
Received 28 July 2022, accepted 20 August 2022, date of publication 25 August 2022, date of current version 2 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3201645

Wi-Fi and Bluetooth Contact Tracing
Without User Intervention
BROSNAN YUEN , YIFENG BIE, DUNCAN CAIRNS, GEOFFREY HARPER, JASON XU,
CHARLES CHANG, XIAODAI DONG , (Senior Member, IEEE),
AND TAO LU , (Member, IEEE)
Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada

Corresponding authors: Xiaodai Dong (xdong@ece.uvic.ca) and Tao Lu (taolu@ece.uvic.ca)

This work was supported in part by the Natural Science and Engineering Research Council of Canada (NSERC) Discovery under Grant
RGPIN-2020-05938, Grant CRDPJ 520198-17, and Grant ALLRP 555003-20; in part by the Threat Reduction Agency (DTRA) Thrust
Area 7, Topic G18 under Grant GRANT12500317; in part by the Fortinet Research under Contract 05484; and in part by NVidia under
graphics processing unit (GPU) Grant Program.

ABSTRACT Previous contact tracing systems required the users to perform many manual actions, such
as installing smartphone applications, joining wireless networks, or carrying custom user devices. This
increases the barrier to entry and lowers the user adoption rate. As a result, the contact tracing effectiveness is
reduced. Unlike the systems above, we propose a new privacy preservingWi-Fi and Bluetooth (BLE) contact
tracing system that does not require smartphone applications, joining wireless networks, or custom user
devices. Our specially built routers seamlessly track smartphones, laptops, smartwatches, BLE headphones,
and tablets without any user action, but do not trace user identity. Mapping between devices and users is only
carried out for confirmed cases and suspected contacts. Moreover, we can track the absolute positions of user
devices within 1.0 m due to using bidirectional long short-termmemory neural networks that are trained with
data pre-collected by an autonomous robot. This allows public health authorities to track indirect droplet and
surface transmissions that other contact tracing systems often overlook.

INDEX TERMS Contact tracing, received signal strength indicator (RSSI), round trip time (RTT), fine time
measurement (FTM), Wi-Fi indoor localization, bluetooth indoor localization.

I. INTRODUCTION
When a new outbreak appears with unknown pathogens, vac-
cines and treatments are not available immediately to reduce
the spread of the disease. Therefore, governments and pub-
lic health agencies use extensive disease testing to identify
infected individuals. However, testing the entire population
is inefficient because of the limited testing capacity, false
negative cases, and the associated costs. Contact tracing has
been developed to make efficient use of the limited testing
resources, where the closest contacts of the confirmed cases
or symptomatic cases are tested and isolated.

A. CONTACT TRACING
Contact tracing is difficult because super-spreaders could
infect thousands of people a day [1] and exponentially

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

increase the number of people in the contact tracing list.
Traditionally, contact tracing has been done by hand, where
the authorities interview each confirmed case to get the
contacts and visited places. Afterwards, suspected cases are
isolated and tested. Symptomatic cases and high exposure
cases get a higher priority in testing. With a high enough
contact tracing efficiency, diseases can be locally contained
and sometimes be eradicated [2]. However, performing con-
tact tracing manually is very inefficient because the infected
people might forget who they met and where they visited.
Staff shortages, incorrect training, and slow turnaround times
can also cause inefficient contact tracing.

Many countries have moved to automated means of con-
tact tracing [3], [4], [5] via smartphones, cameras, custom
tracking devices, or genome sequencing. Cameras can be
used in-conjunction with facial recognition software to track
individual people. Researchers collected a database of faces
and applied a convolutional neural network (CNN) to classify

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 91027

https://orcid.org/0000-0003-3514-0073
https://orcid.org/0000-0001-7126-5602
https://orcid.org/0000-0002-1303-0407
https://orcid.org/0000-0002-6921-7369

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

the presences of the people in the database [6]. They are able
to perform contact tracing via a web interface. Instead of
only classifying faces, other researchers have used multiple
cameras to track movements in real time [7]. Furthermore,
they can determine the actual paths of the confirmed cases
for contact tracing.

Genome sequencing enables contact tracing without inter-
viewing patients or requiring tracking devices. This par-
ticularly useful for incapacitated or unidentified patients.
Gardy et al. [8] applied hierarchical clustering to sequenced
genomes in order to create a genome tree of a tuberculosis
outbreak. Moreover, the genome tree perfectly matches the
contact traced social network created from patient question-
naires. The main disadvantage of genome sequencing is the
genome tree can only be created after the patients are infected.

On the other hand, smartphones are readily available and
can be used for tracking the movements of individuals. Thus,
many governments, public health agencies, and software
companies have implemented smartphone applications for
contact tracing. The Singaporean government released one of
the first contact tracing applications for COVID-19 [9]. Each
smartphone application broadcasts Bluetooth Low Energy
(BLE) exposure notification packets containing temporary
IDs of the users. Furthermore, each smartphone receives
exposure notifications from all other smartphones and checks
the received temporary IDs against a database of confirmed
cases. If the temporary ID is in the database of confirmed
cases, then the application warns the user about an exposure.
Similarly, Apple and Google have developed their own con-
tact tracing system using BLE [10], [11], where they built
contact tracing functionality into iOS and Android operating
systems. This allows them to do contact tracing on a scale
of multiple countries, which is far greater than any other
research study. On the other hand, researchers have developed
DigitalPPE [12], a wearable BLE smartwatch, that tracks
social interacts between people. DigitalPPE gives a vibration
warning if two people get too close and records the IDs of
the smartwatches with the relative distance. Shelby et al. [13]
performed two BLE contact tracing studies: one study using
a smartphone application and the other study using external
BLE tags on the user. The custom BLE tags had a higher
accuracy compared to the smartphone application because
the BLE tags had a higher transmit rate and power. Also,
other researchers have relentlessly applied BLE for contact
tracing [14], [15], [16], [17], [18], [19], [20], [21].

Alternatively, Yasaka et al. [22] used QR codes for track-
ing social gatherings between groups of people. The host of
the social gathering creates a QR code using the applica-
tion, and the participants scan the QR code to build a time
series graph. When a user indicates a positive test result,
all users within 3 traversals of the time series graph are
notified. A few more research papers have used the QR code
approach [23], [24], [25]. Moreover, the smartphones’ GPS
can be used to track users in the outdoor environments [26].
This would provide a higher position accuracy than BLE and
QR codes.

Wi-Fi can be a useful tool for localization and contact
tracing. Trivedi et al. [27] developed a Wi-Fi based contact
tracing system without the need to install an application onto
the smartphone. They used the access points (APs) of two
universities to collect packets from smartphones, where the
user’s trajectory is built using the closest APs. Furthermore,
a graph search algorithm takes the user’s trajectory and pro-
duces a location and proximity report of the exposed users.
Other research groups have used Wi-Fi based smartphone
applications [28] to capture beacon frames from nearby APs
and upload the data to the cloud. This allows the authorities
to track the visited places and the positions of the confirmed
cases. Moreover, the lifespan of the disease can be known due
to the recorded timestamps of the beacon frames.

B. INDOOR LOCALIZATION
Localization is fundamental to contact tracing, and it has
two major categories: outdoor and indoor localization. Out
of all the outdoor localization methods, Global Positioning
System (GPS) is the most popular and is robust against signal
interference and jamming [29]. However, GPS requires direct
line-of-sight (LoS) between the satellites and the handset,
which is unsuitable for indoor localization.

Indoor localization has drawn more attention in the indus-
try for its wide variety of use cases, such as autonomous
indoor vehicles (AIVs) [30], unmanned aerial vehicles
(UAVs) [31], home automation, and smart buildings [32].
Radio Frequency (RF) waves penetrate materials like tables
and walls, making RF-based indoor localization the most
adopted solution. Moreover, RF performs better than other
methods [33]. RF-based systems employ mobile phones
for capturing wireless parameters such as angle of arrival
(AOA), time of arrival (TOA), and received signal strength
indication (RSSI). There are two types of RF based local-
ization methods: ranging and trilateration/triangulation, and
fingerprinting. The first method requires deploying known
anchor nodes with coordinate information and synchroniza-
tion among nodes, while the second method does not. In this
paper, we use the wireless fingerprinting approach where the
RF parameters act as fingerprints for positioning. With the
help of machine learning, the average localization error of
fingerprinting is around 1 m [34], [35].

Our interests lie in estimating the positions of people to
determine COVID-19 exposures. As a result, indoor local-
ization is more useful than outdoor localization due to
indoor environments having a higher infection rate [36].
Moreover, indoor localization is extremely helpful for track-
ing COVID-19 outbreaks in complex environments such as
supermarkets and airports.

C. FEATURES OF THE PROPOSED CONTACT
TRACING SYSTEM
Every contact tracing system has its own unique features
and advantages, as shown in Table 1. Camera contact trac-
ing systems [6] do not require any smartphone applications,
wireless network connections, and external user devices.

91028 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

TABLE 1. Feature Comparison of Indoor Contact Tracing Systems.

Moreover, they have an accuracy of 0.5 m and can track
droplet and surface transmissions. However, setting up mul-
tiple cameras per building and a video processing system
is extremely costly. Similar to the camera contact tracing
system, genome sequencing [8] is highly accurate and pre-
cise. However, it requires viral samples from each user and
processing each sample is expensive.

BLE contact tracing systems are cheap and easy to set up.
However, they usually require the user to manually install
smartphone applications [9] or manually activate exposure
notifications in the settings [10], [11]. This results in a low
participation rate and decreases the accuracy of contact trac-
ing. Furthermore, those systems only record the relative posi-
tions of the users, of which are highly ineffective in tracking
droplet and surface transmissions. Using custom BLE smart-
watches [12] or tags [13] eliminates the need for smartphone
applications, but they only record relative positions and have
the exact same problems.

A fewWi-Fi contact tracing systems [27] do not require the
user to install smartphone applications. Instead, the routers
record the positions of the smartphones, whenever the user
manually logs into the wireless network. This approach has
low position accuracy due to users getting disconnected or
logging out. Furthermore, the RSSI ranking system has loca-
tion ambiguity due to multiple positions having the same
RSSI ranking. As a result, they can not determine if a user

is within 2.0 m of another user. Moreover, their system is
expensive due to them using Cisco and HP/Aruba equipment
that cost >$340 USD per router.

Unlike the previous systems in Table 1, we propose a
new privacy preserving Wi-Fi and BLE indoor contact trac-
ing system that does not require the users to perform any
actions. Specifically, the users do not need to install any
smartphone applications. The users do not need to connect
to any wireless networks, which improves localization accu-
racy due to eliminating wireless network disconnects and
users logging out. Instead, we use custom designed ESP32C3
routers to capture Wi-Fi and BLE packets emitted from the
wireless devices. The overall system contains four modules:
an autonomous robot for site survey, a BiLSTM network
for trajectory prediction, WiFi routers designed with special
features to collect sufficient RF data and pre-process the
data, and graph based contact tracing algorithm. In each
module, there are innovations in design solution and practical
implementation, as detailed in the next sections. This system
allows us to track smartphones, smartwatches, tablets, and
laptops of users seamlessly in the background. Although
user tracking and device tracking are used interchangeably
throughout the paper, the system does not obtain user identity
for privacy purpose but only trace deviceWiFi interfaceMAC
addresses. Our contact tracing system also tracks droplet and
surface transmissions due to our neural networks providing

VOLUME 10, 2022 91029

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

absolute positions. Subsequently, indirect or delayed infec-
tions can be tracked even-though the infected individual has
left the area multiple days ago. As for localization accuracy,
our contact tracing system has an average error of 1.0 m,
which is similar to the other BLE and Wi-Fi contact tracing
systems. However, the camera and genome sequencing meth-
ods have higher localization accuracy at a cost of much more
expensive equipment.

The paper is organized as follows. Section II is a big picture
overview of the proposed contact tracing system. The site
survey is conducted in Section III, while the data processing
is shown in Section IV. The actual contact tracing algorithm
is depicted in Section V. Section VI shows the results and
discussions of identifying uniquemobile devices, localization
performance, and contact tracing. A conclusion is presented
in Section VII.

II. OVERVIEW OF THE PROPOSED CONTACT
TRACING SYSTEM
Fig. 1 shows the overview of the proposed contact tracing sys-
tem. It consists of four components: 1) An autonomous robot
for site survey to generate a location-fingerprint database;
2) A BiLSTM neural network trained by the site survey
dataset for user trajectory prediction; 3) WiFi routers for
capturing packets without user action in prediction, testing
and training stages; 4) Contact tracing algorithm and engine
based on the localization data.

We propose to use a bidirectional long short term mem-
ory (BiLSTM) neural networks to predict the trajectories
of mobile devices. The BiLSTM requires many datasets
such as the training dataset, the testing dataset, and the
production dataset. The training dataset is used to train the
BiLSTM, while the testing dataset measures the accuracy of
the BiLSTM. Moreover, the production dataset is the real life
dataset that only contains input features without any labels.

Wireless fingerprinting for localization does not need to
install known anchor nodes but does need to have a location-
fingerprint database of a site. This site survey if done man-
ually is very laborious. The purpose of the Turtlebot3 site
survey is to obtain the training dataset and the testing dataset
using a robot. The Turtlebot3 executes autonomous site
surveys by meticulously visiting all positions on the floor.
A smartphone is mounted on the robot, and it broadcasts
wireless packets while moving in order to simulate mobile
device trajectories. On the other hand, the ESP32C3 routers
capture Wi-Fi and BLE packets for the training dataset, the
testing dataset, and the production dataset. For the production
dataset, the Turtlebot3 is not involved, and the routers directly
capture packets from the users without the users needing to
perform any action. Afterwards, the packets’ transmit power
(TX power), received signal strength indication (RSSI), and
time of flight (ToF) are used to predict the user trajectories.

Finally, we design a graph based contact tracing algorithm
to build a social contact graph. Every user is assigned to a
unique node on the graph. For every intersection between the
trajectory of a confirmed case and the trajectory of a user,

FIGURE 1. Overview of the proposed contact tracing system.

we add an edge that connects the node of the confirmed case
to the node of the user. After repeating this process multiple
times, a graph of the suspected cases is displayed together
with their trajectories.

91030 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

In the next sections, each component of the system is
described in details.

III. TURTLEBOT3 FOR SITE SURVEY
Typically, mobile devices transmit many Wi-Fi and BLE
packets as they move around the building. By implementing
packet sniffing on the router side, mobile devices can be
tracked throughout the day. However, the localization algo-
rithms require large amounts of training and testing data.
Measurement of the training data is done in the form of
a site survey, where a mobile device transmits packets at
every position and the signal information is recorded at the
router side.

Collecting data by hand is extremely tedious and intro-
duces position errors. Instead, we built a custom Turtle-
bot3 [37] for the site survey. The Turtlebot3 continuously
transmits packets to the routers, while visiting every position
in the building. The original Turtlebot3 has a height of 19 cm,
which is too short for the height of a smartphone on a table
or in a user’s pocket. A platform is added to the custom
Turtlebot3 in order to increase the smartphone’s height to
75 cm. Moreover, the custom Turtlebot3 is also equipped
with RPLIDARA2, Intel D415 RGBD camera, Nvidia Jetson
TX2, and Raspberry Pi 3.

A. ROBOT OPERATING SYSTEM 2
Robot Operating System 2 (ROS2) [38] is an open-source
robotics framework that collects sensor information, executes
data processing, implements inter-process communications,
and allows real-time control. ROS2 has four main concepts:
nodes, topics, services, and actions. Nodes are individual pro-
cesses, of which execute a singular task like collecting sensor
data or filtering information. Nodes can commence one way
communications with other nodes by publishing messages to
topics. All nodes that subscribe to a specific topic receive
the same messages. Unlike topics, services are a two-way
communications channel. Nodes can send service requests
and receive service responses once the specific operation is
completed. Actions are an extension of services, where the
nodes receive periodic feedback status messages instead of
not receiving feedback messages.

The RPLIDAR A2 is a 2D laser ranging device that mea-
sures the distances to the nearest opaque objects. It is a 360◦

LIDAR that completes 1 revolution every 0.1 seconds. The
360◦ scans are divided into 360 angle intervals. For each
angle interval, the RPLIDAR A2 returns a distance value.
The laser scans feed into ROS2 SLAM_toolbox, of which it
produces a 2D grid map and publishes the transform from
map to odometry (odom). It essentially determines the posi-
tion and orientation of the Turtlebot3. On the other hand, the
Intel D415 RGBD is used for obstacle avoidance. The D415
produces a RGBD point cloud at 720p 30 frames per second
(FPS). Camera sensors have false positive readings, where the
sensor outputs a ghost point in the absence of objects. In order
to eliminate the false positives, multiple RGBD point cloud
frames are joined together and are uniformly decimated.

Afterwards, the point cloud is organized into clusters, where
the cluster centres and standard deviations are calculated.
If a point is 1 standard deviation away from the cluster centre,
then it is removed.

B. DETECTING OBSTACLES IN THE LOCAL MAP
In order for the routers to collect data, the Turtlebot3 needs
to visit every position on the floor and stand there for a
few minutes. To accomplish that, we create an autonomous
navigation algorithm that is able to avoid static objects and
moving obstacles in order to operate in various buildings
and environments. There are 4 main steps in Algorithm 1:
detecting obstacles in the localmap, finding the start positions
of the paths, generating the best path using the start positions,
and moving along the planned path.

Before planing a path and moving along it, the Turtle-
bot3 needs to determine the obstacles in the local vicinity.
The function constructCostmap retrieves the odometry, 2D
laser scans (LaserScans), and 3D point cloud (PointCloud)
to construct a 2D occupancy grid (Costmap). Each pixel
in the occupancy grid has a status of occupied, free space,
or unknown depending on the sensor information. This helps
the robot to avoid obstacles, which are labelled as occupied.

Another function, detectObstacles determines if an input
position is near any obstacles in the costmap. It checks every
occupied position in the costmap to determine if any of them
are closer to the input position than the robot radius. If there
is an obstacle closer than the robot radius, then the function
indicates the presence of an obstacle by returning HasObsta-
cles, otherwise there are no obstacles and the function returns
NoObstacles.

C. FINDING THE START POSITIONS OF THE PATHS
Prior to generating new paths, we must first select the start
positions of the paths. As shown in the function findStartPos,
rays are created starting at the Turtlebot3’s current position
(Odom) and ending at the occupied positions in the costmap.
For each individual ray, it is checked against the costmap
for potential obstacles. If the ray has an obstacle in its path,
then the ray is discarded. Afterwards, a random position is
selected from the ray’s line and is appended to the list of
start positions (StartPositionList). The list of start positions
represent candidate positions for generating the best path.

D. GENERATING THE BEST PATH USING THE
START POSITIONS
After finding the start positions, we use the function cre-
atePath to generate new paths and score them for finding
the best path. One of the inputs to the function is a list of
previously visited positions (VisitedPositionList), of which is
used to avoid visiting the same locations. Subsequently, the
best path (BestPath) and best path score (BestPathScore) are
initialized with the worst possible path. A low path score indi-
cates an undesirable path, while a high path score indicates
a desirable path. Afterwards, the algorithm generates every
possible combination of candidate path starting from the start

VOLUME 10, 2022 91031

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

Algorithm 1 Path Planning and Autonomous Navigation

function constructCostmap():
Odom← getOdom();
LaserScans← getLIDAR();
PointCloud← getCamera();
Costmap← newCostmap(Costmap,LaserScans);
Costmap← newCostmap(Costmap,PointCloud);

return Costmap, Odom
function detectObstacles(Costmap, Position):

for each OccupiedPosition in Costmap do
Distance← magnitude(OccupiedPosition -
Position);
if Distance < RobotRadius then

return HasObstacles
end if

end for
return NoObstacles
function findStartPos(Costmap, Odom):

Rays← Costmap - Odom;
StartPositionList← [];
for each RayVec in Rays do

Detect← detectObstacles(Costmap,RayVec);
if Detect == NoObstacles then

RandNum← randomUniform(0, 1);
Position← RandNum�RayVec;
StartPositionList.append(Position);

end if
end for

return StartPositionList
function createPath(StartPositionList, Costmap,
VisitedPositionList):

BestPath← initPath();
BestPathScore← 0;
for each StartPos in StartPositionList do

for each EndPos in Costmap do
Direction← EndPos - StartPos;
Num← Int(magnitude(Direction)/0.5);
Path← arange(0,1,Num)Direction +
StartPos;
Detect← detectObstacles(Costmap,Path);
if Detect == HasObstacles then

continue;
end if
PathScore←
computeScore(Path,VisitedPositionList);
if PathScore > BestPathScore then

BestPathScore← PathScore;
BestPath← Path;

end if
end for

end for
return BestPath

position list and ending at an obstacle in the costmap. The
candidate path is a straight line that has evenly spaced points
between the start position and end position. Each position in

function moveAlongPath(BestPath, Odom,
Costmap, VisitedPositionList):

for each Position in BestPath do
Detect← detectObstacles(Costmap,Position);
if Detect == HasObstacles then

moveRobotToPosition(Odom);
break;

end if
moveRobotToPosition(Position);
sleep();
VisitedPositionList.append(Position);

end for
return VisitedPositionList

the candidate path has a minimum distance of 0.5 m to the
other positions. If a candidate path has an obstacle in its way,
then it is rejected. A path score is computed for each candidate
path, depending on the length of the path and the number
of overlaps between the candidate path and the previously
visited positions.When the candidate path goes throughmany
of the previously visited positions, its path score is decreased.
However, if the candidate path goes to unvisited locations,
then its path score is increased. Longer paths also increase the
path score. The candidate path with the highest path score is
selected as the best path.

E. MOVING ALONG THE PLANNED PATH
As depicted in the function moveAlongPath, ROS2
Navigation 2 is used to move the Turtlebot3 along the best
path. Navigation 2 controls the velocity and angular velocity
in order to visit all the evenly spaced points in the best path.
Before moving to a new location, the algorithm checks to see
if there is an obstacle in the way. Upon detecting a blockage in
its path, Turtlebot3 retraces its steps back to the start position
(Odom). When the Turtlebot3 arrives at one of the planned
positions, the current position is appended to the list of pre-
viously visited positions (VisitedPositionList). Subsequently,
the robot waits at that location for a few minutes, while the
ESP32C3 routers collect Wi-Fi and BLE packets from the
Turtlebot3. Moreover, the ESP32C3 routers record the Unix
times and positions of the robot for the training and testing
databases. The process above repeats until all free positions
on the map are sampled by the Turtlebot3.

IV. PACKET PROCESSING
A. ESP32C3 ROUTER
In order to capture packets, we built a custom router based
on the ESP32C3 chip-set because it supports monitor mode
on Wi-Fi and BLE simultaneously. It is able to determine
RSSI from all Wi-Fi/BLE packets and supports Wi-Fi FTM
to get the round trip time (RTT). For some BLE packets,
the ESP32C3 provides the TX power of the mobile devices.
An RF front end is added to increase the RX power and the
dynamic range of the received packets, while a SD card is
added to store the data.

91032 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

At the start of the day, the routers’ real-time clocks (RTCs)
are synchronized via simple network time protocol (SNTP)
to the master server. The non FTM packets are timestamped
by the RTCs with an accuracy of 1 µs. However, the FTM
packets have a timestamp accuracy of 1 ns provided by the
ESP32C3’s high-resolution timer. Subsequently, raw packet
data is written live to the SD card, and it is sent back to
the master server at the end of the day. Most of the packet
processing is done at the master server to reduce CPU load
on the ESP32C3.

B. INCREASING WI-FI RESPONSE RATE USING
THE ESP32C3
Manufacturers limit the power consumption of the Wi-Fi
chipsets on the mobile devices to conserve battery charge.
As a result, the number of packets transmitted by the
mobile devices is small, and the localization accuracy is low.
However, we can increase the localization accuracy by send-
ing packets to the mobile devices using the ESP32C3 and
getting a higher response rate. In order to cover most Wi-Fi
channels, the routers alternate between channels 1, 6, and 11.
After switching to a channel, the ESP32C3 transmits a
request-to-send (RTS) packet to a mobile device. In response,
the mobile device transmits a clear-to-send (CTS) packet
back to the router, which contains information pertaining
to the mobile device. The ESP32C3 can also send NULL
packets to get an ACK response from the mobile devices.
Moreover, special mobile devices can respond to Wi-Fi FTM
requests, of which greatly increases the localization accuracy.

C. INCREASING BLE RESPONSE RATE USING
THE ESP32C3
Similar to the Wi-Fi case, the ESP32C3 alternates between
BLE channels 37, 38, and 39. Upon switching to a channel,
the router sends a BLE scan request to a mobile device. After-
wards, the mobile device replies with a BLE scan response,
of which contains BLE capabilities and sometimes model
specific information. If the mobile device advertises a BLE
service, then the ESP32C3 will send a pairing request packet
to the device. Even if the pairing request is denied, the router
will still receive a pairing response packet and the position of
the mobile device.

D. SORTING WI-FI PACKETS BY SOURCE TYPE
Once the packets from the routers are collected, they are
sorted and processed. The routers record the packets in non-
chronological order. Therefore, the packet processor sorts the
packets by timestamp in order to synchronize the packets
from multiple routers. Note that malformed Wi-Fi packets
are discarded due to having incorrect information. After-
wards, the packets are sorted by the type of wireless device:
AP, wireless distribution system (WDS), bridged device,
or mobile device. APs are found by looking at the source
MAC addresses of the beacon frames. WDS are identified
when the packets have ToDS=1 and FromDS=1. Bridged
devices are identified when the packets have FromDS=1 and

the source MAC addresses do not equal the BSSIDs. The
remaining wireless devices are categorized asmobile devices.
For the purposes of this paper, only the packets from the
mobile devices are used for contact tracing.

E. SORTING BLE PACKETS BY SOURCE TYPE
Same as the Wi-Fi packet sorting and processing, the BLE
packets are sorted by their arrival time. Subsequently, BLE
packets with invalid cyclic redundancy check are discarded
due to having incorrect protocol data unit types and incorrect
manufacturer specific information. Afterwards, BLE packets
are sorted by the type of TX address: public MAC addresses
and random MAC addresses. Public BLE MAC address are
stable and constant for long periods of time, so they are
easily tracked and localized. On the other hand, random BLE
MAC addresses rapidly change from one packet to another
packet, and they require special BLEMAC de-randomization
algorithms for tracking.

F. DEFEATING WI-FI MAC ADDRESS RANDOMIZATION
Many mobile devices randomize their Wi-Fi MAC addresses
to prevent user tracking and identification [39]. In order
to defeat Wi-Fi MAC address randomization, we create an
algorithm to categorize mobile devices using model specific
information from the probe requests. Firstly, we capture probe
request frames emitted by the mobile devices. Every mobile
device regularly transmits probe request packets, so this is not
a problem. Secondly, we extract model specific information
from the probe requests. Each device model type has unique
model specific information such as supported rates, extended
supported rates, high throughput (HT) capabilities, direct
sequence (DS) parameter set, and vendor specific organiza-
tionally unique identifier (OUI). Furthermore, those model
specific information are fixed and do not change over the
lifetime of the device [40].

Thirdly, the model specific information is converted into
a binary fingerprint vector. For example, if transmit beam-
forming is supported on the device, then it is set to ‘‘1’’
in the binary fingerprint vector, otherwise it is set to ‘‘0’’.
In order to make the binary fingerprint vectors the same
length, missing values are padded with ‘‘0’’. Fourthly, we use
the binary hamming distance to compare binary fingerprint
vectors. Even though two packets might have completely
different MAC addresses, if the hamming distance of two
packets’ binary fingerprint vectors is zero, then the two pack-
ets originated from the same model type. This allows us to
track and locate individual model types by collecting packets
with the same binary fingerprint vectors. Finally, we use a
ball tree clustering algorithm to categorize binary fingerprint
vectors into their respective device types. The ball tree is
constructed such that each leaf node contains the exact same
binary fingerprint vector. Moreover, each branch contains
device types from the same device family. As a result, we can
cluster unknown and new device types around well known
device types.

VOLUME 10, 2022 91033

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

G. EXTRACTING FEATURES FROM WI-FI PACKETS
FOR LOCALIZATION
Specific Wi-Fi packet features are extracted as fingerprints
for localization. Wi-Fi RSSI and Wi-Fi Signal Quality Index
(SQI) correlate to the received (RX) powers of the routers.
High RSSI values indicate the mobile devices are close to the
routers and the RX power of the routers is large. Low RSSI
values indicate mobile devices are far away from the routers
and the RX power of the routers is small. Some wireless
interfaces report the noise power of specific channels and
packets. SQI is a function of RSSI and noise power. If the
RSSI values are high, then the SQI values are high.Moreover,
if the noise power is high, then the SQI values are low.

RSSI and SQI are susceptible to the type of mobile device,
transmit (TX) power, and noise power. This makes RSSI and
SQI somewhat unstable and dependent on the environmental
conditions. On the other hand, some mobile devices sup-
port Wi-Fi FTM, of which greatly increases the robustness.
To initiate FTMs, the router sends an FTM packet to the
mobile device containing the FTM packet’s departure time.
Afterwards, the mobile device sends an ACK packet to the
router containing the FTM packet’s arrival time and the ACK
packet’s departure time. The router records the ACK packet’s
arrival time and computes the RTT. In order to obtain a more
precise RTT,multiple series of FTMexchanges are performed
and are averaged. ToF can be computed from RTT, and ToF
is invariant to the type of mobile device, TX power, and
noise power. In conclusion, ToF is far less susceptible to the
external environment when compared to RSSI and SQI.

H. EXTRACTING FEATURES FROM BLE PACKETS
FOR LOCALIZATION
The main disadvantage of Wi-Fi packets is the lack of
TX power information. Every mobile device has a different
TX power, and it results in different RX powers. Inconsis-
tent RX powers produce incorrect localization predictions
and invalid contact tracing paths. This is an open problem.
We propose to use BLE packets to assist the Wi-Fi RX power
calibration. Note that BLE packets contain the information of
both TX powers and RX powers. The BLE path loss LBLE

LBLE (EX) = PBLETX − PBLERX (EX) (1)

is computed using the constant BLE TX power PBLETX and
the BLE RX power PBLERX as a function of position EX . It is
invariant to the type of mobile device, since the path loss
only depends on the distance to the router and the channel
environment. Thus, the BLE path loss LBLE is used as one of
the inputs to the neural networks. Assuming the BLE path loss
is equal to the 2.4 GHz Wi-Fi path loss at the same position
LBLE (EX) = LWiFi(EX), the Wi-Fi TX power PWiFiTX

PWiFiTX = LBLE (EX)+ PWiFiRX (EX) (2)

can be calculated. Since the Wi-Fi TX power PWiFiTX is
constant for a specific model of mobile device, theWi-Fi path

loss LWiFi

LWiFi(EX) = PWiFiTX − PWiFiRX (EX) (3)

can be computed. As a result, localization predictions using
path loss have a higher accuracy.

I. NEURAL NETWORKS FOR LOCALIZATION
After extracting the features from the packets, they are fed
into the BiLSTM neural networks to predict the positions
of mobile devices. However, the BiLSTM neural networks
require a large number of continuous trajectories for training.
The training trajectories are generated via a simple recursive
algorithm from the site survey sample locations. Firstly, a ran-
dom position is selected as the current position EPi. Secondly,
another random position is selected as the candidate position
EPC for the next position EPi+1. If the Euclidean distance
between the candidate position and the current position is less
than a distance threshold |EPC − EPi| < |k|, then the candidate
position becomes the next position EPi+1 ← EPC ; otherwise a
new random position is selected as the candidate position EPC .
The distance threshold k is a random normal number that has
a standard deviation of 1 m. Finally, the process above repeats
until a trajectory of positions {EP0, EP1, EP2, . . . , EPN } is com-
pleted. For each floor in the building, 20,000 trajectories are
randomly generated for training. Moreover, each trajectory
has 20 different positions.

Once the training dataset is generated, it is used to train the
BiLSTM neural networks. The mentioned neural networks
have special neurons because they can retain information
such as the past positions and the past features. This allows
the BiLSTM to predict future positions using past positions
and past features. Moreover, the inverse is also true because
the BiLSTM can use future positions and future features to
predict past positions. If ToF or SQI features are available,
then they are fed into the network as a time series of features.
If TX power is present, then signal path loss is used as an input
feature to the network. When the features listed above are not
available, the neural network defaults to RSSI for predicting
the trajectories of mobile devices.

As shown in Fig. 1, the BiLSTM neural network consists
of 2 BiLSTM layers followed by 2 dense layers. The num-
ber of input features to the network is denoted by Finput
as it changes depending on the number of routers. Each
BiLSTM layer consists of 7Finput neurons with tanh activa-
tion functions. The first dense layer has 14Finput neurons with
LeakyReLU activation functions, while the second dense
layer has 2 neurons with no activation function. Furthermore,
the second dense layer outputs the predicted positions of a
mobile device.

V. CONTACT TRACING ALGORITHM
The contact tracing algorithm takes a mobile device’s MAC
address/model name, an initial time and/or an initial position
of a confirmed case as input and allows us to precisely track
the paths of confirmed and suspected cases with an accuracy

91034 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

Algorithm 2 Contact Tracing
function lookupConfirmedCase(Database,
InitialTime, InitialPos, MACaddr, ModelName):

UserInfos← getValues(data=Database,
key=InitialTime);
if MACaddr != NULL then

UserInfos← getValues(data=UserInfos,
key=MACaddr);

else
UserInfos← getValues(data=UserInfos,
key=ModelName);

end if
MinDistList← [];
for each User in UserInfos do

AbsPos← square(IntialPos - User.Pos);
Dist← sum(AbsPos, 2);
Index← minIndex(Dist);
MinDistList.append(Dist[Index]);

end for
Index← minIndex(MinDistList);

return UserInfos[Index]
function pathIntersect(UserInfo1, UserInfo2,
DistanceThres, TimePeriodThres):

DoesIntersect← False;
TimeMatrix← transpose(UserInfo1.Times) -
UserInfo2.Times;
TimeMatrix← abs(TimeMatrix);
Index← select(TimeMatrix < TimePeriodThres);
PosMatrix← transpose(UserInfo1.Pos[Index]) -
UserInfo2.Pos[Index];
PosMatrix← square(PosMatrix);
PosMatrix← sqrt(sum(PosMatrix, 3));
Index← select(PosMatrix < DistanceThres);
if Index.size > 0 then

DoesIntersect← True;
end if

return DoesIntersect
function findContacts(InputUsers, UserInfoList,
AdjMat):

UserSize← UserInfoList.size;
OutputUsers← [];
for i← 1 To UserSize do

TargetUser← UserInfoList[i];
if !InputUsers.contains(TargetUser) then

continue;
end if
for j← 1 To UserSize do

CurrentUser← UserInfoList[j];
Result← pathIntersect(TargetUser,
CurrentUser);
AdjMat[i][j]← Result;
if Result then

OutputUsers.append(CurrentUser);
end if

end for
end for

return AdjMat, OutputUsers

function createGraph(ConfirmedCases,
UserInfoList, SearchDepth):

UserSize← UserInfoList.size;
AdjMat← zeroMatrix(UserSize, UserSize);
InputUsers← ConfirmedCases;
for Depth← 1 To SearchDepth do

AdjMat, OutputUsers←
findContacts(InputUsers, UserInfoList,
AdjMat);
InputUsers← OutputUsers;

end for
return AdjMat

of 1.0 m. Furthermore, we can track droplet and surface expo-
sures due to knowing the absolute positions of the users. The
contact tracing procedure described in Algorithm 2 consists
of 4 main parts: the key-value database system, looking up
the paths of the confirmed cases, finding the suspected cases
using path intersection, and creating a graph connecting the
confirmed cases to the suspected cases.

A. KEY-VALUE DATABASE SYSTEM
For simplicity, a key-value database system is used to store
the user information for the contact tracing system. Given a
unique key, the algorithm can use it to look up a specific value
in the database. Searching for values by comparing each key
individually is extremely slow because it takes O(N) time.
However, hashmaps can decrease the search time to O(1)
constant time. Our system is built on Redis, a hash based
key-value database system, where it hashes the unique key
to obtain a pointer. Afterwards, the pointer is used to access
the memory location of the associated value. In particular,
Redis uses the cyclic redundancy check (CRC) hash function
family to lookup key-value pairs because it is simple and has
hardware acceleration in modern CPUs. As a result, Redis
speeds up the user information look-ups in the contact tracing
system.

The contact tracing database contains many key-value
pairs. Each value contains the user’s device model name,
MAC addresses, positions, date/time,medical test results, and
contacts with other users. Furthermore, an initial position or
a MAC address can be used as a key to look up those values.
These properties are useful for looking up the paths of the
confirmed cases.

B. LOOKING UP THE PATHS OF THE CONFIRMED CASES
The first step of the contact tracing algorithm is to lookup user
information of the confirmed cases. However, many users
have the exact same identifiers such as the same trajectory,
the same device model name, and the same random MAC
addresses. As a result, significant ambiguity is present in
the lookup process. To solve the problem above, we create

VOLUME 10, 2022 91035

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

the lookupConfirmedCase function to reduce the identifier
ambiguity. There are 4 main scenarios, where the function
has to perform look-ups:

Scenario A: all mobile devices do not have MAC address
randomization. This causes each mobile device to have a
single unique MAC address that is easily identified and
tracked by the algorithm. When a patient has a positive test
result, they only need to provide their single MAC address
(MACaddr) and initial time (InitialTime) to look-up user
information (UserInfos). The initial time requires the specific
day and hour of the arrival in the location.

Scenario B: all mobile devices haveMAC address random-
ization, but each mobile device has a unique model name.
Due to the fact that each unique model name emits a unique
probe request signature, we can still identify and track indi-
vidual mobile devices. This time, the patient has to provide
the device model name (ModelName) and the initial time.
For example, the device model name could be iPhone 13,
Galaxy S22, or Pixel 6. As a result, the algorithm can look
up the information on the confirmed case without knowing
the actual MAC addresses.

Scenario C: all mobile devices haveMAC address random-
ization andmultiple devices have the exact samemodel name.
However, devices with the same model names have unique
trajectories that do not have intersecting points with each
other. This scenario is far more difficult than Scenario B, and
the algorithm can only tell users apart by their unique trajec-
tories. Thus, the patient needs to provide the initial position
(InitialPos), model name, and initial time. The input initial
position could be any position on the patient’s trajectory.
The algorithm selects the user information that contains the
closest trajectory to the initial position.

Scenario D: all mobile devices have MAC address ran-
domization and multiple devices have the exact same model
name. Furthermore, multiple devices with the same model
names have intersecting trajectories with each other or near
misses. In some situations, two physically separated trajec-
tories might be mislabelled as having an intersecting point
because the neural networks predicted the wrong positions.
Subsequently, the algorithm falsely groups multiple individ-
ual users as a single confirmed case. This increases the false
positive rate and adds more users to the list of suspected
cases. On the other hand, the false negative rate stays the same
because the algorithm still traces the correct social contacts.

C. FINDING THE SUSPECTED CASES USING
PATH INTERSECTION
After retrieving the user information of the confirmed cases,
we use the pathIntersect function to find the suspected cases.
Given the paths of User1 and User2, the function deter-
mines if their paths intersect within a certain distance and
time threshold. Firstly, we compute the time differences
(TimeMatrix) between both user paths. Secondly, we select
specific positions (PosMatrix) from the user paths that have
time differences less than the time period threshold (TimePe-
riodThres). Typically, public health authorities will input

a different time period threshold for each type of pathogen.
Thirdly, we select positions from the user paths that are
closer than the distance threshold (DistanceThres). We set
the distance threshold equal to 2.0 m because our localization
accuracy is around 1.0 m. If there exists at least one distance
less than the distance threshold, then the function indicates
an intersection, otherwise the function does not indicate an
intersection.

D. CREATING A GRAPH CONNECTING THE CONFIRMED
CASES TO THE SUSPECTED CASES
Using the path intersection function, we create a graph con-
necting the confirmed cases to the suspected cases. A graph
is defined as a set of nodes that are connected by edges. The
adjacency matrix AdjMat describes every edge connection,
where AdjMat[i][j] = True represents a connection between
node i and node j. On the other hand, AdjMat[i][j] = False
represents no connection between node i and node j. In par-
ticular, each user is assigned to a unique node and each
social contact is represented by an edge connection. To begin,
the function createGraph retrieves the total number of users
(UserSize), and the adjacency matrix is initialized as a zero
matrix of size UserSize by UserSize. Afterwards, the list
of confirmed cases (ConfirmedCases) is selected as the list
of input users (InputUsers). The findContacts function com-
pares the input users’ paths to every other user path in the list
of total users. If their paths intersect, then the corresponding
element in the adjacency matrix is updated AdjMat[i][j] =
True and the new social contact is appended to the output
list (OutputUsers). Pathogens can spread very rapidly due to
infecting their primary contacts and later the secondary con-
tacts of those primary contacts. The contact tracing algorithm
gets ahead of the disease spread by recursively applying the
findContacts function until the search depth (SearchDepth)
is reached. This produces a social contact graph that is very
deep and has many degrees of separation. In conclusion, the
createGraph function returns the fully built adjacency matrix
connecting the confirmed cases to the suspected cases.

E. USER PRIVACY CONSIDERATIONS
Privacy is a very important aspect to keeping collected infor-
mation safe and within regulations with Canadian and British
Columbia Privacy Acts. In our system, phone numbers, email
addresses, and legal names are not collected by the routers
and are not stored in the database. Only theMAC addresses of
theWi-Fi/BLE chipsets and device model names are obtained
as the identification of the mobile devices. Note that MAC
addresses cannot directly identify users, and MAC address
randomization also complicates the mapping of multiple
MAC addresses to user devices. Public health authorities
will only map the MAC addresses to user identities for con-
firmed cases and suspected contact cases, with the help of
additional information of user identity and device wireless
interface MAC addresses. Furthermore, as part of the privacy
protection, users that enter a building with the contact tracing
system in place need to be aware of what the system does

91036 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

and actively consent to their data being collected. Users also
have the ability to retroactively erase their information in
the contact tracing database. Finally, the collected data such
as MAC addresses, device model name, and positions are
encrypted with AES256 algorithm.

VI. RESULTS AND DISCUSSION
Multiple datasets were collected at the University of Victo-
ria, Victoria, British Columbia, Canada in the Engineering
Office Wing (EOW) 3rd floor, EOW 4th floor, Engineer-
ing Computer Science (ECS) 1st floor, and ECS 5th floor.
At each floor, the Turtlebot3 physically moves along 3 unique
trajectories. Every trajectory contains unique positions that
the other trajectories do not have. One of the trajectories is
randomly selected for the training dataset, while another
is selected for the testing dataset. The remaining trajectory
is appended to the cross-validation dataset. Furthermore, we
artificially generated more training trajectories using the data
points from the training dataset as described in Section II
Subsection D. However, we did not create artificial trajec-
tories using the testing and cross-validation datasets. The
quality of the data collected by the ESP32C3 routers is
unknown, thus we use commercial off the shelf (COTS)
routers as a reference to validate the quality of the data from
the ESP32C3 routers. The data collected are organized into
two main groups: Dataset A is collected using the COTS
routers and Dataset B is collected using the ESP32C3 routers.

A. DATASET INFORMATION
Dataset A contains the packets collected by COTS routers.
At every position, at least 50 samples are obtained by the
routers. Each sample contains a timestamp, X position,
Y position, θ orientation, Wi-Fi RSSI, Wi-Fi SQI, BLE
RSSI, and BLE TX power. For the EOW 3rd floor, 11 Wi-Fi
routers and 7 BLE routers are deployed to obtain the dataset.
Note that some Wi-Fi routers share the same locations as
the BLE routers. The raw dataset contains approximately
500,000 samples at 1,000 different positions, where each
sample has 31 wireless parameter features. For the EOW 4th
floor, 9 Wi-Fi routers and 7 BLE routers are deployed to
obtain the dataset. There are fewer routers on this floor due
to the lack of power outlets. The raw dataset contains approx-
imately 300,000 samples at 600 different positions, where
each sample has 29 wireless parameter features. For the ECS
1st floor, 7 Wi-Fi routers and 7 BLE routers are deployed to
obtain the dataset. The raw dataset contains approximately
200,000 samples at 1000 different positions, where each
sample has 24 wireless parameter features. For the ECS 5th
floor, 8 Wi-Fi routers and 6 BLE routers are deployed to
obtain the dataset. The raw dataset contains approximately
300,000 samples at 600 different positions, where each sam-
ple has 24 wireless parameter features extracted from the
packets.

Dataset B is sampled at the same locations and with the
same procedures as Dataset A. However, Dataset B uses
ESP32C3 routers, and it provides a new wireless feature

known as Wi-Fi FTM. Moreover, the ESP32C3 routers
occupy 40 MHz bandwidth instead of the 20 MHz bandwidth
in Dataset A. These new additions increase the localization
accuracy of the BiLSTM and the precision of the contact
tracing algorithm.

B. IDENTIFYING UNIQUE MOBILE DEVICES FROM
RANDOM MAC ADDRESSES
In this section, the effectiveness of the clustering algorithm
for identifying unique mobile devices from random MAC
addresses is tested. For the test setup, MAC address ran-
domization is enabled on the devices, and they are forced to
join a wireless network. Every time a mobile device joins
a new wireless network, the operating system generates a
new random MAC address for that specific network. Ground
truth MAC addresses are obtained by looking at the settings
menu. Simultaneously, the devices’ probe request packets
are captured at the router side. Afterwards, the clustering
algorithm is applied to the probe requests to identify unique
mobile devices from random MAC addresses.

Table 2 shows the results of the clustering algorithm on the
testing dataset. Each row of the table contains a single bucket,
of which each bucket contains MAC addresses that belong to
the same mobile device. Galaxy S4 is loaded with LineageOS
16, of which does not have MAC address randomization.
Table 2 shows the clustering algorithm assigning Galaxy S4’s
single MAC address to a single bucket and MAC addresses
from other devices are not present in that bucket. The result
matches the Galaxy S4’s ground truth MAC address. Similar
to the Galaxy S4, the HTC One X does not have MAC ran-
domization, and it results in a single MAC address found in
Table 2. However, Galaxy S6 is loaded with LineageOS 18.1,
and it generates a new random MAC address upon joining a
new wireless network. Galaxy S6 is forced to join 7 different
wireless networks, and the clustering algorithm places all 7 of
the Galaxy S6’s random MAC addresses in the same bucket.
Note that the clustering algorithm has 100% accuracy because
all the MAC addresses in Galaxy S6’s bucket in Table 2
matches all the MAC addresses in the ground truth. On the
other hand, Android 11 on Galaxy A11 adds a new feature
that randomizes MAC addresses while scanning for nearby
SSIDs. The exact same test is performed on the Galaxy
A11, of which the ground truth MAC addresses matches the
clustering result found in Table 2. Note that the extra MAC
addresses of Galaxy A11 are generated when scanning for
SSIDs. We have also observed that Android only generates a
new random MAC address on the first network connection.
Rejoining a previously connected network yields the same
MAC address.

The iPhone SE supports MAC address randomization
because it has iOS 15.1 firmware. For the test, iPhone SE is
forced to join 7 different wireless networks, and the clustering
algorithm places all 7 of the iPhone SE’s random MAC
addresses in the same bucket. Again, the clustering algorithm
achieves 100% accuracy because all the ground truth MAC
addresses are found at the iPhone SE’s bucket in Table 2.

VOLUME 10, 2022 91037

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

TABLE 2. Test Results of the Clustering Algorithm for Identifying Unique Mobile Devices from Random MAC Addresses.

The extra MAC addresses found in the iPhone SE’s bucket
are generated when scanning for nearby SSIDs. The iPhone
X’s results are the same as the iPhone SE’s results because
they both have the same iOS 15.1 firmware.

The full Arch Linux distribution is installed onto the Pine-
Phone, of which allows full control over MAC address ran-
domization. We wrote a script to generate 25 new random
MAC addresses and to save them into a file as the ground
truth. Afterwards, the clustering algorithm’s results found in
Table 2 are compared to the ground truth. The clustering
algorithm is able to place all the PinePhone’s MAC addresses
into the same bucket without any other MAC addresses from
other devices being there. Overall, the clustering algorithm
correctly classified every single test device into their respec-
tive buckets, even though their MAC addresses are random-
ized. However, any two mobile devices that have the same
model number at the same spacetime might cause the system
to produce incorrect results. This is due to identical devices
producing indistinguishable probe request information and
RSSI information.

C. PATH ANALYSIS OF DATASET A
The BiLSTM neural networks are applied to many environ-
ments, and their RMSE and MAE performances are shown
in Table 3. At EOW 3rd floor, the BiLSTM with Wi-Fi has
a RMSE of 0.83 m and a MAE of 0.58 m. Moreover, only
using BLE information yields a similar RMSE of 0.88 m
and a MAE of 0.56 m because the Wi-Fi routers share the
same positions as the BLE routers. Combining Wi-Fi and
BLE information together results in a RMSE of 0.82 m and
a MAE of 0.58 m, of which has no discernible difference.
For error analysis, the ground truth trajectory is compared
against the BiLSTM’s predicted trajectory in Fig. 2a. The
path begins at (X = 0 m, Y = 0 m) with medium error of
1.0 m. However, the error increases to 1.5 m at the corners
because that position has the least amount of LoS from the
routers. Subsequently, the highest error of 2.5 m occurs in
the east hallway because there are multiple objects blocking
the signal paths of the routers. Afterwards, the error rapidly

drops to 0.5 m as the BiLSTM recovers itself and gets back
on the correct trajectory. For the rest of the path, the error
predominantly stays below 1.0m, but there are a few locations
where the error jumps above 1.0 m due to corners.

At EOW 4th floor, the BiLSTMwithWi-Fi has a RMSE of
0.92 m and aMAE of 0.61 m. The RMSE of EOW 4th floor is
slightly higher than the RMSE of EOW 3rd floor because the
routers’ signal paths in EOW 4th floor are blocked by more
walls and doors. Moreover, the number of routers is reduced
from 11 to 9 due to the lack of power outlets. Using only BLE
produces a similar RMSE of 0.93 m and a MAE of 0.63 m
due to the number of Wi-Fi and BLE routers being similar.
Combining Wi-Fi and BLE information together results in a
slightly lower RMSE of 0.84 m and a MAE of 0.60 m. The
lower RMSE and MAE is caused by the increased bandwidth
and the increased channel diversity. Just as before, the ground
truth trajectory is compared to the BiLSTM’s predicted tra-
jectory in Fig. 2b. This time, the highest error of 2.3 m
occurs at the starting position of (X = 0 m, Y = 0 m). The
large error is caused by not having enough space and power
outlets to place more routers at the starting position. Soon
after, the error quickly decreases to 1.0 m as the BiLSTM
recovers and gets back on the correct trajectory. There are
a few instances where the error jumps significantly due to
the objects blocking the router’s signals, but those errors are
lower than the starting position errors.

ECS 1st floor is very different from the other floors because
the packets are collected in an open area instead of an
enclosed hallway. In an open area,Wi-Fi RSSI and BLERSSI
changes approximately 5 dBm per 10.0 m. The routers are
not sensitive enough to detect the small changes in RSSI
and creates errors in localization. Moreover, there is an extra
degree of freedom compared to the hallways, of which creates
more ambiguity in the trajectory. As a result, localization
errors on this floor are much larger than the other floors. For
Wi-Fi, the RMSE is 1.69 m and the MAE is 1.42 m, of which
the localization errors are significantly higher than EOW 3rd
floor, EOW 4th floor, and ECS 5th floor. Localization using
BLE information has a larger RMSE of 2.13 m and a larger

91038 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

FIGURE 2. BiLSTM’s predicted locations vs ground truth at: a) EOW 3rd floor b) EOW 4th floor c) ECS 1st floor d) ECS 5th floor e) probability distributions
of Dataset A Wi-Fi+BLE.

MAE of 1.73 m. This is caused by the BLE having a lower
transmit power and worse antennas. Combining Wi-Fi and
BLE slightly lowers the RMSE to 1.30 m and the MAE to
1.03 m because the antenna diversity and the channel diver-
sity are increased. The ground truth trajectory is compared to
the BiLSTM’s predicted trajectory in Fig. 2c. The trajectory
starts off well at the origin of (X = 0 m, Y = 0 m) with an
error of 0.5 m. However, the error rapidly increases to above
2.0 m because the predicted trajectory quickly diverges from

the ground truth. The BiLSTM never recovers from incorrect
predictions, and the error remains above 2.0 m. The large
errors are caused by the ambiguity of the wireless features.
Multiple unique positions on the map have the same Wi-Fi
RSSI, SQI, and BLE RSSI.

The ECS 5th floor has a similar layout to EOW 3rd floor
and EOW 4th floor because they are all located in a hall-
way. As a consequence, the localization performance on ECS
5th floor is very similar to the other floors. This is further

VOLUME 10, 2022 91039

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

TABLE 3. Dataset A: BiLSTM’s localization performance at different locations.

TABLE 4. Dataset B: BiLSTM’s localization performance at different locations.

evidenced by the BiLSTM with Wi-Fi on ECS 5th floor
having an RMSE of 0.83 m and a MAE of 0.62 m, which
is comparable to the RMSE of 0.83 m and the MAE of
0.58 m on EOW 3rd floor. Moreover, the BiLSTM with BLE
on ECS 5th floor has a RMSE of 0.87 m and a MAE of
0.68 m that is similar to the RMSE of 0.88 m and the MAE
of 0.56 m on EOW 3rd floor. The ground truth trajectory is
compared to the BiLSTM’s predicted trajectory in Fig. 2d.
The predicted path has low RMSE at the origin as it is sur-
rounded by many routers. Moreover, the localization RMSE
is stable when the trajectory moves upwards. However, the
RMSE jump increases drastically to 2.0 m at the end of
the path due to the signal reflections at the corner of the
hallway.

The cumulative distribution function (CDF) of the local-
ization errors is shown in Fig. 2e, and it tells the same story
as above. The EOW 3rd floor, EOW 4th floor, and ECS
5th floor have very similar CDFs with expected localization
errors of approximately 0.89 m. Again, this is due to the
floors having similar map layouts. On the other hand, ECS
1st floor is an outlier with significantly different CDF. Most
of the errors in ECS 1st floor occur between 1.0 m and
3.0 m, raising the expected localization error to 2.3 m. The
significant increase in error is caused by the ECS 1st floor
having more degrees of freedom, more possible trajectories,
and ambiguity in the wireless features.

D. PATH ANALYSIS OF DATASET B
Introducing Wi-Fi FTM to the Dataset B generally improves
localization accuracy due to having more independent wire-
less features. For EOW 3rd floor, Table 4 shows the BiLSTM
withWi-Fi RSSI has a RMSE of 0.82m and aMAEof 0.62m.
This is very similar to BiLSTM andWi-Fi RSSI in Dataset A.
However, using Wi-Fi FTM yields a RMSE of 0.80 m and a
MAE of 0.57 m. Combining Wi-Fi RSSI amd Wi-Fi FTM
together results in a RMSE of 0.75 m and a MAE of 0.55 m,
of which have slightly lower errors than Wi-Fi and BLE
in Dataset A. For error analysis, the ground truth trajectory
is compared against the BiLSTM’s predicted trajectory in
Fig. 3a. The path begins at (X= 0 m, Y= 0 m) with low error
of 0.5 m. As the trajectory moves in the counterclockwise
direction, the error stays below 1.0 m. However, the error
increases to above 1.5 m at specific corners because the
routers’ LoS are broken. Moreover, the error also increases
to 1.5 m at the end of the trajectory due to signal scattering in
the room.

In the open area of ECS 1st floor, the BiLSTM and Wi-Fi
RSSI yields a RMSE of 1.63 m and a MAE of 1.41 m.
The localization error is very large and is comparable to the
BiLSTM and Wi-Fi in Dataset A. Localization using Wi-Fi
FTM has a RMSE of 1.52 m and a MAE of 1.31 m, of which
has little change in error. Combining Wi-Fi RSSI and Wi-Fi
FTM drastically lowers the RMSE to 0.89 m and the MAE to

91040 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

FIGURE 3. BiLSTM’s predicted locations vs ground truth at: a) EOW 3rd floor b) EOW 4th floor c) ECS 1st floor d) probability distributions of Dataset B
Wi-Fi+FTM.

0.70 m because having more independent wireless features
decreases the position ambiguity in localization. Moreover,
having more features increases redundancy in case one of the
features is corrupted by the channel noise. The ground truth
trajectory is compared to the BiLSTM’s predicted trajectory
in Fig. 3c. The trajectory at the origin starts a high error of
1.3 m. On the first turn, the error drops to 0.5 m. Moreover,
the error hovers around 1.0 m when moving in a straight line.
However, the error increases to 2.0 m at the second turn due
to BiLSTM failing to predict sharp turns. Afterwards, the
BiLSTM recovers and the error drops below 1.0 m for the
rest of the path.

E. CONTACT TRACING WEBSITE
We developed a contact tracing website that allows the public
health authorities to find the suspected cases using the details

of the confirmed cases. Fig. 4 shows an example of the
website, where the authorities enter the initial date, time, and
position of the confirmed case. Afterwards, the authorities
enter the MAC address/model name of the specific mobile
device. The pathogen’s lifetime is inputted as the search time
period. A longer time period increases the search window and
finds more social contacts. Subsequently, the search graph
depth controls the traversal depth of the social contact graph.
A graph depth of 1, lists suspected cases that have direct
contact with the confirmed case. On the other hand, a graph
depth of 3, lists suspected cases within 3 social contacts of the
confirmed case. Moreover, the graph depth provides indirect
contacts together with direct contacts.

For simplicity, the confirmed case is marked in red, while
the suspected cases are marked in green, blue, orange, purple,
and pink. On the top right, we plot the x and y positions of

VOLUME 10, 2022 91041

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

FIGURE 4. Contact tracing website allows users to find the suspected cases using the details of the confirmed cases.

the suspected and confirmed cases. The bottom right lists the
suspected cases along with the model name, MAC addresses,
intersection point, and closest distance. The red path inter-
sects with the green path, and this is indicated in the first row
of the suspected cases list, where it shows the intersection
point of (-0.38 m, -4.17 m) and the closest distance of 0.6 m.
Furthermore, a social contact graph is displayed in the bottom
left, where it shows a link between the red circle and the green
circle.

VII. CONCLUSION
We have created a novel, privacy preserving Wi-Fi and BLE
contact tracing system for finding the detailed paths of the
infected individuals without any user intervention. The sys-
tem tracks smartphones, but it does not require smartphone
applications, connecting to the routers, or any other extra-
neous devices on the users. A custom built autonomous
Turtlebot3 is used for site survey simulating user movement
and smartphone transmission. The smartphones’ received
power, transmit power, and round trip time are collected by
custom ESP32C3 routers. Even though MAC randomization
is employed in modern smartphones, we have defeated it
to track many devices. Afterwards, the wireless parameters
collected are converted to signal path loss and ToF, of which

the BiLSTM takes and predicts the absolute paths of the users.
The localization performance and the RMSE is always below
0.9 m forWi-Fi RSSI+Wi-Fi FTM. Public health authorities
can use the designed website to find the paths of the con-
firmed cases and suspected cases, together with their MAC
addresses/smartphone model specific information. They can
also track indirect contact transmissions originating from
surfaces and droplets.

REFERENCES
[1] D. Majra, J. Benson, J. Pitts, and J. Stebbing, ‘‘SARS-CoV-2 (COVID-19)

superspreader events,’’ J. Infection, vol. 82, no. 1, pp. 36–40, Jan. 2021.
[2] K. T. Eames and M. J. Keeling, ‘‘Contact tracing and disease control,’’

Proc. Biol. Sci., vol. 270, no. 1533, pp. 2565–2571, Jan. 2003.
[3] R. A. Kleinman and C. Merkel, ‘‘Digital contact tracing for COVID-19,’’

CMAJ, vol. 192, no. 24, pp. E653–E656, 2020.
[4] S. Altmann, L. Milsom, H. Zillessen, R. Blasone, F. Gerdon, R. Bach,

F. Kreuter, D. Nosenzo, S. Toussaert, and J. Abeler, ‘‘Acceptability of app-
based contact tracing for COVID-19: cross-country survey study,’’ JMIR
mHealth uHealth, vol. 8, no. 8, Aug. 2020, Art. no. e19857.

[5] R. Hinch, ‘‘Effective configurations of a digital contact tracing app: A
report to NHSX,’’ NSHX, 2020. Accessed: Aug. 25, 2022. [Online]. Avail-
able: https://cdn.theconversation.com/static_files/files/1009/Report_-_
Effective_App_Configurations.pdf

[6] N. Nanthini, B. M. Shankar, S. S. Kumar, and R. S. Ganesh, ‘‘Deep
learning approach for minimizing disease spread using face identification
and contact tracing,’’ in Proc. 4th Int. Conf. I-SMAC (IoT Social, Mobile,
Analytics Cloud) (I-SMAC), Oct. 2020, pp. 527–532.

91042 VOLUME 10, 2022

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

[7] M. Yaghi, T. Basmaji, R. Salim, J. Yousaf, H. Zia, and M. Ghazal, ‘‘Real-
time contact tracing during a pandemic using multi-camera video object
tracking,’’ in Proc. Int. Conf. Decis. Aid Sci. Appl. (DASA), Nov. 2020,
pp. 872–876.

[8] J. Gardy, ‘‘Whole-genome sequencing and social-network analysis of a
tuberculosis outbreak,’’NewEngland J. Med., vol. 364, no. 8, pp. 730–739,
2011.

[9] H. Stevens andM. B. Haines, ‘‘TraceTogether: Pandemic response, democ-
racy, and technology,’’ East Asian Sci., Technol. Soc., Int. J., vol. 14, no. 3,
pp. 523–532, Sep. 2020.

[10] T. Sharon, ‘‘Blind-sided by privacy? Digital contact tracing, the
Apple/Google API and big tech’s newfound role as global health policy
makers,’’ Ethics Inf. Technol., vol. 23, no. S1, pp. 45–57, Nov. 2021.

[11] S. Ahmed, Y. Xiao, T. T. Chung, C. Fung, M. Yung, and D. D. Yao,
‘‘Privacy guarantees of Bluetooth low energy contact tracing: A case study
on COVIDWISE,’’ Computer, vol. 55, no. 2, pp. 54–62, Feb. 2022.

[12] K.Woodward, E. Kanjo, D. O. Anderez, A. Anwar, T. Johnson, and J. Hunt,
‘‘DigitalPPE: Low cost wearable that acts as a social distancingreminder
and contact tracer,’’ in Proc. 18th Conf. Embedded Netw. Sensor Syst.,
Nov. 2020, pp. 758–759.

[13] T. Shelby, T. Caruthers, O. Y. Kanner, R. Schneider, D. Lipnickas,
L. E. Grau, R. Manohar, and L. Niccolai, ‘‘Pilot evaluations of two Blue-
tooth contact tracing approaches on a university campus: Mixed methods
study,’’ JMIR Formative Res., vol. 5, no. 10, Oct. 2021, Art. no. e31086.

[14] L. Reichert, S. Brack, and B. Scheuermann, ‘‘A survey of automatic contact
tracing approaches using Bluetooth low energy,’’ ACM Trans. Comput.
Healthcare, vol. 2, no. 2, pp. 1–33, Mar. 2021.

[15] Q. Zhao, H. Wen, Z. Lin, D. Xuan, and N. Shroff, ‘‘On the accuracy of
measured proximity of Bluetooth-based contact tracing apps,’’ in Proc. Int.
Conf. Secur. Privacy Commun. Syst., 2020, pp. 49–60.

[16] D. J. Leith and S. Farrell, ‘‘Coronavirus contact tracing: Evaluating the
potential of using Bluetooth received signal strength for proximity detec-
tion,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 50, no. 4, pp. 66–74,
2020.

[17] P. Di Marco, P. Park, M. Pratesi, and F. Santucci, ‘‘A Bluetooth-based
architecture for contact tracing in healthcare facilities,’’ J. Sensor Actuator
Netw., vol. 10, no. 1, p. 2, Dec. 2020.

[18] E. Hernández-Orallo, C. T. Calafate, J. Cano, and P. Manzoni, ‘‘Evaluat-
ing the effectiveness of COVID-19 Bluetooth-based smartphone contact
tracing applications,’’ Appl. Sci., vol. 10, no. 20, p. 7113, Oct. 2020.

[19] P. G. Madoery, R. Detke, L. Blanco, S. Comerci, J. Fraire, A. Gonzalez
Montoro, J. C. Bellassai, G. Britos, S. Ojeda, and J. M. Finochietto,
‘‘Feature selection for proximity estimation in COVID-19 contact tracing
apps based on Bluetooth low energy (BLE),’’ Pervas. Mobile Comput.,
vol. 77, Oct. 2021, Art. no. 101474.

[20] M. Cunche, A. Boutet, C. Castelluccia, C. Lauradoux, and V. Roca, On
Using Bluetooth-Low-Energy for Contact Tracing. Villeurbanne, France:
Inria Grenoble Rhône-Alpes; INSA de Lyon, 2020.

[21] H. Gorji, M. Arnoldini, D. Jenny, A. Duc,W. Hardt, and P. Jenny, ‘‘STeCC:
Smart testing with contact counting enhances COVID-19 mitigation by
Bluetooth app based contact tracing,’’ 2020. Accessed: Aug. 25, 2022, doi:
10.1101/2020.03.27.20045237.

[22] T. M. Yasaka, B. M. Lehrich, and R. Sahyouni, ‘‘Peer-to-peer contact
tracing: Development of a privacy-preserving smartphone app,’’ JMIR
mHealth uHealth, vol. 8, no. 4, Apr. 2020, Art. no. e18936.

[23] I. Nakamoto, S.Wang, Y. Guo, andW. Zhuang, ‘‘A QR code–based contact
tracing framework for sustainable containment of COVID-19: Evaluation
of an approach to assist the return to normal activity,’’ JMIR mHealth
uHealth, vol. 8, no. 9, Sep. 2020, Art. no. e22321.

[24] A. S. Hoffman, B. Jacobs, B. van Gastel, H. Schraffenberger, T. Sharon,
and B. Pas, ‘‘Towards a seamful ethics of Covid-19 contact tracing apps,’’
Ethics Inf. Technol., vol. 23, no. 1, p. 105–115, 2020.

[25] D. F. D. Mobo and M. A. L. R. Garcia, ‘‘Using automated contact tracing
system app with QR code to monitor and safeguard parishioners against
COVID-19 at St. Anthony of Padua Parish, Subic, Zambales,’’ Amer. Res.
J. Comput. Sci. Inf. Technol., vol. 4, no. 1, pp. 1–4, Oct. 2020.

[26] S.Wang, S. Ding, and L. Xiong, ‘‘A new system for surveillance and digital
contact tracing for COVID-19: Spatiotemporal reporting over network and
GPS,’’ JMIR mHealth uHealth, vol. 8, no. 6, Jun. 2020, Art. no. e19457.

[27] T. Amee, Z. Camellia, B. Rajesh, and P. Shenoy, ‘‘WiFiTrace: Network-
based contact tracing for infectious diseases using passive WiFi sensing,’’
Comput. Res. Repository, vol. 5, no. 1, pp. 1–26, 2021.

[28] G. Li, S. Hu, S. Zhong, W. L. Tsui, and S.-H.-G. Chan, ‘‘VContact: Private
WiFi-based IoT contact tracing with virus lifespan,’’ IEEE Internet Things
J., vol. 9, no. 5, pp. 3465–3480, Mar. 2022.

[29] K. Fallahi, C.-T. Cheng, and M. Fattouche, ‘‘Robust positioning systems
in the presence of outliers under weak GPS signal conditions,’’ IEEE Syst.
J., vol. 6, no. 3, pp. 401–413, Sep. 2012.

[30] V. Gokhale, G.M. Barrera, and R. V. Prasad, ‘‘FEEL: Fast, energy-efficient
localization for autonomous indoor vehicles,’’ 2021, arXiv:2102.00702.

[31] J. Tiemann and C. Wietfeld, ‘‘Scalable and precise multi-UAV indoor
navigation using TDOA-based UWB localization,’’ in Proc. Int. Conf.
Indoor Positioning Indoor Navigat. (IPIN), Sep. 2017, pp. 1–7.

[32] V. Moreno, M. A. Zamora, and A. F. Skarmeta, ‘‘A low-cost indoor
localization system for energy sustainability in smart buildings,’’ IEEE
Sensors J., vol. 16, no. 9, pp. 3246–3262, May 2016.

[33] H. Obeidat, W. Shuaieb, O. Obeidat, and R. Abd-Alhameed, ‘‘A review of
indoor localization techniques and wireless technologies,’’ Wireless Pers.
Commun., vol. 119, no. 1, pp. 289–327, 2021.

[34] M. T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp, and K. Reddy,
‘‘Recurrent neural networks for accurate RSSI indoor localization,’’ IEEE
Internet Things J., vol. 6, no. 6, pp. 10639–10651, Sep. 2019.

[35] M. Hoang, ‘‘A soft range limited K-nearest neighbors algorithm for
indoor localization enhancement,’’ IEEE Sensors J., vol. 18, no. 24,
pp. 10208–10216, Dec. 2018.

[36] B. Kane, C. A. B. Zajchowski, T. R. Allen, G. McLeod, and N. H. Allen,
‘‘Is it safer at the beach? Spatial and temporal analyses of beachgoer
behaviors during the COVID-19 pandemic,’’ Ocean Coastal Manage.,
vol. 205, May 2021, Art. no. 105533.

[37] R. Amsters and P. Slaets, ‘‘Turtlebot 3 as a robotics education platform,’’
in Proc. Int. Conf. Robot. Educ. (RiE), 2019, pp. 170–181.

[38] E. Erős,M.Dahl, K. Bengtsson, A. Hanna, and P. Falkman, ‘‘AROS2 based
communication architecture for control in collaborative and intelligent
automation systems,’’ Proc. Manuf., vol. 38, pp. 349–357, Jan. 2019.

[39] J. Martin, ‘‘A study of MAC address randomization in mobile devices and
when it fails,’’ Proc. Privacy Enhancing Technol., vol. 4, pp. 268–286,
Mar. 2017.

[40] P. Robyns, B. Bonné, P. Quax, and W. Lamotte, ‘‘Noncooperative
802.11 MAC layer fingerprinting and tracking of mobile devices,’’ Hin-
dawi Secur. Commun. Netw., vol. 5, pp. 1–27, May 2017.

BROSNAN YUEN is currently pursuing the Ph.D.
degree in electrical engineering with the Univer-
sity of Victoria, Victoria, Canada. His current
research interests include robotic systems, ECGs,
optics, machine learning, and FPGAs.

YIFENG BIE received the M.A.Sc. degree from
the University of Victoria, Victoria, BC, Canada,
in 2021, where he is currently pursuing the Ph.D.
degree in engineering.

DUNCAN CAIRNS received the bachelor’s degree
in designing a low power and low-cost router to
be used to collect RSSI data around the univer-
sity from different devices under the supervision
of Dr. Xiaodai Dong. He is currently pursuing the
degree in electrical engineering with the Univer-
sity of Victoria. He has worked on capturing RSSI
and location data with a robot with the goal of
training the contract tracing algorithm. He is work-
ing on updating and implementing the design for
future use.

VOLUME 10, 2022 91043

http://dx.doi.org/10.1101/2020.03.27.20045237

B. Yuen et al.: Wi-Fi and Bluetooth Contact Tracing Without User Intervention

GEOFFREY HARPER received the degree in soft-
ware engineering with a minor in mathematics
from the University of Victoria. He is the coau-
thor of the ‘‘Wi-Fi and Bluetooth Contact Tracing
Without User Intervention’’ paper, with his work
specializing in MAC-address de-randomizing,
Wi-Fi and bluetooth signal, and massive dataset
processing.

JASON XU received the B.Sc. degree in computing
science from Simon Fraser University, Canada,
in 2019, and the M.Eng. degree in electrical
and computer engineering from the University of
Victoria, Canada, in 2021. His research interest
includes software development.

CHARLES CHANG received the B.A.Sc. degree
in electronics engineering from Simon Fraser Uni-
versity, Canada. He is currently pursuing the
M.Eng. degree with the University of Victoria,
Canada. His research interests include machine
learning and indoor localization.

XIAODAI DONG (Senior Member, IEEE) is
currently a Professor with the Department of
Electrical and Computer Engineering, Univer-
sity of Victoria. Her research interests include
5G, mmWave communications, radio propagation,
the Internet of Things, machine learning, local-
ization, wireless security, e-health, smart grid,
and nano-communications. She was the Canada
Research Chair (Tier II), from 2005 to 2015. She
served as an Editor for the IEEE TRANSACTIONS ON

COMMUNICATIONS, from 2001 to 2007, and the IEEETRANSACTIONSONWIRELESS

COMMUNICATIONS, from 2009 to 2014. She is currently an Editor of the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY.

TAO LU (Member, IEEE) has worked in indus-
try with various companies including Nortel
Networks, Kymata Canada, and Peleton, on opti-
cal communications. Before joining the Univer-
sity of Victoria, he was a Postdoctoral Fellow
with the Department of Applied Physics, Califor-
nia Institute of Technology, from 2006 to 2008.
His research interests include optical microcavities
and their applications to ultra narrow linewidth
laser source and bio and nano photonics. He is

currently extending his research on machine learning algorithms with appli-
cations to spectral analysis, the Internet of Things, and indoor localization.

91044 VOLUME 10, 2022

