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ABSTRACT The role of numerical optimization has been continuously growing in the design of high-
frequency structures, including microwave and antenna components. At the same time, accurate evaluation
of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive,
especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the
associated cost may be significant. In the design practice, the most widely used EM-driven procedures
are by far local (e.g., gradient-based) ones. While typically incurring acceptable expenses that range
from dozens to a few hundreds of objective function evaluations, they are prone to failure whenever a
decent initial design is not available. Representative scenarios include simulation-based size reduction of
compact devices or re-design of structures for operating/material parameters being distant from those at
the available design. A standard mitigation approach is the involvement of global search methods, which
entails significantly higher computational costs. This paper reviews the recent methodologies introduced to
improve the reliability of local parameter tuning algorithmswithout degrading their computational efficiency.
We discuss frequency-based regularization, adaptively adjusted design specification approach, as well as
accelerated feature-based optimization. All of these techniques incorporate mechanisms that improve the
performance of the search process under challenging scenarios, primarily poor initial conditions. The outline
of the mentioned methods is accompanied by illustrative examples including passive microwave circuits and
microstrip antennas. Benchmarking against conventional local search is provided as well. Furthermore, the
paper discusses the advantages and disadvantages of the reviewed frameworks as well as speculates about
future research directions.

INDEX TERMS High-frequency design, design optimization, simulation-based parameter tuning, gradient-
based search, optimization reliability, regularization, design specification adaptation, response features.

I. INTRODUCTION
Design of high-frequency devices and systems has been
traditionally rooted in circuit-theory-based methods, includ-
ing both analytical approaches [1], and equivalent network
models [2]. Meanwhile, the signifiance of full-wave elec-
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tromagnetic (EM) simulation techniques has been growing,
not only due to rapid advancements in simulation hardware
and software, but mainly because of practical necessity [3],
[4]. EM simulation enables proper evaluation of electrical
and field characteristics of microwave and antenna struc-
tures, in particular, quantification of the effects that cannot
be accounted for using simpler means. Examples include
mutual coupling, dielectric and radiation losses, substrate
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anisotropy, etc. These effects play non-negligible role for a
growing number of modern components, such as miniatur-
ized circuits [5], [6], MIMO systems [7], wearable antennas
[8], or metamaterial-based structures [9]. Further, due to
growing complexity of high-frequency devices, EM simula-
tion is often used in the design process itself, primarily for
final tuning of geometry parameters [10], but also sensitiv-
ity/statistical analysis [11], tolerance optimization [12], [13],
or multi-criterial design [14], [15], [16]. Although traditional
EM-driven design methods (e.g., parametric studies guided
by engineering insight) are still popular, utilization of rigor-
ous numerical methods is highly recommended [17], [18],
[19] due to their ability to handle multiple parameters and
design goals, as well as to carry out constrained optimiza-
tion [20].

Despite its benefits, simulation-based design optimization
of high-frequency structures is challenging. The fundamen-
tal bottleneck is high computational cost incurred by repet-
itive EM analyses involved in the process. The expenses
associated with local search algorithms (e.g., gradient-based
[21] or stencil-based methods [22]) are normally accept-
able, in the range of a few dozens to a few hundred of
system simulations. A popular approach to solving global
optimization tasks is nowadays the use of nature-inspired
algorithms, e.g., [67], [68], [69], [70], [71]. Yet, global [23],
[24] or multi-objective optimization [25] entails considerably
higher costs, mainly because of the necessity to explore the
entire parameter space as well as the use of population-based
metaheuristic algorithms [26]. The situation is similar for
uncertainty quantification [27], [28]. Here, the limiting factor
is the estimation of statistical performance figures, e.g., the
yield [29], which requires numerical integration of the under-
lying probability density functions describing parameter
tolerances [30].

The issues highlighted in the previous paragraph have
been addressed by extensive research conducted over the
last two decades or so. Some of the methods developed to
expedite EM-based design procedures include utilization of
adjoint sensitivities [31], [32], parallelization [33], sparse
Jacobian updates [34], [35], response feature technology [36],
cognition-driven design [37], as well as surrogate-assisted
approaches [38], [39]. The latter have been rapidly growing
in terms of popularity over the recent years, and incorporate
data-driven [40], and physics-based models [41]. The for-
mer are more generic, i.e., problem independent; yet, they
suffer to a large extent from the curse of dimensionality.
Popular modelling procedures include kriging [42], radial
basis functions [43], neural networks [44], or Gaussian pro-
cess regression [45]. Physics-based surrogates exhibit bet-
ter generalization capability, yet, are heavily reliant on the
underlying lower-fidelity model, therefore, they are not easily
transferrable between the problem domains. Other methods
include variable-resolution techniques (e.g., co-kriging [46],
response correction methods [47]), as well as machine learn-
ing frameworks [48], which are often used for global search
purposes [49].

Despite the plethora of optimization techniques available
in the literature, the most popular and widespread in practical
applications are local algorithms, primarily gradient-based
ones [50]. The reasons include—as mentioned earlier—
reasonable computational cost, as well as availability of well-
established methods, e.g., trust-region [51], conjugate gradi-
ent [52], as well as sequential quadratic programming [53],
or interior point methods [53] (in the context of constrained
optimization). Unfortunately, local procedures are prone to
failure if an adequate initial design is not available, which is
often the case in practice. A representative example is opti-
mization of compact structures, which often feature param-
eter redundancy due to employing various miniaturization
techniques such as slow-wave phenomenon [54], stubs [55],
slots [56], defected ground structures [57]. Other examples
include multimodal problems (e.g., antenna array pattern
synthesis [58], metamaterial-based structures [59]), as well as
re-design of components for operating or material parameters
being considerably different from those at available designs.
In situations like these, the designers typically resort to global
methods [23], [24], [26], [67], [68], [69], [70], [71], which
are computationally inefficient. Depending on the setup, the
computational cost of the global search using a widely used
particle swarm optimizer is at least ten times higher than that
of the local gradient-based search, as demonstrated in [72]
and [73].

In high-frequency design, the main challenges faced by
the researchers may be epitomized as follows: (i) costly
EM simulations are indispensable for reliable evaluation of
high-frequency components, (ii) local search procedures are
associated with an acceptable cost, yet, require a decent initial
design, which may not be available, and (iii) global optimiza-
tion algorithms allow to circumvent this issue, yet, their com-
putational cost is exorbitant when carried out using full-wave
simulations. A possible strategy is the enhancement of the
existing local search routines. Nevertheless, the literature has
not been offering this type of techniques thus far. Recently,
several approaches for the improvement of the reliability of
local optimization algorithms have been proposed, especially
in terms of making the search process immune to unavail-
ability of quality starting points. One of these is frequency-
based regularization [60], where the objective function for
the design task is reformulated to include an additional term
that fosters the alignment of the system operating frequen-
cies with the assumed targets. Another method is adaptive
adjustment of design specifications [61]. Therein, design
goals are relocated towards the actual operating parameters
of the structure at hand in order to make them attainable
from the current design. In the course of the optimization
process, the specs are gradually re-adjusted to eventually con-
verge to the original targets. Attainability of the current goals
through local search is maintained throughout the process.
In [62], a feature-based algorithm coupled with sparse sen-
sitivity updating scheme has been proposed, which enables
quasi-global search capability at local optimization costs by
the employment of response features [63]. The latter results
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in flattening the objective function landscape and making
the design goals reachable even from initial designs that are
normally too poor for conventional algorithms to succeed.

This paper reviews the methodological approaches out-
lined in the previous paragraph. We provide brief formula-
tions of each of the techniques [60], [61], [62], and show-
case them using real-world antenna and microwave design
examples. Furthermore, the benefits of the particular methods
are discussed along with benchmarking against conventional
local search, which is to demonstrate the capabilities of the
said algorithms, in particular, successful handling of poor-
quality starting points. The paper also discusses the advan-
tages and disadvantages of the reviewed frameworks and
speculates about future research directions.

II. FREQUENCY REGULARIZATION FOR RELIABLE DESIGN
OPTIMIZATION
In this section, we briefly formulate the frequency-based
regularization, originally introduced in [60]. The method can
be incorporated into most iterative local search procedures.
It enables relocation of the operating frequencies of the struc-
ture under design towards their target values, even if they are
distant from those at the initial design.

A. DESIGN PROBLEM FORMULATION
We use the following notation: x – a vector of designable
(usually, geometry) parameters; R(x) – the response of the
EM-simulated model of the considered high-frequency struc-
ture at the design x; U (R(x)) – a scalar objective func-
tion quantifying the design quality, monotonically decreasing
with respect to improving design quality. We consider the
design task formulated as

x∗ = argmin
x
U (R(x)) (1)

in which x∗ is the optimum design. The objective function is
problem dependent. Table 1 provides a few examples.

B. FREQUENCY REGULARIZATION
The regularization concept [60] has been described below
and illustrated in Fig. 1 for a quasi-Yagi antenna designed
for maximum in-band gain. If the operating frequency of
the structure is away from the target (cf. Fig. 1(a)), local
search normally fails by being stuck in a local minimum.
For the example of Fig. 1, the two minima are separated
by a local maximum. Frequency regularization modifies the
design task (1) by adding a regularization term to the objec-
tive function, so that the problem is formulated as

Ur (R(x)) = U (R(x))+ βr

[
max

{
fr (x)− fr .max

fr .max
, 0
}]2

(2)

In (2), fr (x) is a regularization function that quantifies the dis-
crepancies between the operating frequency (or frequencies)
of the system at design x, and the target ones. The maximum
acceptable discrepancy is marked as fr .max. Note that regular-
ization aims at worsening (increasing) the objective function

TABLE 1. Examples of EM-driven optimization tasks.

FIGURE 1. Frequency regularization concept on the example of a
quasi-Yagi antenna antenna of Section II.C [60]): (a) example initial
design (dashed black line), optimal design operating at 5.0 GHz (solid
black line), the group of antenna responses (top: reflection, bottom:
realized gain), as well as line segment linking the said designs
parameterized by 0 ≤ t ≤ 1 (gray curves); (b) merit functions:
conventional (1) (- - -) and frequency-regularized one (2) (—) versus t.
Observe the monotonicity of the regularized merit function, which makes
the optimum reachable from the shown initial design with the use of a
local search algorithm, not attainable for the standard formulation.

in a manner proportional to the said discrepancy (with βr
being the scaling coefficient). At the same time, the added
contribution is zero if the discrepancy is smaller than fr .max.
The latter ensures that the original and regularized objective
functions coincide when close to the optimum design.
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TABLE 2. Examples of regularization functions.

FIGURE 2. Quasi-Yagi antenna featuring a parabolic reflector [64]: top
and bottom layers are shown in the left and right panel, respectively.

Figure 1(b) shows the effects of regularization: the objec-
tive function profile is altered in a way that makes the design
task unimodal. In particular, the optimum is reachable from
the originally poor initial design, through a local search.

The definition of the regularization function depends on
the system at hand. Table 2 provides a few examples, cor-
responding to those in Table 1. The regularization function is
to estimate the distance between the actual operating frequen-
cies and the target ones, which requires extracting appropriate
data from the EM-simulated system characteristics.

C. DEMONSTRATION EXAMPLE
As mentioned earlier, the regularization procedure can work
with any iterative optimization algorithm. Here, it is illus-
trated using gradient-based trust-region routine with numeri-
cal derivatives [51] as the optimization engine.

Consider a quasi-Yagi antenna with a parabolic reflector
shown in Fig. 2 [64]. The structure is implemented on FR4
substrate (εr = 4.4, h = 1.5 mm), and described by ten
geometry parameters x = [W L Lm Lp Sd Sr W2WaWd g]T

(all dimensions in mm). The EM model is simulated in CST
Microwave Studio, using the time-domain solver.

The objective is to design the antenna for the target oper-
ating frequency f0 and to ensure 8-percent impedance band-

FIGURE 3. Conventional and frequency-regularized optmization [60] of a
quasi-Yagi of Fig. 2: initial design (· · · ·), design optimized in the standard
approach (- - -), and frequency-regularized optimal design (—). Intended
operating frequencies: (a) 2,5 GHz, (b) 4,5 GHz, (c) 5,0 GHz. Target
antenna operating bandwidth is shown using vertical lines.

width (symmetrical around f0). The main goal is maximiza-
tion of the realized gain at f0. The conventional objective
function is similar to that in the second row of Table 1,
except that the average gain is replaced by the gain at a
single frequency f0. The frequency regularization involves the
function fr (x) listed in the second row of Table 2, and fr .max =

0.15 GHz. We consider three design scenarios, with f0 =
2.5 GHz, f0 = 4.5 GHz, and f0 = 5.0 GHz. The initial design
is the same in all cases, and corresponds to the operating
frequency of approximately 3.5 GHz.

Figure 3 presents the initial and the optimal designs
rendered with the use of the conventional and regularized
approach. It should be emphasized that optimization based
on the standard formulation failed in all cases. On the other
hand, regularization-enhanced search was successful for all
target frequencies. Table 3 provides numerical data, which
demonstrates superior reliability achieved using regulariza-
tion, which also results in lowering the computational costs
of the optimization process.

III. ADAPTIVELY-ADJUSTED DESIGN SPECIFICATIONS
The goal of the adaptively re-set design specifications
approach [61] is to improve the reliability of the parameter
tuning process under challenging conditions, e.g., unavail-
ability of a sufficiently good initial design, or system
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TABLE 3. Optimization performance for Quasi-Yagi antenna.

FIGURE 4. Example reflection characteristics of dual-band antenna;
vertical lines indicate target operating bands: 3.45-3.55 GHz and
5.25-5.35 GHz. Solid line marks the design from which the target is
reachable, whereas the dashed line shows the design for which local
search fails to attain the target.

re-design for operating parameters largely different from the
current ones.

A. SPECIFICATION ADJUSTMENT SCHEME
To explain the concept, we consider a specific design task,
i.e., matching improvement at the target operating bands
fj.1 ≤ f ≤ fj.2, j = 1, . . . , N . Formally, the design problem
is to solve

x∗ = argmin
x
U (x, S11,F) (3)

where the vector F = [f1.1 f1.2 . . . fN .1 fN .2]T combines the
operating bandwidths. The merit function is formulated as

U (x, S11,F) = max
j=1,...,N

{
fj.1 ≤ f ≤ fj.2 : |S11(x, f )|

}
(4)

The problem (4) is the auxiliary task, formulated only for the
specification management purposes. The main problem may
be defined similarly as discussed in Section II. A (cf. Table 1).
Figure 4 shows a typical situation, illustrating the case of
dual-band antenna. The target operating bands are centered
at 3.5 GHz and 5.3 GHz. The goals may be reachable or not,
depending on the initial design (cf. Fig. 4).

According to adaptive design specifications methods [61],
the target operating bands are relocated towards the actual
ones at the available design to ensure that they are reach-
able through local optimization. Throughout the optimization
process, the specifications are stepwise moved to the orig-
inal locations to ensure that the final solution is optimized
for the initially assumed targets. The management scheme
is developed to ensure that the current specifications are
reachable from the current design in each algorithm iteration.
Figure 5 provides a graphical illustration of the concept.

FIGURE 5. Design specification adjustment [61]: conceptual illustration.
Initial design is shown with dashed line, vertical lines mark original
design specs (the same as in Fig. 4); whereas the vertical dashed lines
mark the current adjusted targets: (a) intended operating frequencies
relocated toward that of the initial design (i.e., the initial design resides
within the region of attraction of the optimum w.r.t. the current tagets);
(b) intermediate stage: the specs shifted toward the original ones and the
corresponding design; (c) prior the final optimization stage: specs
reverted to the original ones; (d) optimal design satisfying the original
design specifications.

Let GS (x, f ) refer to the reflection response gradient at the
frequency f . The optimization procedure is assumed to be
iterative and generating approximations x(i), i = 0, 1, . . . , to
x∗ with (here, x(0) is the starting point). Let

L(i)(x, f ) = S11(x(i), f )+
[
GS (x(i), f )

]T
(x− x(i)) (5)

be the linear model of S11(x, f ) at the design x(i). We consider
an auxiliary optimization sub-problem

xtmp = arg min
||x−x(i)||≤D

U (x,L(i),F) (6)

with D being optimization domain size (typically D = 1).
Table 4 summarizes the decision factors utilized to imple-
ment the specification management scheme. The factor Er
determines the potential for design improvement according
to (3) and (4); E0 evaluates the design quality, whereas Ec
is employed as a protection to make the altered design goals
close enough to Fc.
Figure 6 summarizes the conditions that have to be satisfied

to enable design specification adjustment. Having satisfied
any of these, the updating procedure is launched, which is
outlined below. Let Fcr (a) denote the adjusted specifications
in the subsequent iteration, which are parameterized using a
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TABLE 4. Decision factors for design specification management scheme.

FIGURE 6. Specification adjustment rules [61].

scalar coefficient a, 0 ≤ a ≤ 1. We have

Fcr (a) = [fcr .1.1(a) fcr .1.2(a) . . . fcr .N .1(a) fcr .N .2(a)]T (7)

where

fcr .k.1(a) = fcr .k (a)− Bk (a), fcr .k.2(a) = fcr .k (a)+ Bk (a)

(8)

with

fcr .k (a) = (1− a)fc.k + aft.k , Bk (a) = (fk.2 − fk.1)
fcr .k (a)
ft.k

(9)

Here, a is the maximum value for which Er ≥ Er .min, E0 ≤
E0.max, and Ec ≤ Ec.max, at the design

xtmp = arg min
||x−x(i)||≤1

U (x,L(i),Fcr (a)) (10)

Note that identification of a requires solving an auxiliary sub-
problem where a is gradually diminished (from 1 to 0) until
the aforementioned conditional are met.

The above procedure relaxes the specifications until they
become reachable from the current design. When close to
optimum, the conditions are met with a = 1 (i.e., the orig-
inal goals). If the optimum is not attainable, the algorithm

FIGURE 7. Dual-band branch-line coupler (BLC) [65]: (a) circuit geometry
(port marked using numbers in circles), (b) essential BLC parameters.

FIGURE 8. Scattering parameters of a dual-band BLC: top – the initial
design, bottom – the final design rendered within the design specification
adjustment approach. Vertical lines show the target operating
frequencies.

will bring the design as close to these as possible. The
adjustment procedure is launched before each iteration of
the optimization process. As a result, we observe continuous
design goal alterations. Note that the adjustments do not entail
additional costs because the response sensitivities (required
in (5)) are already available, assuming that the search process
is a gradient-based one.

B. DEMONSTRATION EXAMPLE
For the sake of illustration, consider a dual-band branch-line
coupler (BLC) [65] shown in Fig. 7. Figure 7(b) provides
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FIGURE 9. Evolution of the target operating frequencies of a dual-band
BLC throughout the optimization run. Horizontal lines indicate original
target frequencies.

FIGURE 10. Reflection responses of (a) dual-, and (b) triple-band antenna
at three exemplary designs; response features referring to the the
antenna resonances (o); vertical lines mark the intended operating
frequencies. Local feature-based optimization finds optimal design
meeting the specs starting from all the shown designs: (- - -), (—) and (. . . ),
whereas local gradient-based search initiated from the designs (- - -) and
(—) fails for a minimax formulation of the merit function (see Table 1).

relevant circuit data, including the target operating frequen-
cies, and design objectives. The center frequencies of the
BLC at the initial design are at around 1.7 GHz and 3.5 GHz,
respectively (grey plots in Fig. 8), i.e., they are severely mis-
alignedwith the target ones. Consequently, conventional local
optimization fails. The search process enhanced by adaptively
adjusted specification of Section III. A yields the design x∗ =
[41.1 8.19 0.95 2.26 1.68 0.96 0.34 1.18 1.14]T (marked black
in Fig. 8), which is well-aligned with the target and satisfies
the original specs. Figure 9 shows the evolution of the design
goals. Note that initial relocation of the targets is significant,
and it takes nine iterations to have them back at the original
values.

IV. ACCELERATED FEATURE-BASED OPTIMIZATION
Utilization of response features [36] allows for flatten-
ing the objective function landscape owing to the fact
that the relationships between the characteristic point coor-
dinates and design variables of the system at hand are
weakly nonlinear. In [62], the response feature approach
was combined with sparse sensitivity updating schemes in
order to develop an optimization algorithm that exhibits
quasi-global search features and improved computational
efficiency at the same time. This section outlines this
approach and illustrates it using a triple-band dipole
antenna.

A. FEATURE-BASED OPTIMIZATION
As explained before, local optimization using conventional
formulation (1) of the optimization task may or may not be
successful depending on the the initial design quality (cf.
Fig. 10), and relocation of the operating frequencies may
be necessary for obtaining the optimal design meeting the
targets. The response feature approach allows for alleviating
the difficulties pertinent to optimization task multimodality
and the issues related to a possibly poor starting point by
reformulating the task in terms of the coordinates of so-called
characteristic (or feature) points of the system response,
which are defined having in mind the design objectives and
the shape of the system outputs [36]. For illustration pur-
poses, consider a multi-band antenna with the feature points
defined using frequency and level coordinates of the antenna
resonances, fk and lk , respectively, k = 1, . . . , p, where p
denotes the number of antenna operating bands. The feature
points are gathered in the vector RF (x)= [f1(x) f2(x) . . . fp(x)
l1(x) l2(x) . . . lp(x)]T . As mentioned earlier, the relationship
between the entries of vector RF and the design variables is
not as much nonlinear as that of the complete responses [36].

The design task may be restated in terms of response
features as

x∗ = argmin
x
UF (RF (x)) (11)

where, for the design task corresponding to simultaneous
reflection minimization at all target frequencies (cf. Table 1),
the feature-based merit function UF (RF (x)) is formulated as

UF (RF (x)) = max{l1(x), . . . , lp(x)}

+β||[f1(x) . . . fp(x)]− [f0.1 . . . f0.p]||2 (12)

where β is the penalty factor. Here, the system output of
interest is the antenna reflection and lk (x) = S11(x, fk ), k =
1, . . . , p, refer to the level coordinates (see Fig. 10).

B. TR SEARCH WITH JACOBIAN CHANGE TRACKING
In [62], the optimization routine was the trust-region gradient
search algorithm [51] enhanced by response features. It yields
approximations x(i), i = 0, 1, . . . , to the optimal vector x∗. The
following linear expansion model R(i)

lin of RF (x) is used:

R(i)
lin(x, f ) = RF (x(i))+ JF (x(i)) · (x− x(i)) (13)

where JF (x(i))= [∇f1(x(i)) . . .∇fp(x(i))∇l1(x(i)) . . .∇lp(x(i))]T

is the Jacobian of the feature vector. The new design is a
solution to

x(i+1) = arg min
x; −d (i)≤x−x(i)≤d (i)

UF (R
(i)
lin(x)) (14)

In (14), d(i) denotes the search region size vector set using
the conventional TR rules [64], based on the gain ratio
ρ = (UF (RF (x(i+1))) – UF (RF (x(i))))/(UF (R

(i)
lin(x

(i+1))) –
UF (R

(i)
lin(x

(i)))).
Typically, JF is evaluated through finite differentiation

(FD), at the costs of n extra EM analyzes. Here, the cost is
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FIGURE 11. Sparse sensitivity updating scheme utilized in [62].

FIGURE 12. Triple-band dipole antenna geometry based on [66].

reduced by omitting most of the FD-based updates, specifi-
cally, the system parameters that exhibit the smallest variabil-
ity of the response gradients. The sparse sensitivity concept
has been summarized in Fig. 11.

C. DEMONSTRATION EXAMPLE
As an example we use a triple-band dipole antenna shown
in Fig. 12, described by ten designable parameters x =
[l1 l2 l3 l4 l5 w1 w2 w3 w4 w5]T ; with l0 = 30, w0 = 3, s0 =
0.15 and o = 5 being fixed (all dimensions in mm). The
target operating frequencies are 2.45 GHz, 3.6 GHZ and
5.3 GHz. The EM model is implemented in CST Microwave

TABLE 5. Optimization results for antenna of Fig. 11.

FIGURE 13. Reflection responses of a triple-band antenna of Fig. 11 for
four selected runs (presented in Figs. (a) through (d)) of the feature-based
algorithm with sparse sensitivity updates [62]: initial design (· · · ·), final
design found by the conventional gradient-based search (- - -), final
design found by the feature-based procedure (—). Vertical lines mark the
target operating frequencies.

Studio. The antenna has been optimized using a conventional
trust-region algorithm with Jacobian matrix evaluated using
finite differentiation, and the feature-based procedure with
acceleration, described in this section. The following values
of the control parameters have been used (cf. Fig. 11):Nmin =

1, Nmax = 5, as recommended in [62]. To investigate the
reliability of the optimization process, each algorithm has
been executed twenty times, using the same set of initial
(random) designs. Table 5 provides the numerical results,
whereas Fig. 13 shows the antenna responses for the represen-
tative algorithm runs. Because the conventional algorithm and
the feature-based technique use different objective functions,
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their direct comparison is not possible. Therefore, it is carried
out based on the feature point coordinates extracted from the
antenna responses at the final design (for both algorithms).

The design quality is quantified using the standard devia-
tion of the antenna center frequencies across the set of twenty
algorithm runs. Table 5 also provides the optimization cost,
which is given in the number of EM analyses of the antenna.

Observe that the feature-based approach clearly outper-
forms the conventional procedure. As a matter of fact, it has
been capable of properly allocating antenna resonances in
all runs (note that the standard deviations are zero for all
center frequencies), which is not the case for the conventional
approach. Furthermore, the CPU cost of the optimization
process is lower than for the conventional methods, and it
should be emphasized that for unsuccessful runs of the latter,
the algorithm converged prematurely due to trust region size
reduction; the cost of successful runs is actually considerably
higher, typically, at least a hundred of EM simulations.

V. CONCLUSION
This paper reviewed the recent developments concern-
ing reliability-enhanced local procedures for high-frequency
design optimization. We outlined the frequency-based regu-
larization approach, adaptive design specification adjustment
scheme, as well as feature-based optimization with sparse
sensitivity updates. The discussed algorithms can be incorpo-
rated into any iterative search procedure, and aim at improv-
ing the quality of the optimization process under challenging
design scenarios, such as the lack of a sufficiently good initial
design, or the need to re-design the operating parameters of
the system at hand over broad frequency ranges.

The fundamental advantages of these methodologies are
the following: (i) improving immunity of the local parameter
tuning to poor starting points, (ii) enabling reliable relocation
of the operating parameters (e.g., centre frequencies) to their
target values that are significantly misaligned with those at
the available designs, (iii) versatility and easy incorporation
into the existing optimization algorithms, (iv) low computa-
tional cost, which is comparable to that of conventional local
searchmethods. Note that the properties (i) and (ii) effectively
enable quasi-global search capabilities.

A disadvantage of the discussed techniques is the neces-
sity of extracting the operating parameters from EM
simulated responses, which normally requires a separate
post-processing codes (here, implemented in Matlab). Also,
if the system responses are severely distorted at the initial
designs, such an extraction may not be possible, which hin-
ders utilization of the reliability-enhancement procedures.
Clearly, defaulting to conventional search upon detecting
a failure of operating parameter extraction would at least
ensure that the mentioned methods are no worse than the
conventional techniques. On the other hand, available designs
normally exhibit all the necessary features (e.g., resonances,
etc.), which is the only essential prerequisite for the reviewed
techniques to work.

Needless to say, further automation of such methodologies
is one of the future research directions. The other would be
generalization, i.e., the development of procedures that apply
appropriate feature extraction procedures upon detecting the
system response shape in the context of design specifica-
tions. Notwithstanding, the results presented in this paper
demonstrate that the reliability-improvement approaches are
promising, and offer viable alternatives for global search
procedures, at least for certain types of design optimization
problems.
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