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ABSTRACT As an inverse problem, the parameter identification of manipulators is essential to in-situ
calibration. Since the ill-posed inverse kinematic model is sensitive to the measurement value, even tiny
errors will make the geometric model of the manipulator wrongly identified. To overcome this problem, a
Regularized Parameter Identification Method (RPIM) is proposed to calibrate the geometric model of the
manipulator. The inverse kinematic model of a 6 DOF manipulator is modified by a Tikhonov regularization
to overcome its ill-posed problem. The regularization parameter is optimized by the improved L curve
method to adjust the initial model to a well-posed one that approximates the real situation. A calibration
system is designed to evaluate the effectiveness of the suggested method. The position of the selected
targets is tested by using a laser tracker. The experimental result shows that the absolute position errors
of the manipulator are 2.533mmwithout calibration, 0.472mm by RPIM, 1.445mm by Least Square Method
(LSM), 1.353mm by Gradient Descent (GD), and 0.956mm by Gauss-Newton (GN). It shows that the
absolute position error of RPIM is reduced by 81.331% after calibration, which is superior to other methods.

INDEX TERMS Collaborative manipulator, calibration, MDH, laser tracker, regularization.

I. INTRODUCTION
The collaborative manipulators are widely applied to station
docking, extravehicular maintenance, intelligent manufactur-
ing, vehicle manufacturing, and other industrial applications
[1]. As a critical component of manipulators, the manipulator
can ensure the actuator locates the target successfully. How-
ever, the positioning errors of manipulators restrict the devel-
opment of intelligent manufacturing on a robotic production
line. Due to structural wear and performance attenuation,
as is known to all, positioning accuracy can be increased
after manipulators work continuously for a long time. The
location error is harmful, for example, it will increase the dif-
ficulty of automatic assembly for mechanical parts, the prob-
ability of mislocation on riveting holes, the welding error
for the welding manipulator, and the control difficulty of a
telemedicine cooperative manipulator [2], [4], [5], [6], [7].
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The studies on accuracy improvement are essential to manip-
ulator maintenance [8].

The regular in-situ calibration of the manipulator can
improve the positioning accuracy of the manipulator by iden-
tifying the geometric parameters of the kinematic model.
To identify the geometric parameters of a kinematic model,
the pose relationship of manipulator manipulators should be
described first by a model. There are many kinds of models,
such as the D-H model, the SD-H model, the MD-H model,
the S model, the CPC/MCPC model, the POE model [9],
[10], [11], [12], and other parameterized models. Among
which, the D-H model is the traditional method with a wide
application. However, when the two axes of a manipulator
are parallel or close to parallel, it will cause a problem of
singularity. To overcome this problem, the MD-Hmodel with
a simple structure is introduced by introducing the y-axis
rotation [13]. In other models are hard to overcome the ill-
posed problem of the inverse kinematic model.

Parameter identification is an important part of calibration
for manipulators. There are many methods for parameter
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identification. The least-square method is a commonly used
identification method [14]. For example, ALBERT et al.
applied the LSM to the system identification of a manip-
ulator by considering the influence of noise, environment,
experimental setup, and other interference of measurement
[15], [16], [17]. Meggiolaro M et al. obtained the geometric
parameter errors of a manipulator by utilizing the least square
method (LSM) [18]. Tang andMooring designed a composed
board with precise positioning points to decrease the calibra-
tion error of a manipulator [19], [20]. Hage et al. proposed
a constraint equation by using four planes to improve the
accuracy of a probe-based manipulator [21]. The maximum
likelihood estimation is applied by Renders [22] and other
researchers to paratha meter identification of the manipula-
tor kinematic geometric parameters, which achieved a good
result. With the continuous improvement of the comput-
ing level, the Levenberg-Marquardt (LM) method [23], the
extended Kalman filter method [24], the simulated annealing
algorithm [25], the parameter optimization method, and other
iterative algorithms are also applied to parameter identifica-
tion of the complex system.

These studies have yielded positive results in optimizing
manipulator performance in spite of certain limitations. For
the LSMmethod, although the iteration process is simple, the
convergence speed is fast, and its applications are extensive,
this test method has the disadvantage of a large amount of
calculation. Although the Gradient Descent method has a
fast convergence speed, it cannot guarantee the globalist’s
optimality. The Gauss-Newton is easy to implement in spite
of no logic to control the step size. The Extended Kalman
Filter algorithm may suffer from target loss.

However, aiming at the ill-posed problem of the calibra-
tion process, these methods are hard to solve this problem.
For this reason, researchers have made many explorations
and achieved good results. For example, Kostenko [26] et al.
applied the Laplace operator on a regularization matrix to
invert seismic coseismal slip distribution inversion [27], [28].
Huang et al. proposed a regularization matrix method with
expected properties to estimate the information in themedium
[9]. H.Save and his teammates solved the ill-posed prob-
lem of the gravity field by using a regularization matrix
[29]. Ditmar and his followers selected the first-order deriva-
tive regularization matrix and the Kaula regularization to
reflect the statistical law of the potential coefficient [30].
Li et al. applied the regularization matrix with distance
weighting to the abnormal detection of hyperspectral imaging
[31]. Gauthier et al. proposed a definition of a regulariza-
tion matrix in the acoustic domain [32], [33]. The central
idea of the regularization matrix focuses on the targeted
correction of the singular values. By constructing a reg-
ularization matrix, the small singular values will be cor-
rected and the ill-posedness of parameter identification can
be improved [34].

The parameter identification of manipulator manipulators
is essential to in-situ calibration. Since the ill-posed inverse
kinematic model is sensitive to the measurement value, even

tiny errors will make the geometric model of the manipulator
wrongly identified. To overcome this problem, a Regular-
ized Parameter Identification Method (RPIM) is proposed
to calibrate the geometric model of the manipulator. It is
organized as follows. In Section 2, a kinematic model of
a 6 DOF manipulator is built based on the M-DH model and
geometric error model. In Section 3, the kinematic model is
reconstructed by a regularization approach. In Section 4, both
numerical and experimental studies are carried out on a cali-
bration system to validate the accuracy and the effectiveness
of our suggested method. In Section 5, several conclusions
and research expectations about our work are given.

II. KINEMATIC MODEL OF A 6 DOF MANIPULATO
A. KINEMATIC MODEL
According to the MD-H modeling method, the conversion
process between each link of the 6 DOF manipulator is
designed as follows.

FIGURE 1. Kinematics frame of the cooperative manipulator.

The nominal geometric parameter of the 6DOFD-Hmodel
consists of the link lengths, link twist angles, offsets, and joint
angles. The rotation angle β around the y-axis is given based
on the D-H model, as TABLE 1 shows.

TABLE 1. Kinematic parameters of cooperative manipulator.

With the help of translation matrix Trans(·) and rotation
matrix Rot(·), the relative poses are changed as [35]

Ai = Rot (xi−1, αi−1) · Trans (ai−1, 0, 0)

·Rot (z, ti) · Trans (0, 0, di) · Rot (yi, βi) (1)

where, Ai is the transformation matrix of the ith joint frame.
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Then we can get the relationship between each two adja-
cent joints i-1th and ith can be written as

i−1
iT =


ctcβ −st ctsβ ai−1

sαsβ + stcαcβ ctcα cαsβst − cβsα −disα
sαcβst − cαcβ ctsα sαsβst + cβcα disα

0 0 0 1


(2)

where, ct = cos (ti) , cβ = cos (βi) , cα = cos (αi−1) , sα =
sin (αi−1) , st = sin (ti), and sβ = sin (βi).
According to Eq.(2), the end pose of the manipulator can

be solved as

0
6T =

0
1T ·

1
2T ·

2
3T ·

3
4T ·

4
5T ·

5
6T (3)

B. GEOMETRIC ERROR MODEL
The geometric parameter errors of the manipulator are accu-
mulated by each joint, which include the geometric parameter
errors of 1ai−1, 1βi,1αi,1ti,1di. By substituting those
geometric parameter errors into Eq.(1), the geometric errors
are

d i−1i T = Ai − i−1
iT = i−1

iT · δ
i−1
i T (4)

where, δi−1i T is the differential expression between adjacent
joints of (i-1)th and ith.
The geometric parameter errors are expressed as a differ-

ential form, then the transformation matrix can be written as

d i−1iT =
∂ i−1iT
∂ai−1

1ai−1 +
∂ i−1iT
∂αi−1

1αi−1 +
∂ i−1iT
∂di

1di

+
∂ i−1iT
∂ti

1ti +
∂ i−1iT
∂βi

1βi (5)

Then the accumulative errors of the 6 DOF manipulator
between each joint can be written as

0
6T + d

0
6T =

6∑
i=1

(
i−1

iT + d i−1iT
)

(6)

The redundant parameters should be eliminated before
identification. By considering the redundancy theory and the
rank of matrix, the Jacobian matrix U is obtained [36].

Then the relationship between position errors and geomet-
ric parameter errors is

S = U ∗ xMDH (7)

where S is position errors vector, U is the Jacobian matrix of
the M-DH parameters, and xMDH is the geometric parameter
errors of the M-DH.

The geometric parameter errors in Eq.(7) can be solved by
the inverse kinematic model. However, the ill-posed problem
of this model might lead to no solution. For this reason, the
coefficient matrix should be modified by a regularization
method.

III. REGULARIZATION OF THE GEOMETRIC ERROR
MODEL
According to the geometric error model in Eq.(7), the model
is built on geometric parameter errors

f = f (1di,1ai−1,1αi−1,1θi,1βi) (8)

where, 1di,1ai−1,1αi−1,1θi,1βi are the geometric
parameter errors at the ith joint.
According to the rotation matrix and the translation matrix,

the relationship between the frames c and b can be written as

b
cT =

[
b
cR

bpcO
0 1

]
(9)

where, bcR is the rotation matrix, and bpcO is the translation
matrix.

Combining Eq.(7), Eq.(8), and Eq.(9), the geometric error
model of the manipulator can be converted into

fj (1di,1ai−1,1αi−1,1θi,1βi) = p− p′ (10)

where, p is the reference position, and p′ is the measured
position.

In order to identify the geometric parameter errors in
Eq.(10), it is necessary to overcome the problem of no solu-
tion or multiple solutions caused by the ill-posedness of
the inverse model. Therefore, an appropriate regularization
method is designed for the 6DOF manipulator with a high-
dimensional solution model.

A. TIKHONOV REGULARIZATION
The key to the regularization method is to balance the
weighted sum of xMDH and the residual sum of UxMDH − S
and minimize their sum. Mathematical expression

M = argmin
{
||UxMDH − S||22 + λ||xMDH ||

2
2

}
(11)

where, λ is a regularization parameter to balance the model
authenticity and the well-posedness.

By differentiating Eq.(11), we can get

dM/
dxMDH = 0 (12)

In details,

dM/
dxMDH

=
d
[
(UxMDH − S)T (UxMDH − S)+ UT (λI )T (λI )U

]
dxMDH

(13)

Then we can solve Eq.(14) as

−2UT S + 2UTUxMDH + 2 (λI )T λI = 0 (14)

Parameter identification of error model by Eq.(14). On the
one hand, the smaller of the regularization parameter, the
better of the model authenticity. On the other hand, the larger
the value of the λ, the better the stability of the model.
Authenticity and stability should be considered at the same
time. For this reason, the regularization appropriate parame-
ters should be selected [37], [38].
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FIGURE 2. Algorithm flowchart.

B. SELECTION OF REGULARIZATION PARAMETER-L
CURVE
The equation for the L curve is as follows [39]{

u(λ) = log||Uxλ,δ − Sδ||
v(λ) = log||xλ,δ||

(15)∥∥Uxλ,δ − Sδ∥∥ is the modulus of the residual about λ,
∥∥xλ,δ∥∥

is the modulus of the solution about λ. By solving Eq.(15),
we can get a curve about u(λ) and v(λ).
In the vertical part, the regularization parameter is a small

value, it shows poor stability but good authenticity. In the
horizontal part, the regularization parameter is large, it shows
good stability but poor authenticity. But, when using the L
curve to select the regularization parameter, both the accuracy
and the stability can be guaranteed. The curvature is used as
a criterion, which expressed as

k =

∣∣u′v′′ − v′u′′∣∣∣∣(u′)2 + (v′)2∣∣3/2 (16)

The optimal regularization parameter can be obtained at the
inflection point of the L curve. The regularization parameters

obtained on the base of L curve are optimized in two
steps by stepping method. The detailed flow chart is shown
below.

IV. LASER TRACKER CALIBRATION AND ERROR
COMPENSATION
A. POSITION CALIBRATION
The end position of the manipulator is tested by the laser
tracker. Since the laser tracker and the manipulator are not in
the same frame, it is essential tomake a coordinate conversion
by position calibration [40]. The frame between the laser
tracker and the manipulator is converted by utilizing the
SVD(Singular Value Decomposition) method, which is built
as

F = min
w∑
i=1

qi
∥∥(Rp′i + t)− pi∥∥22 (17)

where, q is the weight factor of the measurement data, gener-
ally, qi =1, p′i is the i

th measured position in the laser tracker
frame, pi is the ith reference position in themanipulator frame,
and w is the number of sampling position.
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TABLE 2. Simulation reference data.

TABLE 3. Measuring position and position error.

TABLE 4. Geometric parameter errors after calibration.

B. COORDINATE CONVERSION
As the measured point, the target ball installed on the end of
the manipulator is tested by a laser tracker. However, there
is a difference between the measured pose and the end pose
of the manipulator in actual calibration experiment. The end
pose of the manipulator (i = 6) in Eq.(3) should be converted
to the target ball frame. The coordinate conversion between
the end of the manipulator and the target ball is

6
7T =

[
I P
0 1

]
(18)

where, P = [1x,1y,1z], I is the identity matrix.
According to the kinematics model of the manipulator get

0
7T =

0
6T
∗6
7T =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1



1 0 0 1x
0 1 0 1y
0 0 1 1z
0 0 0 1

 (19)

where, 6
7T is the transformation matrix of the tool frame

relative to the base frame, and 0
7T is the transformation matrix

of the tool frame relative to the manipulator end frame.

The coordinates of the target ball are
xn = px + nx1x + ox1y+ ax1z
yn = py + ny1x + oy1y+ ay1z
zn = pz + nz1x + oz1y+ az1z

(20)

According to the LSMmethod,1x,1y, and1z can be solved
by

D− d =
[
(1xm)2 + (1ym)2 + (1zm)2

]1/2
−

[
(1xk)2 + (1yk)2 + (1zk)2

]1/2
(21)

where, D is the distance between the point (xk , yk , zk) and
(xk+1, yk+1, zk+1) by laser tracker, d is the distance between
the point (xm, ym, zm) and (xm+1, ym+1, zm+1) by MD-H,
1xm = xm+1 − xm,1ym = ym+1 − ym,1zm = zm+1 −
zm1xk = xk+1 − xk ,1yk = yk+1 − yk ,1zk = zk+1 − zk .

C. ERROR COMPENSATION
The error compensation of the manipulator relies on the geo-
metric error model and regularized parameter identification.
When considering the geometric errors, the end pose of the
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TABLE 5. Error comparison before and after calibration.

FIGURE 3. The calibration system of the 6 DOF manipulator.

manipulator can be rewritten as

p′ (α +1α, a+1a, t +1t, d +1d, β +1β)

= p (α, a, t, d, β)+ dT = p′ (α1, a1, t1, d1, β1) (22)

where, α1 = α + 1α, a1 = a + 1a, t1 = t + 1t, d1 =
d +1d, β1 = β +1β.

V. NUMERICAL SIMULATION
In order to verify the suggested method, a numerical simula-
tion is carried out. According to the number of identification
geometric parameter errors, there are 9 sets of joint angles
T = (ti|i = 1, 2, . . . , 6) and their corresponding reference
points selected, as Table 2 shows.

Then the coordinate of those 9 points are measured by the
laser tracker, as Table 3 shown. Calibrate the measured values
to themanipulator frame through Eq.(17)- Eq.(21), and obtain
the error between the measured position and the reference
position, as shown in Table 3, the geometric errormodel of the
manipulator is obtained by Eq. (4)- Eq. (7). Next, according
to the geometric error model, through Eq. (15) and Eq. (16)
and the principle of the L curve, the regularization parame-
ters were obtained. Then, the optimization and verification
are performed near the obtained regularization parameters to
obtain the optimal regularization parameters.

Finally, the identified geometric parameter errors are
obtained through Eq. (11), as shown in Table 4. The new geo-
metric parameters are obtained through error compensation,
and the nine-points absolute position errors were obtained,

as shown in Table 5. The validity of the method is verified
according to the position absolute errors.

It can be seen from the simulation results that the absolute
position error of the manipulator has been improved to a
certain extent after calibration. It indicates that the suggested
method has a certain validity.

VI. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL DESIGN
To illustrate the application advantages of the RPIM, the
calibration system is designed, which consists of a manip-
ulator, a measurement tool, a target ball, a cooperative target,
and a laser tracker, as Fig.3 shows. The selected manipulator
has a load capacity of 19 kg, a maximum range of 1024 mm,
and a repetitive positioning accuracy of 0.03 mm. The Leica
AT403 is used as a measurement tool, and the absolute rang-
ing accuracy of the laser tracker is 5µ m. The target ball is
fixed at the end of the manipulator by a connector.

In order to make the experimental results universal,
we chose a cube measurement space with a side length of
800mm. The measuring cube is the area where the manip-
ulator moves the most, 52 relatively uniform points are
selected in this space. There are 52 scattered points tested
to be measured by the laser tracker. To ensure the stability
and consistency of the measurement results, each point is
tested with 4 seconds pause, as well as at a temperature of
around 25◦C
The measured 52 points are displayed as the measured

points as Fig. 4 shows. It can be seen that there is a difference
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TABLE 6. 52 sets of joint angles.

FIGURE 4. Points on the different frame.

between the reference points and the measured points even
though they all correspond to the same point.

Obviously, those differences can be offset by a certain oper-
ation both the rotation and the translation. The relationship
between different frames can be converted by Eq.(17). The
end position indicates that using the constraints of Eq.(21),
the LSM is fitted to obtain P(-3.402, 15.293, 49.356), the

matrix of the tool frame relative to the end frame is

[
I P
0 1

]
=


1 0 0 −3.04154
0 1 0 15.2929157
0 0 1 49.35572
0 0 0 1

 (23)

After that, unifying the points to the same frame, the points
on different frames are calibrated by the SVD conversion to
the same frame, as Fig.5 shows. In this way, the differences
between the measured points and the reference points on the
same scale will really show up.

It can be seen from Fig.5 that the reference points are
approximately around the measured points on the same scale,
indicating that the calibration results are correct. To illustrate
the accuracy of the calibration method, the absolute position
errors are solved by those 52 points, as Fig. 6 shows.

B. MATHEMATICAL VALIDATION AND ANALYSIS
Before uploading the calibration errors to the traditional
inverse kinematic model to identify the geometric parameters
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FIGURE 5. Points after coordinate conversion.

FIGURE 6. Calibration error of the selected points.

of the manipulator, the ill-posed problem should be judged by
its condition number, which can be expressed as

cond(U ) = ‖U‖ ∗
∥∥∥U−1∥∥∥ (24)

where, U is the Jacobian matrix. By using the above data, the
condition number is 1.157 × 1021, which is a great value to
research the inverse kinematic model ill-posed. To improve
this situation, the suggested RPIM is used for parameters
identification.

To optimize the regularization parameter, the L curve
method is described by Eq.(15) and Eq.(16). By using regu-
larization parameter identification, the initial value obtained
by the L curve method is 3.063 × 10−11. However, the
regularization parameters obtained by this methodmay not be
the optimal regularization parameters, so it needs to be further
analyzed and optimized. The initial regularization parameter
is selected in the range of 3.063 × 10−20 to 3.063 × 10−10,
the step frequency is 30. According to the principle of the
minimum norm of residual sum, the residual sum (L2) norm
are the smallest among the above range when λ = 3.063 ×
10−14, as Fig.7 shows. It can be seen that the value of the
inflection point is 3.06× 10−14. The L2 norm has a trend of
decreasing trend with a rapid rate of descent before this point
while showing a slowly changing trend after this point.

In order tomake the regularization parameters more advan-
tageous, the same order of magnitude analysis is carried out
on the basis of the above results, the regularization parameters
in the range of 0.563× 10−14 to 5.063× 10−14. Ten groups
of data were uniformly selected for comparison. All those

FIGURE 7. L-curve under regularization method.

selected regularization parameters are substituted into the
RPIM to solve the position on the end of the manipulator by
utilizing the selected 52 joint angles, as Fig.8 shows.

It can be seen from Fig.8 that different regularization
parameter leads to different result for the RPIM. Among
which the case from 1 to 10 are the coordinate of the
simulated points solved by the regularization parameter of
0.563×10−14, 1.063×10−14, 1.563×10−14, 2.063×10−14,
2.563×10−14, 3.063×10−14, 3.563×10−14, 4.063×10−14,
4.563× 10−14 and 5.063× 10−14, respectively.

To verify the accuracy of those simulated points, the
absolute position errors are solved for each measured point,
as Fig 9 shows. It shows that the absolute position error is
minimal when the regularization parameter is 3.063× 10−14

compared to the other cases.
As well, the absolute position errors of each point under

different regularization parameters are compared. It shows
from Fig. 10 that there is a trend of monotone decreasing
when the regularization parameter ranges from 0.563×10−14

to 3.063× 10−14 while a trend of monotone increasing when
the regularization parameter is greater than 3.063 × 10−14.
All the error curves have the same tendency, it can be fully
demonstrated that the regularization parameter of 3.063 ×
10−14 is superior to other parameters.

According to the regularization parameter 3.063× 10−14,
the geometric parameter errors of the inverse kinematic
model can be identified, as TABLE 7 shows.

To further validate the accuracy of our suggested method,
the LSM, the GN, and the GD were also applied under the
same experimental conditions as some comparison methods.

The absolute position errors of the simulated points are
compared by NC (no calibration error), LSM, RPIM, GD,
and GN. It can be seen from Figure 11 that the errors of the
NC are greater than any other method. The average errors
are 2.307mm for NC, 1.449mm for LSM, and 0.475mm for
RPIM. In addition, the absolute position error of NC is about
6 times higher than that of RPIM, the absolute position error
of LSM is about 4.2 times higher than that of RPIM, the
absolute position error of GD is about 4 times higher than
that of RPIM, and the absolute position error of GN is about
2 times higher than that of RPIM, respectively.

In order to verify the calibration effect of the suggested
RPIM method in the actual manipulator model, there are
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FIGURE 8. Simulated points solved by different regularization parameters with RPIM.

eighteen points randomly selected. About measured values,
all those points are measured by a laser tracker and their
corresponding joint angles are measured by the encoder,
as TABLE 8 shows.

According to the 18 groups of measure data, the position of
the simulated points is solved by RPIM. As a comparison, the
corresponding measured points are also plotted on the frame,
as Fig. 12 shows.

The RPIM in Fig. 12 represents the position coordinates
obtained after the regularization method is calibrated. It can
be seen from the figure that the simulated point is very close
to the measured point. In detail, the error between each axis is
that the x-axis range is -500 to 500, itsmean error is 0.671mm,
the y-axis range is -200 to 600, its mean error is 1.244mm, and
the z-axis range is -600 to 1000, its mean error is 2.815mm.
After using RPIM calibration, the x-axis error is reduced by
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FIGURE 9. Absolute Errors with different regularization parameters.

39.404%, the y-axis error is reduced by 88.489% and the
z-axis error is reduced by 99.796%, as Fig.12 shows. In a
word, our suggested method has a good effect on manipulator
calibration.

It can be seen from Fig.13 that the errors along the three
axes are small, the optimization effects on the z-axis are the

best one than x-axis and y-axis, and the x-axis are worse than
y-axis and z-axis.

As well, the NC, the LSM, the GN, the GD, and the RPIM
are compared by the absolute position errors, as Fig.14 shows.

According to the data in Figure 14, the average value can
be calculated as 0.468mm for RPIM, 1.435mm for LSM,
and 3.199mm for NC, 1.353mm for GD, 0.956mm for GN,
the errors of the RPIM, the LSM, the NC, and the GD are
decreased by calibration.

According to the 18 groups and 52 groups of the experi-
mental data, the maximum absolute position errors (MAX),
standard deviation (SD) and mean absolute position errors
(MAE) are also solved to evaluate the localization accuracy
of the manipulator, as TABLE 9 shows.

It can be seen from TABLE 9 that the MAX of NC is
almost ten times higher than that of RPIM, the MAX of
LSM is almost three times higher than that of RPIM, the
MAX of GD is almost four times higher than that of RPIM,
and the MAX of GN is almost twice times higher than that
of RPIM. The MAE of RPIM is almost one-sixth that of
NC, one-fourth that of LSM, one-third that of GD, and one-
half that of GN. It shows our suggested method has a high

FIGURE 10. Error curves under different regularization parameters. (a) Changes under different regularization parameters from the 1st point
to the 9th point. (b) Changes under different regularization parameters from the 10st point to the 18th point. (c) Changes under different
regularization parameters from the 19st point to the 27th point. (d) Changes under different regularization parameters from the 28st point
to the 36th point. (e) Changes under different regularization parameters from the 37st point to the 45th point. (f) Changes under different
regularization parameters from the 46st point to the 52th point.
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TABLE 7. Parameters of the inverse kinematics model.

TABLE 8. Outputs of the calibrated manipulator.

FIGURE 11. Error comparison with different identification methods.

TABLE 9. Error comparison among different algorithms.

accuracy than traditional methods. The SD of the RPIM
is the smallest one among all methods, which shows our
suggested method is stable when it comes to the manipulator
calibration.

The reduction percentage both of the MAE and SD relative
to the absolute position before calibration is also solved

FIGURE 12. Comparisons of the localization error.

TABLE 10. Reduction percentage both of the MAE and SD.

to evaluate the localization accuracy of the manipulator,
as TABLE 10 shows.

TABLE 10 shows the calibration method has a great influ-
ence on the localization accuracy of themanipulator. In detail,
the MAE is reduced to 42.942 % by the LSM, 46.591% by
the GD, 63.261% by the GN, and 81.331% by RPIM after
calibration. The SD is reduced to 94.987% by the LSM,
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FIGURE 13. Error ranges in the axes x , y , and z after calibration.

FIGURE 14. Absolute position errors’ comparison of different method.

69.922% by the GD, 85.730% by the GN, and 95.705% by
RPIM after calibration. In all, the kinematic model of the
manipulator is successfully recognized by RPIM and vali-
dated by numerical simulation and experiment.

VII. CONCLUSION
In order to identify the geometric parameter errors of the
manipulator more accurately, this paper proposes an RPIM
identification method to improve the localization accuracy
of the manipulator. On the one hand, when using MD-H to
model, it avoids the singularity when two axes are paral-
lel. On the other hand, ill-posed problems are raised during
parameter identification, and the regularization method can
solve this problem. The RPIM is an improved regularization
method based on Tikhonov regularization, and the specific
performance is that the improved L curve method is used for
selecting regularization parameters.

In addition, the experimental part uses a laser tracker to
data test, The RPIM compares with other methods in parame-
ter identification. Experimental results show that manipulator
geometric error model based on the Tikhonov regularization
can effectively improve the localization accuracy of the pose.
In addition, different regularization parameters have different
effects on results, resulting in differences in localization accu-
racy. Comparing with others, RPIM has higher stability and
smaller absolute position error, and better improves localiza-
tion accuracy.
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