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ABSTRACT The generation of music lyrics by artificial intelligence (AI) is frequently modeled as a
language-targeted sequence-to-sequence generation task. Formally, if we convert the melody into a word
sequence, we can consider the lyrics generation task to be a machine translation task. Traditional machine
translation tasks involve translating between cross-lingual word sequences, whereas music lyrics generation
tasks involve translating betweenmusic and natural language word sequences. The theme or key words of the
generated lyrics are usually limited to meet the needs of the users when they are generated. This requirement
can be thought of as a restricted translation problem. In this paper, we propose a fuzzy training framework
that allows a model to simultaneously support both unrestricted and restricted translation by adopting an
additional auxiliary training process without constraining the decoding process. This maintains the benefits
of restricted translation but greatly reduces the extra time overhead of constrained decoding, thus improving
its practicality. The experimental results show that our framework is well suited to the Chinese lyrics
generation and restricted machine translation tasks, and that it can also generate language sequence under the
condition of given restricted words without training multiple models, thereby achieving the goal of green AI.

INDEX TERMS Music lyrics generation, controllable generation, music understanding, constrained decod-
ing, fuzzy training.

I. INTRODUCTION
Music lyrics combine musical and literary elements. The
use of deep learning technologies to generate music lyrics
investigates the use of artificial intelligence in artistic cre-
ation. Music lyric generation can be defined as a musical
melody-conditioned language generation task that spans the
two domains of music understanding and language genera-
tion. Recently, music understanding has been mainly devel-
oped at the audio and symbolic levels. However, since audio
is easily affected by many factors, symbols, as an intuitive
form of musical description, are more suitable as the basis
for music understanding. As a result, the symbolic form of
musical melody is used as the input for lyric generation
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in this work. By converting musical melody symbols into
token sequences, we can model musical lyric generation and
machine translation both as a sequence-to-sequence model.

Formally, the music lyrics generation task can be analo-
gized to the machine translation task if the melody input
is transformed into the token sequence, as shown in
Figure 1. Music melody symbolization is generally repre-
sented by MIDI. Similar to natural language text in machine
translation, MIDI can be viewed as a sequence of musical
events, i.e. tokens of processed natural language text. The
main differences lie that a single note can be played for a
duration, and multiple notes can be played simultaneously.

In music lyrics generation, specific phrases and words
like subject or sentiment are usually proposed to be men-
tioned in the prediction when the domain of input is known,
it is a common and important requirement to improve the
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FIGURE 1. Analogy figure of machine translation and music lyrics
generation. The melody and lyrics in the music lyric generation example
comes from the theme song of the 2008 Beijing Olympics ‘‘You and Me.’’

controllability of the generation. While in machine transla-
tion, restricted translation is a special task, whose goal is to
generate specific pre-specified terms in the translation output.
Therefore, on the basis of treating the music lyrics generation
task asmachine translation task, we further transform the con-
trollable music lyrics generation task into restricted machine
translation task.

Neural machine translation (NMT) has recently entered
use because of rapid improvements in its performance [1], [2],
[3], [4], [5]. The translation mechanism of an NMT model
is a black box because it is a special deep neural network
model, which means that translation generation is uncontrol-
lable [6], [7], [8], [9]. Although uncontrollable (or unguaran-
teed) translation can satisfy basic requirements [10], [11], it is
unacceptable in some formal scenarios, particularly for key
numbers, time, and proper nouns. To address this concern, the
restricted translation task has been proposed [12], [13]. This
restricts translation by forcing the inclusion of prespecified
words and phrases in the generation output, which enables
explicit control over the system output.

Restricted machine translation incorporates human prior
knowledge into translation. It restricts the flexibility of the
translation to satisfy the demands of translation in specific
scenarios. Existing work typically imposes constraints on
beam search decoding. Although this can satisfy the require-
ments overall, it usually requires a larger beam size and
far longer decoding time than unrestricted translation, which
limits the concurrent processing ability of the translation
model in deployment, and thus its practicality. Lexically con-
strained (or guided) decoding (CD) [13], [14], [15], [16], [17],
a modification of beam search, has commonly been used in
recent restricted translation studies. Although CD is a reason-
able option for restricted translation, its slow decoding limits
the practicality of restricted translation. Therefore, we pro-
pose a novel training framework for restricted translation
that requires only minor changes to the ordinary translation
model, to address the inconvenience of the decoding time

overhead caused by additional constraints. In this framework,
restricted machine translation is achieved by the model struc-
ture instead of the CD.

Specifically, we perform translation in two modes in the
training framework: end-to-end translation and restricted
translation, and reuse the self-attention and cross-attention
in the decoder of the translation model. In the end-to-end
translation mode, self-attention adopts incremental attention
to the target sequence, and then integrates it with the source
representation in the cross-attention. In the restricted trans-
lation mode, self-attention simultaneously encodes the target
sequence with incremental attention encoding, constrains the
word order with non-positional bidirectional attention, and
then recursively fuses it with the cross-attention. To make the
restricted translation training mode adapt to the training data
situation with only parallel sentences available, we propose
the Sampled Constraints as Concentration (SCC) training
approach. In this approach, we sample the target sequence to
simulate the constraint words and impose additional penalties
on the loss of these sampled words.

Because the restricted translation is embedded with the
model structure and training objective in the translation
model trained with our framework, restricted translation is
performed without CD. Consequently, the inference speed
is substantially increased, which greatly improves the prac-
ticality of restricted translation. The effectiveness of our pro-
posed training framework is demonstrated by experiments on
both restricted machine translation tasks: (WAT21 En↔Ja)
and (WMT14 En→De and En→Fr), and lyric generation
task based on our own dataset. Results show that our end-
to-end translation model can achieve approximately the same
performance as the end-to-end translation baseline; more-
over, although it only requires unconstrained decoding, it can
achieve performance competitive or even superior with that of
the baseline with CD for both machine translation and music
lyrics generation tasks.

II. RELATED WORK
A. LYRIC GENERATION
Automated Song Writing (ASW) involves generating
melodies and lyrics using machine, with melody-to-lyrics
(M2L) generation [18], [19], [20], [21] being one of impor-
tant tasks. Although trained on rap lyrics, Nguyen et al. [22]
developed a lyric generator based on natural language gen-
erating techniques that can be used to generate various types
of songs. Onisawa et al. [23] merged a lyric generation com-
ponent and a music composing component into one system,
repeating two functions one after the other until the user’s
needs are met. Barbieri et al. [24] presented a framework of
Constrained Markov Processes (CMP) for lyric generation.
In comparison to pure Markov models and pure constraint-
based techniques, CMP can satisfy both style and structure
criteria. Potash et al. [25] found that the LSTM model out-
performed a Markov baseline model in automatic rap lyric
generation tasks, which can generate completely new lyrics
but in the same style as a rap singer.
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Castro et al. [26] introduced a creative lyric generation
model by merging two different language training mod-
els into one framework which could generate a wide
range of unique lyrics that are well-suited to song forms.
Saeed et al. [27] achieved better performance on poetry and
lyrics datasets with GAN framework for creative text gener-
ation than generative models based on MLE. Lu et al. [28]
built a two-channel seq2seq generation model for generat-
ing lyrics from a tune, which is more effective since two
separate RNNs and big Chinese lyric datasets are employed.
Wang et al. [29] developed a thematic-aware Seq2Seqmodel,
which is a framework for generating long Chinese lyrics that
are well-connected in context. It use LDA to extract the topic
so that lyrics may be generated to fit it. For the generation of
Chinese song lyrics, Fan et al. [30] proposed a novel Seq2Seq
model. It performs well in context connection and theme
awareness using huge Chinese lyric datasets for training and
encoding of multiple levels of contextual information. For
more flexible choices to be offered to users, Zhang et al. [31]
proposed an AI-assisted system for generating high-quality
lyrics that allows users to select from a variety of options
in generating new lyrics or selecting existing lyrics from
context.

Manjavacas et al. [32] proposed a method for produc-
ing hip-hop lyrics using a neural language model based on
RNNs that can be trained end to end. The method used in
Nikolov et al. [33] for creating rap lyrics has two processes:
producing new lyrics from new content and reconstructing
rap lyrics from key phrases retrieved from previous text.
Vechtomova et al. [34] worked on bimodal neural network
model with spectrogram VAE and text VAE for generating
lyrics from music audio clips. Chen et al. [21] proposed an
end-to-end system based on SeqGANs to automatically gen-
erate lyrics, in which the quality of generated lyrics is not
influenced much by a piece of melody or a constrained text
theme.

Besides, literature also explored other three tasks for
ASW: lyrics-to-lyrics generation (L2L) [35], melody-to-
melody generation (M2M) [36], [37], lyric-to-melody gen-
eration (L2M) [38], [39].

B. MACHINE TRANSLATION
Vaswani et al. [40] proposed a newmodel that combined neu-
ral probabilistic language model [41], rectified linear units,
and noise-contrastive estimation, and they integrated it into
a machine translation system by reranking k-best lists as
well as direct integration into the decoder. Consequently,
they improved the scale of NMT model to 1.1B in a large
range test across four languages. RNNsearch is a new frame-
work proposed by Bahdanau et al. [1], instead of encoding
the source sentence into a fixed-length vector, which lim-
its the performance of traditional models, their model auto-
matically searched for parts of a source sentence related
to predicted target words. Luong et al. [42] proposed two
effective frameworks of attention-based NMT: global and
local, which outperformed baselines in a variety of translation

tasks. Sennrich et al. [43] introduced a method for improving
machine translation fluency which employs pseudo parallel
training data synthesized from back-translation as an addi-
tional parallel dataset while without changes to the normal
neural network architecture. A simple but effective method
that encodes rare and non-original words as sequences of sub-
word units is proposed by Sennrich et al. [44] for improving
the machine translation performance of NMT. In compari-
son to previous back-off dictionary baseline models, subword
model achieves better BLEU scores.

Freitag et al. [45] presented knowledge distillation as a
method for reducing the time cost of student NMT model
which obtains better translation quality based on the teacher
model. Ahmed et al. [46] proposed a weighted Transformer
with multiple modified attention layers, which consists of
multiple self-attention branches instead of multi-head atten-
tion. The resulted model obtained better translation perfor-
mance compared to the baseline model. Belinkov et al. [47]
explored two strategies for developing a more robust model
that can not only deal with noisy texts but also normal
structure of words.

SwitchOut is an approach introduced by Wang et al. [48]
for augmenting data in NMT training. They randomly substi-
tuted parts of words in both the source and target sentences
with other random terms from their respective vocabularies,
which outperforms previous strategies such as word dropout
in experiments on three different translation datasets. Accord-
ing to Ott et al. [49], reduced precision and big batch training
can yield NMT training speedup. Shen et al. [50] developed
an evaluation process to find amodel that can counter-balance
the diversity and quality of generations when compared
to various references. It was found that certain types of
mixture models are more reliable in contrast when com-
pared to variational models and diverse decoding approaches.
Edunov et al. [51] revealed that, when compared to BLEU,
back-translation improves translation accuracy and produces
outputs that are closer to natural text. Nguyen et al. [52]
developed a data diversification technique with fewer param-
eters and computations for improving the performance of
NMT models by mixing forward and backward model
predictions and merging them with original datasets.

C. CONSTRAINED DECODING
Lexically constrained (or guided) decoding (CD), a modifi-
cation of beam search, has commonly been used in recent
restricted translation studies. Specifically, some prespecified
words or phrases are forced in translation choice. However,
although these approaches can theoretically achieve the goal
of restricted translation, existing methods are very expensive
in terms of decoding time because of the additional con-
straints that must be considered in decoding; this limits the
practicality of CD. Starting from Post et al. [13], in which
CD was introduced and utilized in NMT, attempts have
been made to reduce the time overhead of CD by the use
of dynamic beam allocation. Although the time complex-
ity is formally consistent with that of general beam search,
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it remains too inefficient to be used on a large scale [15].
Hu et al. [16] further extended CD and improved the through-
put of restricted translation systems by using batching in
vectorized dynamic beam allocation. Although these efforts
have improved the practicality of restricted translation, the
decoding speed is still far less than that of ordinary decoding.

III. MUSIC LYRICS GENERATION
The melody of the music is used as input to generate the
lyrics. There are two types ofmusic that are currently popular:
audio signals and symbolic formats. Although the former can
represent various music inputs and easy-to-obtained, since it
is too complex and not intuitive, we chose symbolic format
as our music melody input.

A. MIDI TO COMPOUND WORD
Although MIDI is a simple and effective format for music
melody representation, it is not a optimal solution for music
melody understanding. Recently, diverse token representa-
tions for MIDI have been proposed, with differences in many
aspects such as the factors in MIDI being considered (e.g.,
melody [53], lead sheet [54], piano [36], [55], or multi-track
music [56], [57]) the temporal resolution of the time grid, and
the way the advancement in time is notated [36].

REMI [36] is a common representation format that uses
[bar] and [position] tokens to place tokens on a met-
rical grid that uniformly divides a bar into a certain number
of positions and assumes symbolic timing. Based on this,
Hsiao et al. [58] further employed an expansion-compression
trick to convert a piece of music to a sequence of compound
words by grouping neighboring tokens, significantly short-
ening the token sequences. As a result, we convert MIDI to
the compound word format as our input. According to the
practice of Hsiao et al. [58], we convert MIDI into 7 types of
symbols: Tempo,Chord, Bar-beat, Type, Pitch,Duration, and
Velocity. For better illustration, we show part of melodies of
Joe Hisaishi’s "The Sun Also Rises" and transformed MIDI
into compound words, as shown in Figure 2. As indicated
above, Tempo is the speed or pace of a given piece,Chord rep-
resents any harmonic set of frequencies composed of multiple
notes that sound simultaneously, Bar-beat is the basic unit of
time, and Type, Pitch, Duration, and Velocity are perceptual
properties of sounds.

B. CONDITIONAL GENERATION AS TRANSLATION
Machine translation takes the source language input XMT =
{x1, x2, . . . , xn} as input, generates the target language output
Y , and the translation model optimization goal is P(Y |XMT ).
The music lyrics generation task is a conditional generation
task. It takes the music melody as the input and outputs it
as the lyric text sequence. After converting MIDI to com-
pound words, formally, the music melody input is XMS =
{[x11 , x

2
1 , . . . , x

7
1 ], [x

1
2 , x

2
2 , . . . , x

7
2 ], . . . , [x

1
n , x

2
n , . . . , x

7
n ]} and

the generation output is Y = {y1, y2, . . . , ym}, where
[x1i , x

2
i , . . . , x

7
i ] indicates the i-th compound word. Then the

modeling objective of the music lyrics generation model is
P(Y |XMS ).

The only difference between the two task models is the
input, which is a common token in one case and a compound
word in the other. As a result, it is only necessary to trans-
form the input embedding layer and concatenate together
the embeddings of compound words to form a compound
embedding in order to adopt a model consistent with machine
translation, i.e. we convert the music lyrics generation as
machine translation. Formally, the two objectives unified to
P(Y |E), where E = emb(XMT ) in machine translation and
E = [emb(X1

MS ) ⊕ emb(X2
MS ) ⊕ . . . ⊕ emb(X7

MS )] in music
lyrics generation, emb(·) indicates the embedding layer.

C. RESTRICTED GENERATION
Restricted generation is a type of controllable generation
in which terms to be included in the generated sequence
are pre-specified in order to improve the generated topic
relevance or sentiment consistency. Specifically, we define
the pre-specified terms as C , the modeling objective for
restricted generation is P(Y |E,C). Similarly, this modeling
objective is consistent with that of restricted machine transla-
tion, so we can adopt a model same with restricted machine
translation.

Because data and benchmarks for machine translation are
more readily available, and evaluation metrics are more sim-
ple and intuitive. Thus, in this work, we first investigate a
new model structure and method based on restricted machine
translation, and then adapt the method to controllable music
lyrics generation to explore the performance of music lyrics
generation.

Because, with the exception of minor differences in the
embedding layer structure, the music lyrics generation is con-
sistent with machine translation, we will discuss on the model
structure and training approach based on machine translation
in the following sections.

IV. OUR TRAINING FRAMEWORK
We propose a fuzzy training framework. It refers to mod-
els that are exposed to both controllable and uncontrollable
language generation settings during training. In our frame-
work, uncontrollable generation is the basis of controllable
generation, and constraint words are introduced into language
generation as fuzz to improve the generalization ability of
the model for both uncontrollable generation and controllable
generation. Take NMT as example, our training framework
comprises two training subprocesses: end-to-end translation
and restricted translation. Recent restricted translation studies
have focused mainly on the decoding phase, but we set out to
integrate restricted translation into the training phase, which
makes the motivation of our work completely different from
that of previous studies. Our implementation is based on the
existing mainstream Transformer NMT baseline; however,
because the training method is independent of the baseline,
our training framework can easily be generalized to other
NMT models and language generation tasks.
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FIGURE 2. Illustration of MIDI to compound word format. The melody comes from ‘‘The Sun Also Rises" by Joe Hisaishi.

A. END-TO-END TRANSLATION TRAINING
The most widely adopted form of machine transla-
tion is end-to-end translation, which usually employs an
encoder–decoder architecture. In the training of end-to-
end machine translation, given a source language input
X = {x1, x2, . . . , xn} and target language translation Y =
{y1, y2, . . . , ym}, the model with parameter θ is trained to
generate the target output sequenceY according to the source
input sequence X.
Taking the Transformer model as an example, the encoder

is composed of the multi-head self-attention module, whose
purpose is to vectorize and contextualize the source input
sequence. This module can be formalized as:

HX
= SelfAttnenc(X+ Pos(X)), (1)

where Pos(·) represents the position encoding of a sequence,
SelfAttnenc denotes the stacked multi-head self-attention
encoder, and HX is the contextualized source representation.
A typical decoder comprises two main components: self-
attention and cross-attention. In the self-attention component,
the target representation is encoded with similar multi-head
attention structures,

ĤY
= SelfAttndec(IncMask(Ŷ+ Pos(Ŷ))), (2)

where Ŷ = {BOS, y1, y2, . . . , ym−1} is the shifted version
of the target sequence Y, SelfAttndec denotes the stacked
multi-head self-attention layers (similar to the encoder), and
IncMask is the extra incremental mask adopted because the
sequence on the decoder side is generated incrementally. The
target representation is fed to the cross-attention component,
as a query, and the source representation is used as the key
and value to obtain the final representation, which is then
mapped to the target vocabulary space through a linear and
softmax layer. The final predicted probabilities can be written
as follows:

P(Y) = Softmax(CrossAttn(ĤY ,HX )). (3)

The model parameter θ is optimized by minimizing the neg-
ative log-likelihood of the gold tokens, according to their
predicted probabilities:

LE2E = −

m∑
i=1

logP(yi)

= −

m∑
i=1

logP(yi|X; Ŷ<i; θ ), (4)

where Ŷ<i indicates the sequence before token yi. In the infer-
ence stage, greedy (or beam) search is employed to generate
the translation sequence according to predicted probabilities
P(yi) = P(yi|X;QY<i; θ), where QY is the generated token
sequence.

B. ILLUSTRATION FOR SAMPLED CONSTRAINTS AS
CONCENTRATION
In Figure 3, we show an illustration of the NMT model
in the SCC training approach. The illustrated exam-
ple has input source sentence x1, x2, x3, x4; and target
translation y1, y2, y3, y4, and tokens previously generated
BOS, y1, y2, y3. In implementation, for efficiency and con-
venience, we use a padding mask instead of sampling the
target translation. Taking y1 as a sampled constrained word,
other tokens are masked, then the original previous output
tokens are encoded with incremental attention, and the con-
strained word sequence is encoded with bidirectional atten-
tion. Finally, and the loss for y1 is additionally penalized to
reflect the concentration.

C. TRAINING DETAILS
In our framework, for an input mini-batch, we first use
the end-to-end translation training procedure to deter-
mine the loss LE2E. We then sample the target sequence,
use the decoder’s self-attention component to encode, and
reuse the source representation and incremental target rep-
resentation in the end-to-end translation. It is only necessary
to recalculate the cross-attention component to determine the
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FIGURE 3. The loss for sampled constraints as concentration.

Algorithm 1: Training Procedure

1 for t = 1, 2, · · · ,N do
2 HX

← SelfAttnenc(X+ Pos(X));
3 ĤY

← SelfAttndec(IncMask(Ŷ+ Pos(Ŷ)));
4 End2end Translation
5 LE2E← Softmax(CrossAttn(ĤY ,HX ));

6 Restricted Translation
7 C← Sample(Y);
8 HC

← SelfAttndec(C);
9 LRT← Softmax(CrossAttn(ĤY ,HX )+

CrossAttn(ĤY ,HC ));
10 L← LE2E + γLRT;

loss LRT. The model parameters are updated in the gradient
backward propagation with the two losses added. Because
most of the calculations are reused, a small increase in train-
ing timemakes the trained model suitable for both end-to-end
and restricted translation.

We show the training procedure of our proposed frame-
work in Algorithm 1. N is the number of training epochs, and
steps 2 and 3 are the reused steps of end-to-end translation
and restricted translation training subprocedures. In compar-
ison to ordinary NMT training, the constraint encoding and
cross-attention calculation are the only additions our pro-
posed framework requires.

D. RESTRICTED TRANSLATION TRAINING
In recent work on restricted translation, CD, a modifica-
tion of beam search, has generally been adopted. In CD,

P(yi) remains unchanged and external search processes are
employed, which increases the decoding time overhead.
In this paper, we focus on improving the efficiency of
restricted translation bymodifyingP(yi) to eliminate the addi-
tional search processes. Given the constrained word sequence
C = {c1, c2, . . . , ck}, CD adds additional terms to the
predicted probability of the model, and C is treated as an
additional input prompt. The output probability P(yi) then
becomes:

P(yi) = P(yi|X;C; Ŷ<i; θ ). (5)

According to this change in the form of probability,
we made a simple modification to the workflow of the model,
keeping themodel structure unchanged. First, we encoded the
constrained word sequence with the self-attention component
of the decoder. Because the input order of the constrained
word sequence is usually inconsistent with the word order of
the target sequence, we removed the positional encoding, tak-
ing advantage of the position invariance of the self-attention
layer. In addition, these constrained words are visible during
the entire translation generation process, so there is no need
to use the incremental mask strategy. Finally, the constrained
words representation is as follows:

HC
= SelfAttndec(C). (6)

Regarding such a representation as an additional context,
outside of the source representation, the predicted probability
of the model can be written as:

P(Y) = Softmax(CrossAttn(ĤY ,HX )

+CrossAttn(ĤY ,HC )). (7)

E. SAMPLED CONSTRAINTS AS CONCENTRATION
The training of end-to-end NMT models generally uses par-
allel sentences between source and target languages, whereas
restricted machine translation requires an additional con-
straint sequence. To hide the difference between restricted
translation training and testing, we propose the SCC training
strategy.

Because restricted machine translation training requires
additional given constraint sequences, we randomly sample
the target sequence to obtain constrained words in this train-
ing strategy. However, this is insufficient. Because these addi-
tional target words are already exposed to the decoder, the
generation of these tokens would become quite easy, and the
goal of fully training the model would not be accomplished
(i.e., there are shortcuts). This would have an undesirable
impact on end-to-end translation (as when no constrained
words are prespecified) and reduce the model’s robustness,
which is incompatible with our general training framework.
Therefore, we propose additional concentration penalties for
the losses of these exposed constrained tokens. Denoting the
sampled sequence as SYα , where α is the sampling ratio, and
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the penalty factor as γ , the final loss is:

LRT = −

m∑
i=1

(
(1+ γ1(yi ∈ SYα ))

× logP(yi|X;SYα ; Ŷ<i; θ )
)
, (8)

where 1(·) is the indicator function. Please refer to
Appendix IV-B for an illustrated figure and more details.

V. EMPIRICAL EVALUATION AND ANALYSIS
A. SETUP
For basic NMT experiments, our method was evaluated
on the ASPEC [59] En↔Ja benchmark1 and the WMT14
En→De and En→Fr benchmarks. The constrained words for
the ASPEC En↔Ja test set were provided by the WAT21
restricted translation shared task and, for WMT14 En→De
and En→Fr, we followed previous work by adopting random
sampling to extract the constraints. We chose two typical
Transformer model settings as our baseline: Transformer-
base and Transformer-big, both of which are consistent with
Vaswani et al. [3]. During training, we set α = 0.15 and
γ = 1.0, the batch size was fixed at 64. For a fair compar-
ison, we utilized beam search strategy in decoding and the
decoding beam size was all set to 10.

The framework was implemented using Fairseq [60].
In machine translation experiments, the same data prepro-
cessing and subword-splitting [44] script were used for
WMT14 En→De and En→Fr as in the Fairseq examples.
For WAT21 En↔Ja, because of the small size of the ASPEC
training set, we also merged theWMT20 En↔Ja and ASPEC
training sets to train the model. The joint subword merge
size was 44,000 and the other details of preprocessing and
the model are consistent with WMT14 En→De. In music
lyrics generation, we obtained popular Chinese songs (MP3
format) and lyrics (LRC format) in the past 20 years that are
well-known and publicly available on the Chinese Internet,
with a total of 2081 pieces of 168-hour audio data. Based on
the pre-trained audio to midi transcription model provided by
Kong et al. [61], mp3 is transcribed intoMIDI format.2 Then,
we performed MP3-MIDI synchronization, melody extrac-
tion, chord recognition, and quantization steps following [58]
to obtain normalized compound word format. We perform
gap identification for music sequence segmentation accord-
ing to the time information given in the lyrics. We set the
shortest sentence length of the lyrics is 64 and the maxi-
mum sentence length is 128. By combining the sentences and
their corresponding input that are too short, the input of a
single sentence that is over-length will be truncated. Finally,
336 melody-lyric pairs were sampled as the development set,
400 as the test set, and 19,000 as the training set. The prepro-
cess details is shown in Figure 4. We use the character-based

1https://sites.google.com/view/restricted-translation-task/
2Notably, since Kong et al. [61]’s work is piano-based, we still use their

pre-trained model for transcription. Although our dataset is not limited to
piano types, we manually checked the MP3-to-MIDI results and found the
quality to be acceptable.

FIGURE 4. Preprocess details of Chinese pop song dataset.

token segmentation to avoid the need for word segmentation
in Chinese lyrics. In addition, in the controllable lyrics gener-
ation scenario, we sample the nouns that appear in the lyrics
based on the part-of-speech to simulate the user’s need for
lyrics to contain specific words.

We reported a common BiLingual Evaluation Understudy
(BLEU) [62] metric – MultiBLEU scores for automatic eval-
uation in our machine translation experiments and calculated
them using the Moses script. The number of matches is cal-
culated without taking the position into account in the BLEU
computation by comparing the n-gram words of the candi-
date translation with the reference translation. The candidate
translation tends to be more accurate the more matches there
are. Formally, for each n-gram, the modified precision is cal-
culated as follows:

Pn =

∑E
i
∑K

k min
(
hk (ci),minj∈M hk (si,j)

)∑E
i
∑K

k min
(
hk (ci)

) ,

where sj indicates the j-th of the M reference translations, ci
indicates the i-th of the E generations, hk (ci) represents that
the number of n-gram k exists in the generation ci, and hk (si,j)
represents that the number of n-gram k exists in the refer-
ence si,j. The final evaluation metric is obtained by averaging
n-gram precision and then multiplied by the length penalty
factor.

BLEU = BP× exp
( N∑
n=1

wnPn
)
,

where BP is the brevity penalty to avoid the preference gen-
erating short sequences, N is the maximum grams adopted
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TABLE 1. Performance on WAT21 En↔Ja test sets. BS means general beam search, and CD means using constrained decoding. BS+ means beam search
with constrained words as an additional context. CD+ stands for constrained decoding with constrained words as an additional context.

which is usually set to 4, and wn = 1
N indicates that uniform

weights are adopted. For En, De, and Fr, we use the default
tokenizer provided by Moses [63], and for Ja, we adopted
Mecab3 for word segmentation. In the evaluation of WAT21
EN↔JA, we also reported a consistency metric – the Exact
Match (EM) score - according to the WAT21 official instruc-
tions. This score is the ratio of sentences in the whole cor-
pus that exactly match the given constraints. For each input,
if the characters of the model’s prediction exactly match the
characters of (one of) the reference, match = 1, otherwise
match = 0.

EM = (
T∑
t

max(matchi∈E,j∈M (ci, sj)))/T ,

where T represents the number of examples. For the EM score
evaluation, we use lowercase hypotheses and constraints, then
use character-level sequence matching (including whites-
paces) for each constraint in En, while for Ja, we use
character-level sequence matching (including whitespaces)
for each constraint without preprocessing. For the evaluation
of music lyrics generation, we reported two metrics, Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) [64]
and Perplexity (PPL). ROUGE is used to evaluate the n-grams
overlapping of candidate and reference lyric sentences to
judge the quality of the generated lyrics. For language gener-
ation tasks, BLEU metric measures the quality of generation
based on precision, while ROUGE measures the quality of
translations based on recall. Since lyrics generation is a cre-
ative generation task, which does not pursue full matching
with reference generation compared to machine translation,
the ROUGE with longest common subsequence matching
(ROUGE-L) metric is thus adopted.

RLCS =
LCS(c, s)
len(s)

, PLCS =
LCS(c, s)
len(c)

,

ROUGE-L =
(1+ β2)RLCSPLCS
RLCS + β2PLCS

.

where β is a hyper-parameter, and usually a large number
will be set, so ROUGE-L will pay more attention to recall

3https://taku910.github.io/mecab/

than precision. Despite different preferences, the ROUGE
and BLEU metrics are used to evaluate the matching degree
between the model generation and the reference, and besides
the matching, the fluency of the language generated by the
model is also an important metric, and we adopted PPL to
evaluate the fluency of the generated lyrics. It is calculated as
follows:

PPL = P(w1,w2, . . . ,wN )−
1
N

=
n

√√√√ N∏
i=1

1
P(wi|w1,w2, . . . ,wi−1)

.

It is worth noting that since lyrics are also a kind of artis-
tic creation, the evaluation is relatively subjective and lacks
benchmarks, which is not suitable for the model structure
exploration stage. Therefore our main basic experiments are
based on machine translation tasks due to its diverse datasets
and recognized metrics.

B. NMT RESULTS AND ANALYSIS
We present the performance of the models on the WAT21
En↔Ja restricted translation tasks in Table 1. First, for
both model architectures (Transformer-base (T-base) and
Transformer-big (T-big)), the end-to-end translation perfor-
mance (E2E) of our approach’s models is almost the same
as our baselines. This demonstrates that our training frame-
work still maintains high end-to-end translation performance,
even with restricted translation added, meaning it effectively
supports both end-to-end translation and restricted translation
simultaneously.

Second, on our end-to-end baselines, CD can also be used
to accommodate restricted translation. Its very substantial
gain in translation performance suggests that CD is a rea-
sonable option for restricted translation. However, under the
same conditions, its decoding speed is much lower than that
of ordinary decoding, which prevents it from being deployed
at a large scale. In our proposed framework, restricted trans-
lation is successfully supported with constraints as context
(CAC), without using CD. Like CD methods, our method
obtains a similar and substantial performance improvement,
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but it does so without sacrificing too much decoding speed,
which demonstrates that our proposed method is efficient and
effective.

Because CAC employs constrained word sequences as
additional context, it only imposes soft constraints on the
decoder, whereas CD imposes hard constraints. However,
because CAC and CD do not conflict, we combined the two
as CD+ to produce better results. Our experimental findings
attest to the effectiveness of this practice. Furthermore, CAC
significantly outperforms CD in Ja→En. This may be due
to the beam size of 10, which is insufficient for longer con-
strained sequences and limits CD performance (a larger beam
size will be better, see Figure 1(a)), but our proposed CAC
alleviates this shortcoming obviously. Furthermore, for the
EM score, CD adheres to hard constraints that the given con-
strained word must appear in the translation, whereas CAC
leverages soft constraints and instead focuses on the overall
translation, resulting in a higher BLEU for CAC and a higher
EM for CD. CD+, however, provides higher scores for both
these metrics.

As in previous studies on restricted translation, we also
investigated the impact of constrained words on restricted
translation. The constrained words were sampled from
the translation references of popular translation datasets
(WMT14 En→De and En→Fr). There are five com-
mon sampling strategies: rand1, rand2, rand3, rand4, and
phr4. randk means that the translation is sampled without
replacement k times, and phrk means that k consecutive
words are sampled. For a translation length less than k ,
an empty string is output because no constrained words are
given.

Table 2 compares the end-to-end translation performance
of our T-big model with that of Vaswani et al. [3]’s model.
Although we used the same model size and number of train-
ing steps, our model’s performance was inferior on En→De
but superior on En→Fr. This is a consequence of the use
of a larger beam size and the potential benefits of restricted
translation training on end-to-end translation. The results
also show that the translation performance improved dra-
matically even when only one constrained word was used.
This shows that our method of using constraints as a soft
restriction is very effective, and it also demonstrates that
translation can be improved substantially with some prior
knowledge of translation. The disparities between rand1 and
rand4 show that accurate prior knowledge of translation can
lead to more accurate translation, as the translation uncer-
tainty has been gradually reduced. Additionally, comparing
rand4 and phr4 demonstrates that the continuous sampling
of four constrained words can result in a greater performance
improvement than the discrete sampling of four constrained
words. This is because phr4 generally carries more useful
information than rand4.

C. LYRIC GENERATION RESULTS AND ANALYSIS
After exploring with machine translation tasks, we conduct
experimental explorations based on these models on our

TABLE 2. Performance on WMT14 En→De and En→Fr test sets.

TABLE 3. Music lyric generation performance on popular song dataset.

collected lyrics generation task. The evaluation results on
music lyrics generation are shown in Table 3.

Under both T-base and T-big model size settings, CD, CAC
and CD+ all achieved better generation performance than
their corresponding E2E baselines, which is consistent with
the conclusion of machine translation, i.e., more determinis-
tic information provided makes the generation process more
efficient and controllable, so the quality is better. Second, the
CAC method using soft constraints produces similar effects
to CD, but with slightly worse scores. The CD+ method
combining CAC and CD achieves the best generation results,
indicating that the simultaneous incorporation of soft and
hard constraints can exert a greater effect than either alone.
Third, in terms of decoding speed, CD and CD+ methods
bring the largest speed drop, while CAC brings relatively less.
And our framework can support both CAC and CD+ restrict
generation approaches.

GPT is an advanced language generation solution that has
achieved excellent performance in a variety of natural lan-
guage generation tasks. By ignoring the music information
in the input and relying solely on constraints as prompts,
restricted music generation can also be regarded as a special
natural language generation task. During training, we obtain
constraint-lyric pairs by random sampling on the training set
to finetune the GPT-2 model. As shown in Table 3, compar-
ing the results of GPT-2 and Seq2seq models, seq2seq mod-
els get better ROUGE-L scores, showing that music melody
information is essential for lyrics generation. PPL scores for
GPT-2 were better than those for Seq2seq models, which
indicates that GPT-2 with more language text generation
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TABLE 4. Results of ablation study on WAT21 En↔Ja test sets.

pre-training can generate more fluent results. It is worth not-
ing that since the model fitting measures cannot reflect com-
pletely the performance of generation models,thus our work
has limited referential significance on multimedia language
generation (MLG).

VI. ABLATION STUDY
A. INFLUENCE OF BEAM SIZE
To further demonstrate the advantages of our method,
we plotted the performance in BLEU score and total decoding
time with different beam sizes in Figure 5 and 6.
The results of BLEU score vs. beam size show that, for

CD methods or variants (CD+), the translation improves at
first as the beam size increases. However, after the beam size
increases beyond a certain threshold, the translation perfor-
mance decreases. Moreover, we have also observed that CD
methods require a larger beam size to outperform beam search
methods, and they perform worse when beam size is small;
because taking additional constraint words into consideration
requires more searching. There is no such issue with our CAC
method that employs beam search, however.

Figure 6 depicts the total decoding time for various beam
sizes. The test set contains 1,812 sentences. We use two
y-axes, a larger-scale one on the right to accommodate
and denote CD and CD+’s longer decoding times, and a
smaller-scale one on the left to denote E2E and CAC’s decod-
ing times. The decoding time results show that our CAC
method can come close to beam search, a practical restricted
translation solution, but CD and CD+ are extremely slow in
comparison.

We conducted ablation studies on the model structures and
training options of our proposed framework, as shown in
Table 4. Using a general MLE loss in restricted translation
training; without using SCC loss (-SCC); outperforms the
baseline, which shows that the use of restricted translation
training can effectively support restricted translation; how-
ever, including SCC loss still leads to an improvement over
this. This reveals that imposing additional penalties on the
loss of constrained words exposed to the decoder is an impor-
tant design decision. We also evaluated complete removal of
the restricted translation training and directly using the end-
to-end translation training model for CAC decoding (-RTT).
Our results show that the performance greatly suffered, which
illustrates the necessity of using restricted translation training
for the restricted translation of CAC decoding.

FIGURE 5. BLEU score vs. beam size on WAT21 En→Ja test set.

FIGURE 6. Decoding time vs. beam size on WAT21 En→Ja test set.

TABLE 5. Influence of melody on music lyric generation performance.

B. INFLUENCE OF α AND γ

SCC training introduces two new hyper-parameters: the sam-
pling ratio α and the penalty factor γ . To show the impact
of these two hyper-parameters on the translation effect,
we change one parameter while varying the (α = 0.15 and
γ = 1.0 are the static values) and plot the BLEU scores of
the resultant models in Figure 7 and 8. We also include the
E2E baseline performance (blue line) in the figures for better
comparison.
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TABLE 6. Case study of music lyrics generation on T-big architecture. The music melody and reference lyrics come from the famous Chinese song
‘‘Jasmine Flower.’’

FIGURE 7. BLEU score vs. α on WAT21 En→Ja test set.

Figure 7 shows that a sampling ratio that is too small or
too large will prevent RTT from training well. When α is too
small, the constrained sequence words used in training and
inference differ too much, but when the sample size is too
large, the training loss is very small because the majority of
the tokens are pre-exposed to the decoder, and the model does
not obtain sufficient training. Both situation will corrupt the

FIGURE 8. BLEU score vs. γ on WAT21 En→Ja test set.

models and are even worse than the baseline. As shown in
Figure 8, the penalty factor γ also has an effect on perfor-
mance. Because it is only used as a penalty, its impact is much
lower than that of α. Setting γ to 0.0 effectively removes
SCC, but there is also an upperbound on an effective γ , so the
best performance (which outperforms the baseline) will be
found using a γ that is neither too large nor too small.
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C. INFLUENCE OF MELODY FEATURES
The process of generating music lyrics involves two steps:
music understanding and language generation. music melody
is converted into a series of compound words forms of seven
basic features in compound Transformer, which is then short-
ened to make it easier to understand.We conducted additional
ablation experiments to investigate the influence of these
melody features on lyrics generation. As a comparisonmodel,
we chose T-base+CAC, and Table 5 list the empirical results.
Based on the results in the table, it can be seen that each of the
seven features influences the generation effect of lyrics differ-
ently. As far as ROUGE-L metric are concerned, Bar-beat,
Duration, and Tempo have the greatest impact, while Type
and Pitch have the least. This indicates that lyrics generation
is more dependent on rhythmic characteristics. In terms of
PPL metric, none of the seven effects are evident, indicating
that a single feature does not have significant impact on lyrics
generation fluency.

VII. CASE STUDY
Although we utilized the ROUGE-L and PPL metrics to
evaluate the quality of lyrics generation, since these met-
rics cannot intuitively reflect the quality of lyrics generation,
we sampled a instance from the test set to performed case
study and compared the predicted output of each model with
the reference lyric. The results is shown in Table 6.

From the comparison on generations, the reference lyrics
are rhyming. In the generated results of baseline, neither
the E2E method nor the CD method rhymes (‘‘ " vs ‘‘ ",
‘‘ " vs ‘‘ "). While in our proposed model, except CAC,
both E2E and CD+ produce rhyming outputs (‘‘ " vs ‘‘ ",
‘‘ " vs ‘‘ "), indicating that our framework is more likely
to produce rhyme-compliant outputs than baselines. Second,
in the CD, CAC and CD+ methods, our pre-specified word
is ‘‘ ", where CD and CD+ incorporate explicit con-
straints, so the word ‘‘ " is included in the genera-
tion. The CAC method incorporate an implicit constraint,
and the model predict ‘‘ " instead of the complete form
‘‘ ", which means that the soft constraint of CAC
cannot strictly guarantee that the output contains constraint
words, but it comprehensively considers the fluency and the
information of the constrainedword. Therefore, on the whole,
our framework can generate moremelodic and rhyming lyrics
in the end-to-end mode, and can also trade off the constrained
information in the controllable generation mode.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we model music lyrics generation as a
machine translation-like task and investigate the problem of
controllable generation based on this foundation. Specifi-
cally, we proposed novel training and decoding methods for
restricted translation and controllable music lyrics generation
that do not use CD. Furthermore, we established a general
training framework. With our framework, end-to-end gen-
eration and constrained generation can be implemented in
the same model. Compared to using CD in the end-to-end
generation model, we achieved better generation results

including translation and lyrics generation, as well as smaller
beam size and consistently higher decoding speed. We eval-
uated the framework on multiple benchmarks, and demon-
strated the performance advantages of constrained generation
for controllable music lyrics generation. Using our training
framework and decoding method, constrained generation can
overcome the limitation of its extremely slow decoding speed
and become practical. For our future work, the proposed CAC
approach can be further enhanced by applying an attention-
over-attention strategy to gain stronger constraint reinforce-
ment and the fuzzy training framework can be used for more
controlled language generation tasks. Moreover, since the
current music lyric generation dataset suffers from stylistic
inconsistencies and lacks word-melody alignment, the lyrics
generated by the model must be manually aligned. Our next
step will be to label word melody alignment manually in the
dataset to certify end-to-end melody lyric filling.
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