherwise known as the minimum
time to generate each control signal, would be different in
each method. Also, a comparison between the proposedMPC
and EMPC approaches is illustrated in practice in the pres-
ence of wind gusts.

The Ziegler-Nichols oscillation method is commonly used
for tuning the PID controller parameters of each channel (39).
The common PID equation is shown in Equation (14).

u (t) = Kc

(
ε (t)+

1
τi

∫ t

0
ε
(
t ′
)
dt ′ + τd

dε (t)
dt

)
Ki = Kc

1
τi
,Kd = Kcτd (14)

where u is the control signal, ε is the error, Kc, Ki, Kd are the
gains for the PID controller, τi is the parameter that scales the
integral controller, τd is the parameter that scales the deriva-
tive controller, t is the time taken for error measurement.
In the first step, the gains Ki and Kd are equal to zero. The
proportional gain, Kc, is increased until it reaches the ultimate
gain. This makes the output of the system oscillate constantly
with period of Tu. By using Tu and Kc, all other parameters
listed in Table were obtained. Then, the well-tuned gains are
achieved by changing the gains around the obtained values
experimentally. Table presents the obtained parameter value
that are used as PID gains for each channel in practice.

Following this, the TCMPC method is compared with
AEMPC, EMPC and PID controller in simulation. The initial
values of states are [0,0,0,0,0,0,0.05,0,1,0,1,0] in the simula-
tion. The value of each parameter of algorithms is taken from
Table 4.

Comparison between the effort signals of controllers are
presented in Figs 5, 7, and 9. According to these figures, at the
beginning, the quadrotor initial position changes instantly
by consuming effort signals in a constrained way. Conse-
quently, the TCMPC controller produces optimal effort sig-
nals to control the quadrotor while facing wind disturbance.
Unconstrained rate of control signals (1U k=1,2,3,4) cause
the sharp movements and high peaks at Uk=1,2,3,4 signals
when using the AEMPC, EMPC, PID methods as shown in

TABLE 2. Ziegler-Nichols method.

TABLE 3. PID gains in practice.

TABLE 4. Parameters that are used in the simulations and practice.

Figs 5, 7, and 9. In addition, the AEMPC, EMPC, and PID
have sharper and higher overshoots in presence of wind,
whereas the TCMPC shows a less disturbed reaction. Overall,
the wind gust has effect on all methods during flight.

The results of the tracking reference signal by AEMPC,
EMPC, and the proposed algorithm are depicted in
Figs 4 and 6, respectively. The results confirm the ability
of the two controllers to track the desired path well. The
proposed method, however, shows less fluctuations at takeoff
and achieves better performance than AEMPC and EMPC in
the presence of disturbances. According to Fig 8, the Roll and
Pitch channels change to reach the desired zero value and the
Yaw channel tracks the pulse signal. The maximum domain
of the pulse is ten degrees and the minimum value is zero.

Both methods start to control the quadrotor from the same
initial point and our proposed method shows lower rise time
compared to the PID. Fig 9 demonstrates the required energy
for stabilizing the quadrotor at roll and pitch channels for
both well-tuned PID and TCMPC. Note the large overshoots
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FIGURE 4. The 3D path of the quadrotor in hovering mod.

FIGURE 5. The quadroto’s effort signals during flight.

FIGURE 6. Comparison between EMPC and the TCMPC at hovering mode.

and undershoots in the responses of the PID controller when
tracking the pulse signal while the TCMPC shows less effort

FIGURE 7. Comparison of effort signals between EMPC and the TCMPC
algorithm.

FIGURE 8. Comparison between attitude behavior of the proposed MPC
and well-tuned PID simulated in MATLAB.

and lower changes in the response. A comparison of the
root mean square error (RMS) between TCMPC, AEMPC,
EMPC and PID techniques is presented in Fig 22. The RMS
is calculated according to the following formula:

RMS =

√√√√ N∑
i=1

e2(i)
N

(15)

In Equation 15, N is defined as the number of samples,
e(i) is the position tracking error for Fig 3 and 5. In the
other figures, e(i) is considered as the attitude tracking error.
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FIGURE 9. Comparison between effort signal of both controllers in
simulation environment.

FIGURE 10. Gazebo simulator.

Fig 22 shows the comparisons of tracking and control per-
formances. It is clear that whether there is wind disturbance
or not, the TCMPC algorithm gets the smallest RMS value
among the four controllers in simulation.

B. SETUP AND EXPERIMENTAL RESULTS
In order to test whether the proposed controller can be
implemented feasibly on the real quadrotor, the Gazebo sim-
ulator was used in the first stage (Fig 10). By using the
AR.Drone2.0 on Gazebo7 simulator and writing the specific
C++ node and topics, the proposed controller shows its
ability to control the drone during hovering motion in this
simulator. The tum-simulator package was used to communi-
cate with the drone. Meanwhile, all physical parameters such
as the momentum of inertia, mass, gravity, and the noise on
the output of the IMU sensor were considered as well. ROS
Indigo version was used, and a new launch file run in a virtual
machine.

In the Gazebo simulator, the effort signals are published
to the quadrotor, and feedback signals of the quadrotor
are logged during hovering. Based on the flight scenario
described in section 4.1, first, the quadrotor takes off to reach
desire point (0, 0, 1) at space with respect to EEF coordinate.
Fig 10 is related to the effort signals of TCMPC. Moreover,
as can be seen from Fig 11, the position errors around three
axes converge to zero.

The TCMPC was applied to the real quadrotor and its
controlling performance was compared to a well-tuned PID
controller and EMPCmethod. This controller is a commercial
method, which can be employed to demonstrate how the
states and control signals affect performance. All the com-
ponents and modules involved in the design of this quadrotor

FIGURE 11. The effort signals logged and plotted in the MATLAB software.

FIGURE 12. The position error logged and plotted in the MATLAB
software.

are illustrated in Fig 13. LSM9DS1 was used as an Inertia
Measurement Unit (IMU) sensor to produce angular rates and
accelerations in three axes.

AKalman filter was utilized to estimate the target variables
such as roll, pitch, and yaw. In addition, the IMU sensor
was calibrated, and the bias and scale factor were obtained
by the least square algorithm. The accuracy of the obtained
Euler angles was 0.1 degrees and Kalman filter initial covari-
ance value was Q◦ = [0.0010; 00.0003] rads . As the motors
receive commands from an electronic speed controller (ESC),
an interface board such as Arduino DEU is needed. This
board produces pulse width modulation (PWM) to the ESC
driver as controller command. The sensor output frequency
was 100 Hz. The bandwidth was set to 100 Hz, which is two
timesmore than the quadrotor dynamic range. The ESC driver
rotor receives PWM signals with frequency of 250 Hz, and
so both controllers were designed to operate at a frequency
of 50 Hz. The other parameters of this controller are listed
in Table 4. According to this table, the obtained state-space
matrices are presented in Equation (16)

Fig 14 demonstrates the new attitude test setup. This helps
limit quadrotor motion to three degrees of freedom and only
its attitude can be changed. Since the center of mass should
be on the rotation center, four packs with the same weights
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FIGURE 13. Quadrotor hardware components.

should be added to the quadrotor setup. These packs can
change the center of mass to model the dynamic equations
accurately.

A =


0 1 0 0 0 0
0 0 0 − 0.0258ψ̇ 0 − 0.0258θ̇
0 0 0 1 0 0
0 0.0251ψ̇ 0 0 0 0.0251φ̇
0 0 0 0 0 1
0 0.00065087θ̇ 0 0.0006508φ̇ 0 0



B =


0 0 0 0
0 18.7657 0 0
0 0 0 0
0 0 18.7782 0
0 0 0 0
0 0 0 130.1744


C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (16)

WAt =



0
ωϕ
0
ωθ
0
ωψ
0
ωz
0
ωx
0
ωy



=



0
3.5
0
3.5
0
2
0
0
0
0
0
0



(17)

In order to exhibit how effectively constrains can be added
to the controller, the performance of the quadrotor was com-
pared with the normal MPC without constraints, well-tuned
PID, and EMPC in a practical environment. Two different
scenarios are considered in this regard: the first one is the
same as flight scenario described at Section 4.1; the second
one is sinusoidal tracking and disturbance rejection.

Regarding the first scenario, the specific command was
sent to change the yaw channel of the quadrotor, as shown
in Figs 14, 17 and 19. This command in the Yaw channel
had a 15-degree amplitude positive pulse with a period of

FIGURE 14. Quadrotor attitude control setup.

7 seconds. The frequency of the control loop and control
parameters were found to be the same in all methods. Con-
straints were chosen according to Equations (18) and (19).

−0.5N ≤ 1U1 ≤ 0.5N
−0.5N ≤ 1U2 ≤ 0.5N
−0.5N ≤ 1U3 ≤ 0.5N
−0.1N .m ≤ 1U4 ≤ 0.1N .m
0N ≤ U1 ≤ 12N
−5N ≤ U2 ≤ 5N
−5N ≤ U3 ≤ 5N
−0.5N .m ≤ U4 ≤ 0.5N .m

(18)



−
π

4
−0.75

−
π

4
−0.75

−π

−1

−3

−3

−3



≤ y =



φ(rad)

φ̇( rad
s

)
θ(rad)

θ̇( rad
s

)
ψ(rad)

ψ̇( rad
s

)
ż(m
s

)
ẋ(m

s

)
ẏ(m

s

)



≤



π

4
0.75
π

4
0.75

π

1

3

3

3



(19)

The experimental results are presented in Figs 15, 17.
According to these figures, three controllers could control
the quadrotor from same initial position to the desired set
point. The quadrotor’s yaw channel tracks the input pulse
command while the roll and pitch channels, in contrast, track
zero input commands. The comparison indicates that the
TCMPC method presents less overshoots and undershoots
than the unconstrained MPC and well-tuned PID approaches.
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FIGURE 15. Comparison of the proposed and unconstrained MPC applied
to quadrotor.

FIGURE 16. Control effort signals of the proposed controller and
unconstrained MPC to track.

FIGURE 17. Attitude sub-system comparison between the proposed MPC
and PID controllers.

Figs 16, 18 present the effort control signals of the three
controllers. It is obvious that the proposed TCMPC method
can produce less control effort in almost all the time of
command tracking in all the three channels. The rates of
change on control effort signals are limited for the proposed
method, and so control signals are smoother, when compared
to unconstrained MPC and PID.

To assess the performance of the TCMPC and the well-
tuned PID, the first scenario was applied in the presence of
wind gusts. At the specific time, when the yaw command was
received by the controller, a fan was placed at a distance of
0.8m from the test platform to generate a wind gust. Thewind
blew in three directions to the quadrotor, BFF coordinate,
and its speed was VB = [1.3, 2.8, 0.2] m/s. Fig 20 shows
the performance of the controllers in the presence of wind.
The initial values of both controllers were approximately the
same and the wind blew from time = 9.5 sec to time =
18 sec, as illustrated in Fig 20. According to Fig 21, the
wind gusts produced greater disturbance against the EMPC
method controller than the constrained MPC. Hence, the

FIGURE 18. Control effort signals of the proposed MPC and PID to track
set points.

FIGURE 19. Attitude subsystem controlled by the TCMPC and PID in the
presence of wind.

FIGURE 20. Control effort of the proposed MPC and PID in the presence
of wind.

EMPC controller signal efforts have more fluctuations than
the TCMPC signal efforts during wind gusts.

As far as the second scenario is concerned, the attitude
tracking results under the two algorithms are provided in
Figs. 21 and 22. Noticeably, under the influence of sensor
measurement noises, unmodeled uncertainties of the system,
and wind gust as external disturbance, the two controllers
seem to have different degrees of tracking errors. As can be
seen from Fig 22, the fluctuation of control signals tend to
increase after adding the wind to system. Hence, the tracking
performance of TCMPC can possibly outperform the EMPC.
The value of each parameter of algorithms is taken from
Table 4.
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FIGURE 21. Attitude subsystem controlled by the proposed MPC and EMPC in the presence of wind gust.

FIGURE 22. Control effort of the proposed MPC and EMPC in the presence of wind gusts.

FIGURE 23. Comparisons of the tracking control performance.

According to Fig. 21, despite the wind disturbance, both
methods converge to sinusoidal commands. To verify the

tracking performance of the proposed attitude controller,
we compared the RMS value of each method. Fig 23 exhibits
that TCMPC has a smaller RMS value and achieves better
performance in the second scenario. Based on the result of
numerical simulation and practical tests, it can be concluded
that the proposed controller improves the attitude tracking
performance with/without presence of wind gust considered
as external disturbance in comparison with AEMPC, EMPC,
and well-tuned PID.

V. CONCLUSION
This paper proposed a Time-varying Constrained MPC
(TCMPC) approach for the translation and attitude control
of a real quadrotor in the presence of external disturbances.
The proposed method can better update the nonlinear attitude
subsystem at every sampling time around a new equilib-
rium point of the system for the provision of a time-varying
model of the MPC designed with high precision and stability
to occur. To better achieve the high tracking performance
and robustness in the attitude control, the dynamic model
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parameters were extracted, and the equality of mass center
with rotation center was considered as well. The proposed
controller was tested and used to control a hand-made quadro-
tor with all restrictions and physical constraints of the real
quadrotor taken into account. The comparison analysis and
experimental results indicate that the proposed TCMPC out-
performs the AEMPC, EMPC, and PID methods. The most
important limitation of this method is that the parameters
are derived from the experimental setting; hence, making
this task is difficult and time-consuming for highly-complex
multi-variable systems. Our future work will be a maneuver
control of a practical quadrotor UAV by using the proposed
method.
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