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ABSTRACT To improve the precision of wind farm multi-machine equivalence and multi-scene general-
ization, this paper proposes a method for wind turbine clustering and equivalent parameter identification
in multi-time scales based on the deep migration of multi-view features. The proposed technique carries
out multi-machine equivalence by leveraging the multi-view information from each turbine in a wind farm.
Specifically, a deep spatio-temporal Improved Auto-Encoder is designed, jointly trained with the target clus-
tering layer. IAE is used for mining multi-view latent characteristics of wind turbines orienting to grouping
turbines to improve the model’s adaptability to multiple scenarios and divide turbines in an unsupervised
manner. This method generates a visual heat map to represent the attended area of characteristics based
on transfer learning and Class Activation Map to enable interpretability. In the next phase, this technique
constructs a multi-objective optimization model by synthesizing the equivalent deviation of voltage, current,
active power, and reactive power to further improve accuracy. It can identify the equivalent parameters of
collector lines, the mechanical structure, and the control system at different time scales simultaneously via
the black-box paralleled optimization method based on Bayes andMulti-arm Bandit. The proposed approach
is evaluated on a typical double-fed wind farm with grid-side faults under various conditions of disturbing
winds. Also, an ablation study is conducted tomake analysis according to the two phases, i.e., turbine division
and parameter identification. The results validate the accuracy and robustness of this method.

INDEX TERMS Big data, wind farm multi-machine equivalence, multi-view characteristics mining, joint
training, deep spatio-temporal Improved Auto-Encoder, transfer learning, multi-objective and multi-time
scale parameter identification.

NOMENCLATURE
IAE Improved Auto-Encoder.
CAM Class Activation Map.
DFIG Doubly Fed Induction Generator.
PSO Particle Swarm Optimization.
MRAS Model Reference Adaptive System.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhouyang Ren .

WSCM Wind Speed Combination Model.
LVRT Low Voltage Ride Through.
GCI Generator Coherency Identification.
SH Successive Halving.
TPE Tree-structured Parzen Estimator.

I. INTRODUCTION
Under the double pressure of environmental protection crisis
and energy exhaustion, the renewable energy industry has
developed rapidly and the scale of grid connection has been

89568 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1944-2848
https://orcid.org/0000-0003-4177-8639


X. Hu et al.: Wind Turbine Clustering and Equivalent Parameter Identification in Multitime Scales Based on the Deep Migration

expanding. With the gradual increase of renewable energy
permeability, the uncertainty and fluctuation of its output
bring great influence on the safe and stable operation of
power system. With the proposal of carbon peaking and
carbon neutrality goals, the scales of wind farms are gradually
increasing [1]. The scene of operation in wind farms has
randomness and volatility contained with power electronic
component, they are also sensitive to overvoltage and over-
current with low inertia [2], and the law of operations and
dynamic characteristics have a huge influence on the stability
of electric power system after the combination of power
grid [3], thus it is necessary and pressing to construct
a model that accurately describes the actual operation
characteristics [4], [5].

The stability of electric power system is divided into angle
stability, voltage stability, and frequency stability, the time
scale of relevant issues is millisecond to second [3]. Take the
common DFIG as an example, due to the wide discrepancy
in time constants of various components, its step response
in the time scale includes microsecond power electronic
dynamic state, millisecond electrical dynamic state, second
level mechanical, and electrical dynamic state, mechanical
dynamics of more than second andminute wind speed volatil-
ity etc. Reference [4], which endues it a strong nonlinearity
on the time axis, thus DFIG is a multi-time scale dynamic
system [6], moreover, dozens or even hundreds of DFIG con-
stitute the wind farms in series and parallel by collector lines
and link to external power grid, a number of time-window
periods contained in the transient process of wind power
high permeability power system are caused by the mutual
coupling of multiple time scales in wind power system and
power system. If the control system and collector lines of
each turbine in a wind farm are modeled detailly, firstly,
it has a complex structure and high dimensional data [7],
while the capacity of it is generally much smaller than ther-
mal power turbines, which not only increases the scale and
time of real-time simulation analysis, but also brings severe
challenges to its effectiveness and accuracy; Secondly, with
the continuous promotion of power market reform, the whole
machine suppliers are unable to provide the detailed internal
structure of the grid-connected converter due to commercial
confidentiality and other practical reasons, the control loop
model, and the accurate parameters of other parts, making the
wind power system information opaque; Thirdly, wind farms
influence the dynamic behavior of power system through
boundary nodes, it is necessary to pay attention to the vari-
ables of boundary nodes before and after equivalence, that
is, the external characteristics at the points connected to the
grid. Therefore, how to establish wind farm equivalent model
with consideration of calculation accuracy and speed plays an
important role in the security and stability analysis of wind
power high-permeability new power system [8].

The precision of single-machine equivalence in large wind
farms is usually difficult to meet the requirements [9], [10],
[11], and multi-machine equivalence is required. Since the
operating conditions of wind turbines are time-varying and

different, how to classify wind turbines reasonably and
effectively is the primary problem to solve. Therefore, the
multi-machine equivalence problem of wind farms is decom-
posed into three steps: 1) Select the clustering index of
the wind turbines; 2) Clustering wind turbines division;
3) Identify the equivalent parameters of the clustering wind
turbines.

For step 1), [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22] selected the clustering index of the wind turbines.
Reference [12] take wind speed similarity as a clustering
index based on grouping turbines working areas. On this
basis, [13] and [14] proposed a practical four-turbine equiva-
lence method. Reference [15] also adopted the above method,
and if there is a large voltage difference when DFIG working
in the same area, it will cause obvious equivalent error due
to different prying bar protection actions; [16], [17] regard
rotor speed and pitch angle at fixed time as clustering indexes;
[18], [19] takes the action of pitch angle controller and pry
bar protection as a clustering principle; [20] and [21] chose
multidimensional state variables as the clustering index;
[22] classifies the wind conditions according to the most
common wind conditions throughout the year. Therefore, the
turbines clustering index should be more comprehensive and
efficient in mining the operation characteristics of wind farms
from a multi-temporal perspective.

For step 2), [20], [21], [22], [23], [24], [25], [26], [27], [28]
divided wind turbine clusters. References [20] and [23] used
clustering algorithms to divide wind turbine clusters, such
as fuzzy C-means clustering and k-means clustering, among
which k-means is widely used. Reference [24] improved
k-means based on the sensitive initial center. References [25],
[26], and [27] proposed a multi-stage clustering method,
firstly, the wind turbines with similar operating status are
divided into a group, and then further grouped by finer
clustering index or optimization algorithm. Reference [28]
provided an example for the application of advanced artificial
intelligence ideas in wind turbine clustering based on transfer
learning clustering, considering the operation characteristics
and adaptability to multiple conditions theoretically, but in
the numerical example, it shows only the migration from
16-turbine wind farms to 16-turbine wind farms, the principle
of distribution similarity between source domain and target
domain in transfer learning is blurred, therefore, the method
proposed cannot achieve the knowledge migration in wind
farms of different scales, and the clustering center of the
source domain and degree of membership can be calculated
directly, there is no need for knowledge transfer essentially,
in the clustering of target domain, these two parameters
are changed greatly, and the calculation results of source
domain have little reference value. Therefore, it is necessary
to design an efficient clustering algorithm combined with the
characteristics of practical problems and advanced artificial
intelligence.

For step 3), [29], [30], [31], [32] identified the equiv-
alent parameters of the clustering wind turbines. Refer-
ences [29] and [30] used an effective wind power parameter
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identification framework which is generally based on (PSO)
at the present stage, [29] took different wind speeds as
excitation and identified equivalent wind turbine parameters
through PSO, which is not accurate in the case of large power
fluctuations, [30] comprehensively described the importance
of wind power parameter identification for system security
and stability, and demonstrated the superiority of PSO by
comparing it with recursive least square method, however,
parameter identification based on PSO can easily fall into
local optimum. In addition, wind power parameter identifica-
tion can also adopt Kalman filter [31], reference model self-
adaptation [32], etc. Reference [32] investigated two different
online parameter identificationmethods for doubly fed induc-
tion generators (DFIG). A model reference adaptive system
(MRAS) and a new approach for estimation of the induc-
tances are introduced. Lyapunov stability theory is applied to
the adaptive law of the MRAS method. This method requires
a test signal which excites all systems eigenvalues. Therefore,
stator and rotor have to be excited by a test signal. However,
not all eigenvalues are excited if the stator of the DFIG is
directly connected to the grid.

Reference [33] has proposed a wind farm dynamic equiv-
alence modeling framework that integrates analytical meth-
ods and identification methods, but its algorithm has poor
accuracy and low efficiency, which cannot meet the actual
engineering requirements. In [33], The acquisition of accu-
rate parameter is one of the difficult problems in wind farm
multi-machine equivalence. Based on the analytical method,
the estimated value of each equal value parameter is obtained,
which is taken as the initial value, and then the parameter is
identified based on the actual disturbed trajectory. The param-
eter identification is carried out based on particle swarm opti-
mization algorithm, and the parameter identification error is
analyzed. Therefore, a more accurate and efficient method is
needed to identify the equivalent parameters of wind turbine
clusters.

By taking advantage of the slow-varying characteristics
of the low-frequency components, accurate forecast of these
components is readily obtained and incorporated into the
developed dispatch planning procedure. The dispatchability
of the wide-area wind generation is facilitated by the buffer-
ing actions offered by a centralized power dispatch energy
storage system, operating under a proposed power flows
control strategy. A wind speed combination model (WSCM)
is established via K-means clustering from the sorted
field-measured wind speed data, which can provide reason-
able wind speeds for each WTG when aggregate modeling
the wind farm. Subsequently, an improved two-step cluster-
ing method of the WTGs is proposed, by which the WTGs
are initially clustered according to whether they enter low
voltage ride through (LVRT) mode or not. An ‘‘N-1 VS One’’
aggregated model and the binary search algorithm were used
to quickly and correctly predict whether a WTG in the wind
farm enters LVRT mode under a grid fault.

To solve the above problems, this paper proposes an
interpretable, unsupervised method for clustering wind

turbines based on potential features from multiple
perspectives, and carries out robust identification of multi-
target black box with equivalent parameters, finally, data-
driven wind farm multi-machine equivalence is achieved.
Compared with traditional methods, three innovations are
summarized as follows:

a) Define the index of fleet division at multi-view level:
deep temporal and spatial IAE is trained layer by layer
to capture the long-time dependence, short distance
fluctuation and spatial correlation of active power,
reactive power, terminal voltage, current, and rotor
angular velocity, high-nonlinear mapping automati-
cally embedded sequential data into low-dimensional
space [34], data can retain effective information to the
maximum extent while reducing dimension, which has
high fitting accuracy and strong generalization abil-
ity [35]; The cite of joint training mechanism [36] is
more conducive to obtain potential dimensions that
express the segmentation of sequential unmarked data
into multiple categories. This point has been stated in
the third chapter.

b) Divide wind turbine clusters under unsupervised con-
ditions: KL divergence is introduced and its gradient
descent direction in k-means [37] is calculated, which
does not rely on engineering prior knowledge and
not require offline labeling data or manual determina-
tion of the number of turbines; Based on CAM and
transfer learning knowledge, heat maps are generated
which represent the attended area of wind turbine fea-
tures from multiple perspectives, and they eliminate
the ‘‘black box’’ nature of deep learning model and
improve reliability. This point has also been stated in
the third chapter.

c) Equivalent parameters of global search swarms: Cal-
culate the initial equivalent parameters value of wind
turbine according to physical properties, combine the
Hyperband [38] parallel resource allocation method
based on Multi-arm Bandit and the kernel density
estimation modeling method in Bayesian optimiza-
tion [39], build the BOHB black box parallel optimiza-
tion framework, and identify the equivalent parameters
of wind turbine clusters in different time scales. The
proposed method is not only applicable to the equiva-
lence of any wind turbine cluster in the multi-machine
equivalence of wind farm, but also applicable to the
equivalence of single wind farm. This point has been
stated in the second chapter.

In the first chapter of this paper, a method of two-step
equivalent parameter identification for wind turbine cluster
is proposed; The second chapter transplants a method of GCI
to divide the wind turbine cluster, it includes the selection of
CID index and the division of wind turbine cluster, finally, the
multi-machine equivalent step of wind farm is formed; The
third chapter designs a ablation experiment, the effectiveness
of this method is verified by using a doubly-fed wind farm in
an area.
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II. IDENTIFICATION OF EQUIVALENT PARAMETERS OF
DOUBLY-FED WIND TURBINE CLUSTER
According to [9], the initial parameters are calculated first.
After the grouping turbines in a doubly-fed wind farm are
divided into multiple clusters, it is necessary to equate
each grouping turbine to a single turbine and identify their
equivalent parameters, the equivalent parameters of the tur-
bine cluster system can be divided into operation parame-
ters, structure parameters, and control parameters. Operating
parameters include wind speed v, grouping turbine apparent
power SG, apparent power of terminal transformer ST ; Struc-
tural parameters include collector wire impedance ZL , gener-
ator impedance ZG, terminal transformer impedance ZT , time
constant of generator inertia Hg, time constant of inertia of
wind turbine Hw, damping coefficient of shafting Ds, stiff-
ness coefficient of shafting Ks; Control parameters include
rotor-side speed regulator gainKp1 and Ki1, i parameter of the
current regulator gain of the rotor-side converterKi2, i param-
eter of the grid side voltage regulator gain Ki3, p parameter of
the DC capacitor voltage regulator gain on the grid side Kpdg,
p parameter of the current regulator gain of the grid side
converter Kpg.
In this paper, the equivalent parameter identification of

doubly-fed wind turbine cluster is divided into two steps,
i.e., the calculation of the initial equivalent parameter of
the grouping turbines and the optimization of the equivalent
parameter.

A. CALCULATION OF INITIAL EQUIVALENT PARAMETERS
OF WIND TURBINE CLUSTER
The parameters of generator, transformer, and shafting of
equivalent sets are calculated by capacity weighting method;
The equivalent wind speed is calculated based on the prin-
ciple that the total input wind energy of each wind turbine
cluster is equal before and after the equivalent wind speed;
According to the equal power loss method, the trunk topology
is converted to the radial topology, and then the equivalent
parameters of the collector system are calculated; The control
parameters are the original wind turbine parameters.

1) EQUIVALENT PARAMETERS OF GENERATOR AND
TERMINAL TRANSFORMER

SGeq =
f∑

h=1

SGh

STeq =
f∑

h=1

STh

ZGeq =
ZGh
f

ZTeq =
ZTh
f

(1)

In this equation, SGeq, STeq, ZGeq, and ZTeq are the apparent
power of the equivalent turbines, the apparent power of the
terminal transformer, the impedance of the generator and the

impedance of the machine end transformer; STh and ZTh are
the apparent power of terminal transformer of wind turbine h
and the impedance of terminal transformer; f is the number
of wind turbines included in equivalent turbines.

2) EQUIVALENT PARAMETERS OF SHAFTING

Hteq =
f∑

h=1

Hth

Hgeq =
f∑

h=1

Hgh

Keq =
f∑

h=1

Kh

Deq =
f∑

h=1

Dh

(2)

In this equation, Hteq, Hgeq, Keq, and Deq are the iner-
tial time constant, inertial time constant of generator rotor,
shafting stiffness coefficient and shafting damping coefficient
of equivalent turbines; Hth, Hgh, Kh, and Dh are the inertia
time constant of wind turbine h, the inertia time constant of
generator rotor, the stiffness coefficient of shafting and the
damping coefficient of shafting.

3) EQUIVALENT PARAMETER OF WIND SPEED

veq =

 1
Acpeq

f∑
h=1

Ah cph v3h

 1
3

A =
f∑

h=1

Ah

cpeq =
1
f

f∑
h=1

cph

(3)

In this equation, veq, A, and cpeq are the input wind speed,
wind turbine sweeping area and wind energy utilization coef-
ficient of equivalent wind turbine cluster; vh, Ah, cph are the
input wind speed, sweep area, and wind energy utilization
coefficient of wind turbine h.

4) EQUIVALENT PARAMETERS OF THE COLLECTOR SYSTEM
There are two main topologies of collecting lines in wind
farms: a) Radial topology; b) Trunk line topology. Each wind
generator unit of radial topology is connected to PCC point
through the line, the equivalent impedance of the collector
system with this topology can be calculated directly by the
equal power loss method. In the trunk topology, they are
connected to the PCC point through the line except for the
wind turbines in the first section, other wind turbines are
connected to the end of the previous wind turbine through
the line, the collector system of this topology is converted
into a radial topology first, then the equivalent impedance is
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calculated by the method of equal power loss, the specific
steps are as follows:

a) The equivalent impedance of each wind turbine on the
main line is calculated by using the equal power loss method,
then transformed into radial topology connection.

FIGURE 1. Topology of wind farm collector lines.

As shown in Fig. 1, there are n wind turbines on PCC point,
which are connected by trunk topology, after being conversed
into radial topology connection, the equivalent impedance of
each wind turbine is calculated according to the following
equation:

Zeqn =
n∑
i=1

(P1 + P2 + . . .+ Pi)2

P21 + P
2
2 + . . .+ P

2
i

Zi (4)

In this equation, n means any one wind turbine;
Zi is the line impedance at the exit of the ith wind turbine;
Zeqn represents the equivalent line impedance of wind turbine
branch n.

FIGURE 2. Convert trunk topology to radial topology.

b) According to the clustering results, the total equivalent
impedance is calculated by using equal power loss method for
all the wind turbines in each cluster, which is the equivalent
impedance of the equal-value collector system. Assuming
that wind turbine cluster 1 in the clustering result contains
m turbines, and renumber them from 1 to m, the equivalent

impedance of wind turbine cluster 1 is

Zeq =

m∑
i=1

(P2i Zi)

(P1 + P2 + . . .+ Pm)2
(5)

In this equation, Zi represents the impedance on the branch
of wind turbine i; Pi represents the power flowing through
impedance Zi; Zeq represents the equivalent impedance of
wind turbines 1.

The calculation method of equivalent impedance is based
on the principle of equal losses before and after equiva-
lence in collector networks, in the multi-machine equivalence
modeling of wind farm, generally speaking, complex net-
work transformation is needed to change the series-parallel
hybrid topology into a pure-parallel network, then calculate
the corresponding equivalent impedance if any wind turbine
is aggregated into an equivalent wind turbine according to
the principle of equal loss before and after equivalence, the
calculation is complicated, and when there are many wind
turbines in the wind farm, the error will also be large due to
the approximation in the calculation process.

B. OPTIMIZATION OF EQUIVALENT PARAMETERS OF
WIND TURBINE CLUSTER
The objective of wind turbine parameter identification is to
find the parameters to be identified under the observed quan-
tity, the errors between the disturbed trajectory and the mea-
sured trajectory based on this parameter can be minimized, its
essence is an optimization problem, the steps of equivalent
parameter optimization method for the wind turbine cluster
designed in this paper are as follows:

1) The equivalent precisions of active power, reactive
power, voltage, and current at the point connected to the grid
of wind farm are selected to construct the objective function:

minF(y) = min
y

{
fP(y), fQ(y), fU (y), fI (y)

}
(6)

In engineering applications, the effect of equivalent errors
on power grid is not only evaluated by its value, therefore,
the relative deviation value is used to represent the equivalent
errors, the equation is as follows:

fP(y) =
1
M

√√√√ M∑
m=1

[
1PPCC (m)

Pb

]2

fQ(y) =
1
M

√√√√ M∑
m=1

[
1QPCC (m)

Qb

]2

fU (y) =
1
M

√√√√ M∑
m=1

[
1UPCC (m)

Ub

]2

fI (y) =
1
M

√√√√ M∑
m=1

[
1IPCC (m)

Ib

]2

(7)

2) Determine the parameter y to be optimized, wind turbine
cluster equivalent control parameters, structural parameters
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in the length of the collector lines, and mechanical structure
parameter (Generator inertia time constant Hg, Wind turbine
inertia time constant Hw, damping coefficient of shafting Ds,
Stiffness coefficient of shaftingKs) are included. Increase and
decrease by 100% respectively based on the initial param-
eters, and take it as an optimization interval. The dynamic
response is affected by the variation of parameters of the
drive system and the doubly-fed induction generator, so the
calculation of the objective function and response curve is
dynamic, if there is a deviation within responses, it means
the parameters are changed, they need to be adjusted dynam-
ically, and minimizing objective function.

3) Aiming at the optimization problem of the parame-
ters, a BOHB black box parallel optimization framework is
established.

a) First, define the threshold bmin, bmax, and discard fac-
tor η for each parameter combination allocation of resources
(number of iterations, amount of data, execution time, cache,
etc.) by referring to Hyperband. Among them, η is greater
than 1, the proportion of parameter combinations with large
equivalent errors abandoned by SH strategy is 1/η in each
round.

Define s ∈ {Smax , Smax − 1, . . . , 0}, Smax is defined as
blogη(bmax / bmin)c, a large number of experiments show that
when η is set to 3 or 4, the effect has a better control, Smax is
negatively correlated with η, the initial total resources are:

B = η−s · bmax (8)

b) Then, divide each s into a subset, different subsets
of s use different threads to perform the following tasks,
n parameter combinations were sampled from the parameter
space based on Bayesian modeling method, where, n =
d(Smax + 1)/(s+ 1)∗ηse.
Assuming that the sample satisfies the Gaussian distribu-

tion with kernel function, at the beginning,Nmin+2 parameter
combinations are randomly selected (Nmin is usually set to
d + 1, and d is the number of parameters), supposing the
sample set is D ={(xi, yi)}, xi is the parameter combination
and yi is the parameter optimization result under specified
resources, then find the extremum point of the expectation
of sampling function xi+1.

Firstly, the TPE is used to fit the two density distribu-
tions with small and large equivalent errors respectively, i.e.,
Nb,l = max(Nmin, qNb) and Nb,g = max(Nmin, Nb − Nb,l).
Nb =| Db |, Db are the set of observation points corre-
sponding to budget b. the estimated probability density of the
sample points of the parameter combination is:

f̂h (x) =
1
n

n∑
i=1

Kh (x − xi) =
1
nh

n∑
i=1

K
x − xi
h

(9)

In this equation, Kh(x) = h−1K (x/h) is a scaling kernel
function; K is a kernel function (nonnegative, the integral
in the real number field is 1, and the mean value is 0); The
bandwidth h determined by minimizing the mean integral
error is a non-negative smoothing parameter.

When b = argmax{Db:| Db |≥ Nmin + 2}, return to
randomly generated combination of arguments, otherwise,
go into exploitation; Define a probability density l(x), which
can accelerate convergence in large scale problems (multiply
the bandwidth of the density formed by the combination of
parameters with an equivalent error less than the threshold
by a factor to encourage more exploration around the known
point), Ns parameter sample combinations are sampled from
it, updated sample x returns the parameter combination that
maximizes l(x)/g(x) (g(x) is the density formed by the com-
bination of parameters so that the equivalent error is more
than the threshold), the mean and variance of Gaussian dis-
tribution with kernel function are updated until n parameter
combinations are collected near xi+1.

c) Lastly, according to the number of threads, n parameter
sets are divided into subsets which contain the same num-
ber of parameter combinations for parallel calculation, the
parameter combinations of 1/η ratio are eliminated under a
given resource every time, therefore, the rest of the parameter
combinations are available for more resources until the bmax
resource is available for each parameter combination, com-
paring the optimal combination of parameters for each subset
to obtain a global optimal solution of parameter combination.

4) The predicted curve of active power response is
obtained by comparing the identified response with the actual
response, whether the identified structural parameters can
replace the actual parameters is determined according to the
fitting degree of the two active power response curves.

FIGURE 3. Parameter identification frame.

III. MULTI-MACHINE EQUIVALENCE OF DOUBLY-FED
WIND FARM
Wind turbines in an actual wind farm usually come
from the same manufacturer and are of the same model,
if the spatial distribution of wind speed is not different,
the wind turbine approximately has a same linearization
model [40], [41]. Large scale wind farms and some small and
medium scale wind farms cover large geographical spaces
and wake effect is obvious, it can be divided into several wind
turbine clusters composed of the same type of wind turbines
without significant differences in operating conditions, and
then make each wind turbine cluster equivalent respectively.
This paper transplants the Generator Coherency Identifica-
tion method proposed in document [42], i.e., structure IAE,
including feature extraction layer, clustering layer, and visu-
alization layer. Note that the Gaussian Mixed Model in IAE
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is replaced with k-means herein as k-means does not require
a strong assumption on multivariate normality.

FIGURE 4. IAE to divide turbines and generate a visual heat map.

As shown in Fig. 4, it measures the active power, reactive
power, terminal voltage, current, and rotor angular velocity
of each doubly-fed wind turbine as the wind power charac-
teristic index, and input the feature extraction layer, which
is used to extract the division index of wind turbine cluster,
the clustering layer divides the wind turbine cluster according
to the index and reversely adjusts the index, the visualization
layer represents the index of the timing attended area as a heat
map.

The multi-machine equivalent method of doubly-fed wind
farm in this paper is divided into five steps:

1) Input the active power, reactive power, terminal voltage,
current, and rotor angular velocity of each doubly-fed wind
turbine, the Auto-Encoder designed in this paper is used to
mine its data features and calculate the CID of each wind
turbine’s timing features.

2) The CID of each wind turbine is input to k-means which
update the mean by gradient descent based on KL divergence,
the parameters of step 1) are reversely adjusted through the
joint training mechanism, which makes step 1) tends to mine
potential dimensions that characterize the segmentation of
sequential unlabeled data into multiple wind turbine clusters,
visual interpretation of the importance of feature time series
interval is realized based on transfer learning and CAM,
k-means finally outputs the result of cluster division and
compares it with the control division result of wind turbine
power.

3) According to the wind turbine cluster divided by step 2),
the structure parameters, operation parameters, and collector
network parameters of wind farm multi-machine equivalence
are calculated based on capacity weighting method, equal
input wind energy method and equal power loss method,
the control parameter remains unchanged as the initial value
of step 4).

4) Build BOHB black box parallel optimization
framework, searching the optimal solutions of equivalent
network parameters, mechanical structure parameters, and
control parameters of wind turbine cluster in the optimization
interval.

IV. THE EXAMPLE ANALYSIS
A. HARDWARE AND SOFTWARE PLATFORM
CONFIGURATION
This algorithm is implemented by writing Python code,
in terms of software configuration, this example uses Ten-
sorFlow framework and Visual Studio development environ-
ment (including code editor, compiler, debugger, etc.) [43].
The Linux server hardware used in the model training is
configured with 2.3GHz eight core Intel Core i9 processor,
32GB 2667MHz DDR4memory and Ubuntu 18.04 operating
system.

B. CALCULATION EXAMPLE: A 16-TURBINE WIND FARM
AND ITS SURROUNDING AREA
1) WIND FARM WIRING DIAGRAM AND EXPERIMENTAL
DESIGN DESCRIPTION
This paper uses MATLAB /Simulink simulation platform to
build a wind farm composed of 16 DFIGs with rated power
of 1.5MW. The terminal rated voltage of DFIG is 575V, the
unit connection mode of one machine and one change is
used to boost the voltage locally to 25kV, it is transmitted
to 25kV/220kV substation and external power grid through
overhead lines, the altitude, length of collector lines, and
topological structure of each DFIG are shown in the figure
below.

FIGURE 5. 16-Turbine wind farm wiring diagram.

The original parameters of each DFIG are shown in the
table below.

The collector wire parameters are shown in the following
table.

Set wind direction at 0◦, the wind speed before reaching
this wind field is 13m/s, according to the wind speed wake
effect, the initial wind speed of each DFIG is calculated from
the wind farm wiring diagram of this example, as shown in
the table below:
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TABLE 1. Original parameters of a single doubly-fed wind turbine.

TABLE 2. Collector lines parameter.

TABLE 3. The initial wind speed of each doubly-fed wind turbine.

The system dynamics excited by different disturbances
may be different. Power grid side fault and input side wind
speed change excitation are set respectively, perform the
following experiments to obtain the active power, reactive
power, voltage, current, and rotor angular velocity distur-
bance curves of the wind turbines.

Experiment One: Make the three-phase short circuit fault
at the outlet of the wind farm occur within 12s, the fault lasts
for 100ms, the voltage drops to around 0.0 p.u., take the data
from 11s to 17s, and the step size is 50us.

Experiment Two:
a) Gust disturbance. Based on Experiment One, through

the s_function module in Simulink function writing, a distur-
bancewind speed component of sinusoidal half wave is added
to each basic wind speed to simulate the disturbance of gust,
set the simulation time of 40s and the gust disturbance time
of πs by varying the timing of the gust, three groups of data
were measured successively for data analysis, as shown in the
following table.

TABLE 4. Gust disturbance experiment disturbance component.

TABLE 5. Disturbance component parameter of progressive wind
disturbance experiment.

b) Progressive wind disturbance. Truncate the basic con-
stant wind speed, i.e., set the time of progressive wind, the
progressive process is simulated with a positive proportional
function, then make it to another constant wind speed after
a certain time to complete the progressive wind simulation.
Then set the occurrence time of progressive wind, and set
the simulation duration to 40s and the progressive wind
disturbance to 5s, two groups of data have been measured
successively for analysis. As shown in the following table.

c) Comprehensive wind disturbance. Set the gust to occur
at the time of 2s, maintain πs, and the amplitude is 1m/s; The
progressive wind occurs at the 8th second and lasts for 5s.

2) EXPERIMENT ONE: CONSTANT WIND SPEED AND SHORT
CIRCUIT AT THE POINT CONNECTED TO THE GRID
As a control group, based on the power control zoning char-
acteristics, 16 DFIGs are divided into maximum power track-
ing regions(7 ∼ 12m/s), constant speed constant power area
(12 ∼ 25m/s), i.e., the following two doubly-fed turbine
clusters: {3,4,8,11,12,15,16}, {1,2,5,6,7,9,10,13,14}.

Input the active power, reactive power, voltage, current, and
rotor angular velocity disturbance curves of 16 DFIGs from
11s to 17s, the power disturbed curve is shown in Fig. 6 and
Fig. 7, it can be seen that the oscillation frequency of the
disturbed track is high, about 2s after the fault, the system
tends to be stable, it shows that the grid side fault excites the
fast dynamic mode of the electrical part of the system, the
sensitivity of electrical parameters is generally large at this
time. And turbine group 4 has obvious outlier characteristics
in line with the subsequent clustering results.

FIGURE 6. Active power curve of each turbine group.
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FIGURE 7. Reactive power curve of each turbine group.

TABLE 6. Equivalent parameters of model A and C.

The double-fed wind farm is divided into four turbine
clusters by jointly training the spatio-temporal Auto-Encoder
and probabilistic gaussian mixture model designed in this
paper: {1,2,5,6,9,10,13,14}; {3,7,11,15,16}; {4}; {8,12}.
At this time, the KL divergence of clustering loss function
is 3.6877 × 10−9, the characteristic loss function MSE is
1.81× 10−4, and the order of magnitude is very small, from
the data point of view, it shows that the accuracy of turbine
cluster division is very high and the feature loss is very small.

Build heat map based on CAM and learn from the idea of
transfer learning, and represent the attended area of character-
istics extracted in turbine cluster partition in Experiment One,
the color represents the attention of the model to the charac-
teristic, and the attention is normalized, the larger the value is,
the more attention the model pays to regional characteristics,
feature extraction from left to right along time series, from
top to bottom represents wind turbines 1 to 16.

Wind turbine 4 with wind speed of 10.7757m/s shows the
characteristic of being paid attention to by feature extraction
layer after fault excision, it is obviously different from other
wind turbines, which shows that the clustering characteristics
of wind turbines cannot be simply divided by power control
modes at different speeds, it is also affected by other physical
conditions. Wind turbines 3,7,11,15 and 16 show the char-
acteristics which are focused by the feature extraction layer

FIGURE 8. Characteristic heat map.

when the fault first occurs, then it soon falls out of the spot-
light, it has obvious clustering characteristics, indicating that
the wind speed of wind turbine 7 belongs to constant speed
and constant power region, but its response characteristics are
similar to wind turbines 3,11,15 and 16 in maximum power
tracking area. Wind turbines 1,2,5,6,9,10,13,14 receive the
same attention from the model at the same time, and only
differ from wind turbines 8 and 12 at the moment when
the fault is just removed, they are still keenly divided into
two wind turbine clusters, it again shows that the clustering
characteristics of wind turbines are not only determined by
the power control method based on wind speed (rotational
speed).

The initial calculation of equivalent parameters of multiple
wind turbines is carried out based on the clustering results
of the above two wind turbine clusters, i.e., the capacity
weighting method is used to calculate the parameters of
equivalent wind turbine generators, transformers and shaft-
ing; The equivalent wind speed is calculated based on the
principle that the total input wind energy of each wind turbine
cluster is equal before and after the equivalence, the trunk
topology is transformed into radial topology by equal power
loss method, then calculate the equivalent parameters of the
collector system; The original wind turbine control parame-
ters are used as equivalent control parameters. Starting from
the position of the above initial parameters, the parameter
identification problem is transformed into a nonlinear multi-
objective hyperparametric optimization problem, early stop
mechanism is introduced based on BOHB black box par-
allel optimization framework, iteration is stopped when the
reduction of loss value between two iterations is less than
the threshold (1e-10) for five consecutive times, the optimal
equivalent parameters are solved.

To verify the causal relationship between the wind farm
equivalent precision from the two aspects, the division of
the wind farm clusters and the identification of the equiv-
alent parameter in the wind farm mentioned in this paper,
models A, B, C, and D are set to constitute the ablation
study. The multiple wind turbine equivalent model based
on power control zoning and initial calculation of steady-
state parameters is abbreviated as model A, the equivalent
wind speeds of equivalent wind turbines in maximum power
tracking area and constant speed and power area are 11.52m/s
and 12.6m/s respectively; The multiple wind turbine equiva-
lent model based on clustering algorithm and initial calcu-
lation of steady-state parameters is abbreviated as model B,
the equivalent wind speeds of wind turbine clusters 1 to
4 are 12.668m/s, 11.85m/s, 10.7757m/s, and 11.2831m/s,
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TABLE 7. Equivalent parameters of model B and D.

respectively; The multiple wind turbine equivalent model of
comprehensive identification based on power control zones,
equivalent control parameters of wind turbine cluster, length
of collector lines, and mechanical structure parameters in
structural parameters (generator inertia time constant Hg,
wind turbine inertia time constant Hw, shafting damping
coefficient Ds, and shafting stiffness coefficient Ks) is abbre-
viated as model C; The multiple wind turbine equivalent
model of comprehensive identification based on clustering
algorithm and length of collector lines and mechanical struc-
ture parameters in structural parameters is abbreviated as
model D.

The above four equivalent wind farm models are built in
simulink, and the relative equivalent deviations of voltage,
current, active power, and reactive power at the point con-
nected to the grid between the above four equivalent mod-
els and the original model are calculated by equation (7),
as shown in the following table.

As can be seen from the above table, in the ablation
study set in this paper, the equivalent deviations of voltage,
current, active power, and reactive power at the point con-
nected to the grid of model B and model C are significantly
reduced compared with model A and model A, and verify the
improvement of dynamic equivalent precision of wind farm
by the clusteringmethod and parameter identificationmethod
in this paper respectively. Finally, model D shows that the
proposed model in this paper can more accurately simulate
the dynamic characteristics of wind farm output, therefore,
it is fully applicable to the interaction analysis between
wind farm and power system, simultaneously, it can be used
to analyze the stability of power system including wind
power.

To verify the superiority of wind farm equivalence model
in simulation efficiency, set the fixed step size to 50us, i.e.,
iterative calculation is performed once every 50us in the real
wind farm, the average value is taken through 20 experiments,
compare the time required for the original model and the
equivalent model to iterate once in simulink and c++ envi-
ronment based on gcc compiler.

TABLE 8. Dynamic equivalent relative deviation comparison.

TABLE 9. Simulation efficiency comparison.

3) EXPERIMENT TWO: WIND SPEED DISTURBANCE AND
SHORT CIRCUIT AT THE POINT CONNECTED TO THE GRID
Due to the randomness of disturbed wind speed, the wind
turbine clusters division in traditional wind farms shows
uncertainty, the equivalent parameters of the wind turbine
clusters need to be updated continuously by using the ana-
lytical method, while in practical engineering, it is necessary
to obtain the clustering results which are generally applicable
to various working conditions. On the other hand, the system
dynamics excited by the change of wind speed is slow, i.e., the
slow dynamic mode strongly related to the mechanical part is
excited, the sensitivity of mechanical parameters is generally
large at this time.

To obtain uniform clustering results applicable to the prac-
tical engineering application of multi-machine equivalence,
three groups of experimental data under gust disturbance,
two groups of experimental data under progressive wind dis-
turbance and experimental data under comprehensive wind
disturbance designed in Experiment Two are sequentially
splice and input in a purely data-driven way in this paper, the
unified clustering result is:
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TABLE 10. Equivalent relative deviation of model A in different scenarios.

TABLE 11. Equivalent relative deviation of model B in different scenarios.

TABLE 12. Equivalent relative deviation of model C in different scenarios.

TABLE 13. Equivalent relative deviation of model D in different scenarios.

{1,5,9,13} {2,6,10,14} {3,7,11,15,16} {4,8,12}, among
them, the equivalent wind speed and the length of col-
lector lines from group 1 to 4 are 13 m/s, 12.31796m/s,
11.85124741m/s, 11.119141m/s, 1.05km, 0.8081243km,
3.05346177km, 3.287884655km. the equivalent deviation of

the points connected to the power grid of the model defined
in Experiment One in the 40s time window under various
working conditions is shown in the table below:

The above experiments verify the proposed method
of wind turbine clustering and equivalent parameter
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identification of wind turbine clusters in the wind farm
under different wind speed scenarios, it has higher dynamic
equivalence accuracy and strong robustness compared with
traditional methods, and it is suitable for simulation of wind
farm, interaction between wind power and power system and
stability analysis in practical engineering.

V. CONCLUSION
This paper proposes a method for clustering wind turbines
based on the deep migration of multi-view features, a multi-
objective nonlinear multi-time scale model of wind turbine
cluster equivalent parameter identification is constructed and
solved it based on BOHB black box parallel optimization
framework. According to theoretical analysis and ablation
study, the conclusions are as follows.

1) In this paper, the constructed deep spatio-temporal Auto-
Encoder and KL- k-means research are trained jointly, which
achieves multi-view, unsupervised wind farm cluster divi-
sion, compared to traditional methods, the equivalent devi-
ations of voltage, current, active power, and reactive power at
the point connected to the grid are reduced by 75%, 76%,
73%, and 82% under the experimental condition of con-
stant wind speed, uniform clustering results can be obtained
under variable wind conditions, it meets the requirement of
equivalent value of wind farm in practical engineering, the
equivalent deviation is reduced by 50% to 80% in all wind
conditions, the accuracy and robustness are both high, and
fully data-driven without the need to annotate data offline,
the heat map of feature importance interval based on trans-
fer learning and CAM also solves the problem of ‘‘black
box’’ unexplainable, whichmakes it more reliable in practical
engineering.

2) In this paper, according to the initial value of the equiv-
alent parameters of the computer clusters of physical char-
acteristics, a black box parallel optimization framework for
the optimal value of equivalent parameters of identification
turbine clusters are established based on BOHB, which can
simultaneously identify the dynamic parameters of differ-
ent time scales in wind turbines (Electrical, mechanical and
control parameters), compared to traditional methods, the
voltage, current, active power and reactive power deviations
of wind farm equivalent are reduced about 83%, 99%, 65%,
and 48% under constant wind speed, there is also 40% to 99%
reduction in all wind conditions.

Compared with traditional methods, the proposed method
of cluster division and parameter identification can reduce the
voltage, current, active power, and reactive power deviation
of wind farm equivalence about 94%, 99%, 96%, and 86%
under the experimental condition of constant wind speed,
the equivalent deviation in all kinds of working conditions is
reduced by 80% to 99%, the accuracy and robustness are both
high, it can simulate the dynamic characteristics of wind farm
output more accurately, therefore, it is fully applicable to the
interaction analysis between wind farm and power system,
it can be used for the stability analysis of power system
with wind power simultaneously, and it has the feasibility

of extending to the equivalence of full power converter grid-
connected wind turbines represented by permanent magnet
direct drive wind turbines and photovoltaic power generation
units.
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