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ABSTRACT In this paper, we present to the embedded research community an Embedded Platform as
a Service facility named SLePaaS that allows researchers remote access to experimental hardware and
a collection of online tools that would facilitate research on thermal management of embedded systems.
SLePaa$ serves a dual purpose - provides access to actual hardware for experiments on one hand and
reduces experimental cost and time on the other. With this facility, researchers neither have to rely on
simulation models nor purchase or customize any experimental platform for a specific problem. In addition,
the platform provides tool support, specifically for researchers working in problems related to thermal
management. Presently, three tools are provided by the SLePaaS platform. The first tool helps users obtain
performance, power and thermal profile of applications running on different hardware platforms. The second
is a thermal value predictor tool that aids task schedulers in allocating tasks to processors based on the thermal
profile of applications. The third tool is a platform predictor that helps users to decide the best platform
to run an OpenCL application given a target optimization objective. All the tools have been validated for
their performance and accuracy against standard benchmark applications. A prototype implementation of
SLePaaS$ along with the three tools is available for use.

INDEX TERMS Embedded system, thermal management, task scheduling, embedded platform, heteroge-
neous processor, OpenCL, RML.

I. INTRODUCTION thermal management have been proposed as well where

Thermal management of embedded systems is a well
researched topic and is still popular within the embed-
ded research community. The thermal issues arising out
of increased power density in modern day heterogeneous
embedded systems have fuelled research on thermal manage-
ment of these systems. Literature suggests that researchers
have proposed a number of techniques for thermal manage-
ment of embedded systems. The proposals primarily include
resource management through load balancing of tasks on
cores [9], [33], efficient thermal aware task and thread
mapping [20] and thermal aware scheduling of tasks [36].
In addition to these static techniques, proposals for dynamic
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workload is decided based on the core temperature that is fed-
back [23], [43]. Present day embedded systems are heteroge-
neous devices integrating CPU and GPU cores. Thus, thermal
management of such devices become far more challenging.
Thermal effects on the system as a result of CPUs and GPUs
manifest in different ways. A common technique employed
for thermal management of such devices is effective GPU
kernel management - choosing judiciously the tasks to be
scheduled on GPUs and CPUs [17].

It has been observed that proposals for thermal manage-
ment techniques of embedded devices have been validated
either by implementing them on hardware platforms or
through simulation runs. Though results obtained from hard-
ware implementation are considered more accurate, obtaining
these results become difficult. Researchers have to either
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look out for specialized experimental platforms that provide
support for obtaining temperature readings or have to attach
some add-on circuitry to the existing boards to collect thermal
data. In case such experimental platforms are not available,
researchers resort to simulation environments and modeling
tools to estimate the power and thermal readings. Simula-
tion models mimic the functionality of the real hardware
and thus facilitate an alternate validation procedure of an
idea.

Though simulation platforms serve as an alternative to
real hardware, they have their own limitations. One such
limitation is the accuracy of the models employed during
simulation. Inaccurate or insufficient models lead to errors in
findings. For example, Anastassia Butko et al. in [8] explored
the widely used McPAT [32] modelling framework used for
modelling power, area, and timing of many-core and multi-
core processors and reported that the error caused by the
McPAT model while computing power dissipation was 13%
while average error reported during computation of perfor-
mance was 20%.

Some simulation platforms employ a set of dependent
models. In such cases, if any one of the model gets erroneous,
the error propagates to all the dependent models causing
inaccurate simulation results. For example, an error in the
power model employed in the Hotspot-6.0 tool propagates
to its thermal model and leads to inaccurate temperature
evaluation of the chip.

It has been observed that in order to perform a simulation
based experiment, it requires integration of a number of soft-
ware tools which are independent of one other, in both design
and working. Thus, building a chain of such independent tools
is a time consuming task. Moreover, a lot of compatibility and
configuration issues may crop up which need to be handled
in order to build the tool chain. These issues remain specific
to the problem a researcher is currently working on and
does not apply to tools required for other problems or by
other researchers. Addressing these problems often becomes
tedious.

A. MOTIVATION
The challenges mentioned in the previous subsection are
usually faced by researchers while dealing with problems
related to thermal management of embedded systems. Some
of them reflect our experiences while working on problems
mentioned in [25], [26], and [37] and others were shared by
colleagues working on similar problems.

To summarize, the problems faced by the embedded sys-
tems research community while dealing with simulation
models and hardware platforms can be listed as follows :

1) Simulation tools are model driven involving a number
of dependent models. Thus, inaccuracy in one model
can cause deviation in the result of some other model
leading to overall degradation of the tool performance.

2) Building a simulation tool chain involves configuration
of a number of independent tools which often becomes
tedious and takes a lot of time. Moreover, one faces a
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lot of compatibility issues with the host platform while
dealing with a set of independent tool set.

3) Each simulation tool has its set of constraints. These
constraints severely limit the usage of a tool. For
example, Hotspot-6.0, a very popular simulator for
studying thermal effects in processors, requires a ther-
mal floor plan of the hardware platform ( processor)
to be provided as input. However, thermal floor-plans
for different embedded devices is not readily available
and building the floor plan without block architec-
ture and thermal parameter is not trivial. Thus, usage
of Hotspot-6.0 is only limited to processors whose
floor-plan is available.

4) Hardware platforms used for embedded research have
their own issues. Each platform is too specific for a
particular problem and often customized to facilitate
collection of power and temperature readings.

5) Prior knowledge of the thermal behaviour of an appli-
cation can help task schedulers to choose the suitable
processor for execution in order to maintain the tem-
perature of the platform within an optimized range.

6) There can be unforeseen situations such as the one
witnessed during the COVID-19 pandemic, when
researchers would not have physical access to lab and
its resources. Thus, it would be impossible to run the
experiments which would stall the research progress.

The problems cited above necessitates development of a
facility that would allow users remote access of embedded
platforms through suitable and easy interfaces so that they can
carry out their experiments on actual hardware platforms in
real time with better accuracy. The platform should also pro-
vide necessary help to researchers through supporting tools
and should cater to not only a certain group of researchers
but the entire embedded research community in general.

B. CONTRIBUTION

The difficulties faced by us and our colleagues while
working on different problems related to thermal manage-
ment of embedded systems such as difficulty in capturing
power and temperature readings, finding a suitable ther-
mal model, performing thermal aware task allocation or
deciding suitable platforms for task execution motivated us
to propose SLePaaS, an Embedded Platform-as-a-Service
facility for the embedded systems research community where
researchers can be provided remote access to experimental
hardware in order to carry out their research on thermal
management of embedded systems. Such a facility would
enable embedded researchers to carry out their experiments
on actual embedded hardware platform without the need to
purchase them, at the same time avoiding use of simula-
tion models. This would not only provide accurate research
findings in real-time but would also release the researchers
from spending time on building tool chains for experiments.
To the best of our knowledge, this is the first attempt to
provide the embedded systems research community an online
platform to remotely connect to the host and interact with

VOLUME 10, 2022



R. Kumar et al.: SLePaaS: An Embedded Platform-as-a-Service Facilitating Research

IEEE Access

different embedded platforms - upload codes, profile them to
obtain thermal statistics in real-time, and perform a thermal
aware compilation of the codes. The contributions can be
summarized as follows :

o Accessibility to Hardware Platform via host : The pro-
posed Embedded Platform as a Service facility facil-
itates end-users(clients) to remotely connect to a host
and interact with the embedded platforms via APIs
and utilities provided. Currently, users can make use
of three hardware platforms : Odroid XU4, Jetson TX1
and Jetson Nano. However, we plan to extend the
support for other platforms such as family of DSP pro-
cessors from Texas Instruments and processors from
STMicroelectronics.

« Profiling Tool : An online profiling tool called Nirik-
shak! which provides temperature profile of codes as
they get executed on any one of the three experimental
platforms. In addition to the thermal profile, the tool also
can be used to generate power and performance profile
of applications.

o Thermal Aware ML Model: A tool called Sahayak? that
helps users predict the average temperature of the appli-
cation prior to the execution of the application. Knowl-
edge about the average temperature of an application in
turn helps task schedulers to perform a thermal aware
task allocation on processor cores.

o Platform Predictor : A platform predictor called Nird-
harak® which aids users in deciding the suitable
platform of execution for OpenCL applications such that
the thermal budget is maintained while the performance
too is improved.

C. ORGANIZATION

The rest of the article is organized as follows. The next section
provides a brief survey of literature on thermal management
of embedded systems. It discusses the methods and models
employed by researchers to measure temperature, followed
by discussion on the state of the art tools in use for the purpose
and their limitations. Section III provides the overall idea
about SLePaaS the Embedded Platform-as-a-Service facil-
ity provided by Systems Lab of IIIT Allahabad, introducing
the concept of the platform, the profiling tool, the platform
decider and thermal predictor. Section IV describes the work
flow of SLePaaS and role of each stakeholder. The subsequent
sections detail the concept and working of each of the tools,
first the concept and working of Nirikshak (the tool which
provides temperature profile of applications) is presented in
Section V followed by discussion of Sahayak (the thermal
predictor) in Section VI and then finally the platform decider
for OpenCL applications called Nirdharak is discussed in
Section VII. A proof of concept of SLePaaS is presented in
Section VIII to illustrate the working procedure of each tool

Hindi word meaning one who monitors.
2Hindi word meaning one who assists.
3Hindi word meaning one who decides.
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and to evaluate the performance of each. Section IX provides
the conclusions and our future plan with the platform.

Il. RELATED WORK

As embedded systems tend to accommodate general purpose
cores on the system-on-chip ( examples are the Samsung
Exynos or Texas Instruments OMAP), power density within
these systems tend to rise causing elevation in operating
temperature. Prolonged execution at elevated temperature
causes several problems, such as introduction of faults, device
wear out and higher energy consumption [50]. Thus, thermal
management of embedded systems has gained importance
over the years.

Thermal management techniques applicable for general
purpose systems such as use of heat sink or fan can not be used
for embedded systems due to space and energy constraints.
Thus, software based techniques for thermal management
are preferable. The most common techniques for software
based thermal management have been thermal aware task par-
titioning and scheduling [14], Dynamic Voltage Frequency
Scaling [29], thread migration [25], temperature aware task
scheduling [10], [21] etc. An extensive survey on different
thermal management techniques for microprocessors includ-
ing embedded systems have been presented in [24].

Efficient and accurate monitoring of temperature is
an important aspect in any proposal related to thermal
management of a device (including embedded systems).
Joonho Kong et al. in [24] list the various ways of monitoring
temperature in microprocessors and classify them into three
broad categories - thermal sensor based estimation, thermal
model based estimation and software techniques. Thermal
sensors either detect hot spots ( digital sensors) or estimate die
temperature(analog sensor). Model based estimation relies
on measurements under process variation. Various models
have been utilized such as Kalman filter based models [41],
POMDP [46] power model and Performance counters [30].
Software techniques have been proposed with an aim to
detect localized hot spots which could not be monitored using
thermal sensors. They use sensor data, performance counter
values, power and temperature models [30]. Baver et al.
in [34] propose a processor temperature estimation model
where they utilize built in temperature sensors of Intel i7
and ARM Cortex A-53 to determine system dependent model
parameters and then go on to propose a generic modelling
framework for dynamic temperature estimation.

Mohsen Ansari et al. in [4] proposed low energy/power
aware scheduling techniques that meet both timing and reli-
ability constraints. The proposed techniques optimise the
energy consumption subject to thermal design power and
core level thermal safe power constraints. To meet the tim-
ing constraints of the real time applications, the authors
have scheduled tasks on suitable cores utilising different
voltage/frequency variation of the embedded cores. Authors
of [5] proposed a thermal-aware standby-sparing (TASS)
technique that maximizes the quality of service of real
time applications under given core level thermal safe power
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constraints. The proposed technique schedules the main task
on the primary core while the backup tasks are schedule on
spare core. The proposed fault tolerant techniques remove the
overlapping of execution of main and backup task and drop
the backup task on completion of main task. This ensures
reduction in power consumption. Sepideh Safari ez al. in [38]
proposed thermal aware scheduling scheme that satisfies tim-
ing, temperature and reliability of high critical tasks while
maintaining the QoS of low critical tasks. Authors have
employed N-Modular Redundancy fault tolerant technique
to ensure the reliability of multi-criticality system. Rajesh
Devaraj and Arnab Sarkar in [12] proposed supervisory con-
trol synthesized framework that models real time applica-
tions as precedence-constrained task graphs and schedules
the tasks such that timing constraints of each tasks get satis-
fied while maximizing fault tolerant capacity and minimizing
peak power dissipation. Authors of [13] proposed an offline
scheduling framework that guarantee the adherence of chip
level power constraints while executing non-preemptive real
time task.

Siqi  Wang et al. proposed a framework Optic [47] that
automatically predicts the partitioning point and operating
frequency of CPU and GPU running concurrently under
given thermal constraints. S.Sharifi et al. in [40] proposed
PROMETHEUS, a framework for proactive temperature
aware scheduling for embedded workload on heterogeneous
processors. The authors proposed a thermal RC network
based temperature predictor model Tempo. PROMETHEUS
uses the temperature predictor to prepare thermal aware task
assignment, migration and power aware scheduling mapping.
Narendra Kumar Shukla et al. in [42] proposed context
sensing based energy profiling for smartphones. Authors
utilized sensor data and resource utilization to model power
and energy. Yi-Fan Chung et al. in [11] proposed ANEPROF,
an energy profiler that profiles energy consumption of the
android applications at function level (distinguished power
consumption among threads, java methods and java virtual
machine services). Authors utilized real time measurements
and correlated them with function level events to model
energy profile. Youngmoon Lee et al. in [31] proposed
RT-TRM, a real time thermal aware resource management
framework for devices which have dynamic ambient tem-
perature profile. Authors proposed task level dynamic power
model, adaptive parameter assignment and online scheduling
framework to perform thermal aware resource management.

Jude Angelo Ambrose in [3] proposed an interactive
thermal management framework HEATSMART for multi-
processor system on chip(MPSoC). The HEATSMART
provides user interface to monitor the heat dissipation of each
application and control the heat dissipation by giving the
instruction such as stop the application, pause the instruction,
migrate the application to other core or executes system level
thermal management. Sumeet S.Kumar ez al. in [27] proposed
Ctherm, an integrated framework for cycle-accurate ther-
mal and functional evaluation of systems-on-chip. Ctherm
works in two stages. In first stage it generates the physical
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model based on generation of floor-plan and the estimation of
latency, energy and dimension of the component. In second
stage, Ctherm performs thermal-functional evaluation utilis-
ing physical model and SystemC top level file configured
with system specification. Authors of [28] addressed the
problem of high-power consumption due to display interface
chipset used in smartphone. They have proposed thermal
management for NANS (N-App N-Screen) services utilising
DVFS and predictive thermal model. Onur Kayiran et al.
in [22] proposed a framework (1 C state) based on power and
clock gating mechanism. They analysed the data path using
queuing theory principle and found out the underutilised data
path in big cores of the GPU. The uC state framework turns
off the data path component which are underutilised or which
do not become bottlenecks for the performance of the running
application. Abhijeet Banerjee et al. in [6] proposed auto-
matic test generation framework for android application to
detect energy hotspot/bugs. The framework detects the energy
hotspot and bugs based on evaluation of energy consuming
events such as improper management of network resources,
background services, resources leak and improper use of
wake lock. Similarly authors of [16], [35], [48] used event
driven techniques to develop energy profiler framework for
android applications. Mohammad Javed Dousti et al. in [15]
introduced ThermaTap, an online power and thermal profiler
for android applications and devices. ThermaTap comprises
PowerTap and Therminator2. PowerTap uses kernel level
macro to record system activity and generates event driven
power traces of system components while Therminator2 uses
physical characteristics and power traces to model tempera-
ture profile.

As software techniques for thermal management of embed-
ded systems were proposed, their implementation and vali-
dation required proper tool support. A number of tools have
been proposed over the years and have been in use. The most
commonly used tool for temperature estimation of embedded
processors is Hotspot [44]. 1t is used for thermal modelling
based on thermal characteristics of a processor. However,
Hotspot has few limitations. For example, it depends on other
tools such as Watch [7] or McPAT [32] and Gem5 [1] to
provide the power estimates required for thermal modelling.
Thus, integrating Hotspot with these tools becomes tedious.
Moreover, any error in any one of these tools has an impact
on Hotspot and may eventually lead to error in temperature
estimation. Hotspot also needs a thermal floor plan of the pro-
cessor for thermal modelling. However, thermal floor-plans
for different embedded devices is not readily available and
building the floor plan without block architecture and thermal
parameter is not trivial. Thus, dependence on other tools and
limited availability of floor plans restricts use of Hotspot.
Additionally, some researchers have reported that Hotspot
has limitation in accuracy and simulation time [19]. Varsim
is another thermal management tool proposed by Hameedah
Sultan et al. in [45] that can capture the temperature depen-
dence conductivity and help in fast leakage and variabil-
ity aware thermal estimation. However, the tool has only a
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FIGURE 1. Architecture of SLePaaS.

limited usage. Breazeflow [18] is a tool that identifies wrong
decisions taken by frequency governor and scheduler and
thus helps kernel developers to efficiently perform thermal
management.

The tools mentioned above have been in use and majority
of embedded system researchers rely on them for temperature
monitoring. However, all these tools have some limitations.
They either depend on other tools, or lack proper library
support or face compatibility issues with the host platform.
Thus, we propose to release researchers from tool related
issues and provide them with a platform so that they can carry
out their experiments on actual hardware and report accurate
results. The tool would additionally help them in taking more
informed thermal aware decisions while executing their code.

Ill. ARCHITECTURE OF SLePaaS

Our proposed Embedded Platform as a Service facility
SLePaaS is based on a Client-Server Architecture as pre-
sented in Figure 1. Tier-1 is the Service requester layer
which represents clients (subscribers) who would like to
avail the services (embedded platform for code execution).
Tier-2 is the Service provider layer (Web application/Server)
that provides services (access to the embedded platforms) to
the clients. Tier-3 represents the resources provided to the
clients (different hardware platforms and a database). The
experimental setup of the proposed platform is presented
in Figure 2.

A. THE SERVICE REQUEST AND SERVICE

PROVIDER LAYERS

Clients who would like to avail the services SLePaaS need to
subscribe through the following website: https://systemslab.
iiita.ac.in/imprint/. Once subscribed, clients can request for
an experimental session - request to run an application code
on a specific target platform (ODROID XU4 having Exynos
SoC or Jetson Nano GPU board or Jetson TX1 GPU board).
Request from clients are forwarded to Tier 2 - the Service
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Provider layer, which depending on the request facilitates
one of the services to the client. The following services are
currently provided :

o Code Analysis : Facility to upload an user application
to the SLePaa$ platform and perform a static analysis
(through control and data flow graphs generated out
of the code) and dynamic analysis (through hardware
events captured using performance counter values). The
code analysis helps users to choose the most thermal
aware execution platform - either CPU or GPU.

« Profile Creation : Facility to perform real time temper-
ature profile generation for an user application, visualize
and generate reports

« ML based Thermal Predictor: Predict the average
temperature of the application prior to actual execution
of the application.

o Visualize and Download data of compiled bench-
mark applications : Subscribers can visualize and
download performance and thermal statistics of bench-
marks such as Polybench, ACC-Master, Parboil and
Rodinia-3.1 when compiled on different target hardware
platforms.

These services are provided in the Tier 2 layer through a Web
Server and a RMI Interface. The Web server facilitates clients
to upload their application codes to the computing nodes
while the RMI interface allows them execute the uploaded
code on a computing node (the target embedded platforms).

The Web Server : It provides an interface for the clients to
interact with the computing nodes. Clients put a request to
the web server which it accepts, processes and then sets up
the environment to execute the application on experimental
board. Once the execution is over, the web server makes
arrangement for display of results related to performance,
power, temperature variations etc. The web server expedites
transfer of user application to the computing nodes (target
embedded platforms) in two steps. First, it receives the client
application as a file utilizing the Hyper Text Transfer Pro-
tocol(HTTP), and then makes use of connection-oriented
socket programs to transfer the uploaded file received from
the client to one of the computing nodes. During file transfer,
the web-server acts as socket server while the computing node
acts as socket client. The roles get reversed when results are
transmitted back from the computing nodes to the web server.
In addition, the web-server prepares separate experiment ses-
sions for each client. The mechanism of session allotment is
described in Section I'V-B of this article.

RMI Interface : It allows clients to execute their codes on
one of the computing nodes by invoking a remote method
residing on a computing node. RMI interface is a remote java
interface that declares a set of methods defined by the RMI
Server. The RMI Server class defines the implementation of
each method of RMI interface and registers them as services
in the RMI Registry. In the proposed SLePaaS platform, three
RMI interfaces ( RMI Servers) have been implemented, one
for each computing node. The RMI interfaces are identical
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Odroid-XU4 Jetson Nano

FIGURE 2. Experimental setup of SLePaaS.

at both client and server side. The RMI Client code resides
at web-server machine and it runs on behalf of the user at the
time an event gets triggered by the user. The client obtains the
remote object of the server using RMI registry and thereafter
it invokes the remote method.

B. THE RESOURCES LAYERS : TIER 3

The Tier-3 or the Resources layer of the SLePaaS consists
of a database server and the computing nodes. The database
server used is the MySglServer and the computing nodes used
are Odroid-XU4, Jetson TX1 and Jetson Nano. In future we
plan to add a few more computing nodes.

ODROID-XU4: The embedded platform ODROID-XU4 is
based on ARM big. LITTLE architecture having Exynos 5422
processor with advanced Mali T628 Graphics Processor Unit
(GPU). The board is equipped with four high performance
big cores and four low power LITTLE core. The big cores
support 19 levels of clock frequency ranging from 200MHz
to 2000 Mhz while the LITTLE cores support 13 levels
of clock frequency within a range of 200-1400 MHz. The
big cores have on-chip thermal sensors while the embedded
GPU has six cores with OpenGL ES 3.1/2.0/1.1 and OpenCL
1.2 full profile support. The voltage and power values gen-
erated during application execution on the ODROID-XU4 is
captured using an add-on power measurement module called
SmartPower-2.0(developed by HardKernel).

Jetson TXI: The NVIDIA Jetson TX1 GPU platform
has 256 CUDA cores based on the NVIDIA Maxwell archi-
tecture delivering performance of the order of 1 TeraFLOPs.
In addition it has quad core ARM Cortex A57 CPUs, 4K
video encode and decode capabilities and a camera interface
capable of 1400 MPix/s. The Jetson TX1 platform is suitable
for running jobs related to deep learning, computer vision,
graphics, and GPU computing. The power and thermal sen-
sors on the board help in power and thermal management.

Jetson Nano: The NVIDIA Jetson Nano board is a GPU
based embedded platform that allows parallel execution of
multiple neural networks. This platform is specifically suited
for applications such as image classification, object detection,
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segmentation, and speech processing. The board contains
128 GPU cores and quad core ARM Cortex A57 CPU. More-
over the board has power and thermal sensors to monitor the
power and temperature of CPU and GPU.

IV. WORKING OF SLePaaS: THE EMBEDDED PLATFORM

AS A SERVICE FACILITY

In this section we describe the role of the different compo-
nents of the Embedded Platform as a service facility and
explain its working in detail.

A. ROLE OF STAKEHOLDERS

As already described, SLePaaS uses a 3-Tier Client Server
Architecture. Tier-1 represents clients who interact with the
tool, Tier-2 represent the Server(Web Application) which
provides services to the users while Tier-3 represent the
resources (Database server and computing platform) of
the tool. Thus, there are four stakeholders who interact
with embedded platform as a service facility - the Client,
An Admin, The Web Server and the Computing Node.
Their role and interaction are illustrated using the Use-
case diagram shown in Figure 3. Client and Admin are the
human actors while Node and Web-Server are the non-human
actors(system). The role of each actor is as follows :

Clients : Clients are online users who interact with the
tool to perform experiments and obtain profile results. Clients
need to register in order to avail the SLePaaS services. Once
registered, clients can login, update profile and request for
an experiment session. The experiment session defines the
time slot (scheduled date and time) at which the computing
node is available to the client. Once the session is sched-
uled, clients can view the scheduled date and time for the
experiment session on a dashboard. On the scheduled date
and time, client is allowed access to the computing node
in order to run applications, perform different experiments
on it and view the generated results. The sequence diagram
to initiate session request is illustrated in Figure 4. The
sequence diagram of other important usecases such as Allot-
Session, ViewSession, StartExperiment, ExecuteProfiling,
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FIGURE 4. Request session sequence diagram.

PredictAvgTemperatute, ViewResult and PredictPlatform are
presented in Appendix A. In addition, all sequence diagram
are also provided at https://systemslab.iiita.ac.in/imprint/
sequencediagram.html

Admin : The main role of admin is to configure the tool and
start the resource manager application. The configuration of
the tool includes configuration of IP address of each com-
puting node, to set the IP address of the database server and
initialize the database name, user name and password. This
is an one-time process required at the initiation of the web-
server. The resource manager is an application that runs three
clocks namely startClock-1,2 & 3, which run continuously in
the loop. The first clock (startClock-1) checks the scheduled
date and time of the allotted application. If the scheduled date
and time of the application matches with current date and time
then the privilege of the respective application gets elevated
and the application is put in a wait state. The other two clocks,
check the current date and finish time of the application and
lower the privilege of the application, if the finish time of the
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application crosses the current time. The application status
is marked as complete if the finish time of the application
crosses the current time. The other role of admin includes
management of login - check and update passwords, approve
the client registration and update admin profile.

Web-Server : The web-server is responsible for implement-
ing the functionalities of the SLePaaS$. It prepares an inter-
face for client - computing node interaction. The role of the
interface is to establish a connection between web-server and
computing nodes(target hardware platforms), allow transfer
of application code sent by the clients to the computing nodes,
facilitate execution of the codes at the computing nodes and
display results thereafter.

A socket based communication is used for data transfer
between the web server and the computing nodes. When
the web server needs to communicate with any one of the
computing nodes, it acts as a RMI Client and calls the remote
method corresponding to requirement of the client. For exam-
ple, if a client wants to execute the uploaded application on
the Odroid XU4 embedded platform, the web server calls the
corresponding remote method of Odroid RMI Server. The
web-server prepares the separate experiment session for each
client. The mechanism to allot the experiment is described in
Section IV-B. RMI Servers installed on each computing node
launches a set of services for the clients, executes applications
uploaded by the clients and sends the result back to the web
server.

B. EXPERIMENT SESSION MANAGEMENT

Since the embedded platform as a service facility caters to
multiple clients, managing experimental sessions created by
multiple users becomes crucial. Multiple users accessing the
same computing node (experimental board) at same time can
influence the profiling results of the benchmark applications.
To overcome this situation we create and maintain separate
experiment sessions for each user. Each client subscribed
to SLePaaS if wishes to execute an application code on
some experimental board needs to request the web server for
an experimental session through an online form mentioning
about benchmark name, application name, computing plat-
form and user_id.

Session Allotment : Experimental sessions are managed
using two tables in the database, namely, the wait_table and
the run_table. The wait_table stores the requests for the
experiment sessions while run_table stores the scheduled
session of each experiment. The run_table starts as empty and
gradually fills up as the experiment sessions get scheduled.
The technique for allotment of experiment sessions to various
clients is explained through Algorithm 1.

The Algorithm1 takes two input sets WQ, RQ. The set
WQ, RQ represent wait_table and run_table respectively.
The attributes of the WQ table are user_id ( ufd), job_id

'i:d), expected execution time (eet’), platform id (Pf ;) and
status( stat') of the job i. Similarly the attributes of RQ
are schedule start date (d?), start time (¢!), finish date (d]f),

finish time (1/), platform id (P},), user id (u},), job id (ji,)

90833



IEEE Access

R. Kumar et al.: SLePaaS: An Embedded Platform-as-a-Service Facilitating Research

Algorithm 1 Allot Session

Illpllt: WQ:{Rl, Ry,R3...... R”}’
RQ=({S1,52,83...... Sn)
Output: S;

Each Ri= < u},, ji,, eet', Pi,, stat', priv' >
— i i 4oL opi i i i
Each S;= < d;, df, 15, 17, Py, iy, jiy, stat’ >

: R; < getFirstRow (WQ)
: Pfd <« getPlatformld (R;)
: Si—1 < getLastScheduleSession (RQ, Pfd)
eet' < getExpectedExecutionTime (R;)
d. < getCurrentDate (clock)
t. < getCurrentTime (clock)
if (S;_1 == NULL) then
d. < getCurrentDate (clock)
t. < getCurrentTime (clock)
. else
df’*‘ < getLastFinishDate (Si_1)

t;_l < getLastFinishTime (Si—1)

13 if (d;'—l > dc) then

R A AN A R ol e

—_ =
M» =@

14: d. = d}’l

15: t, = tfi-_l

16:  else '

17: if (d]f] == C) then

18: if (tjﬁ_1 > tc> then

19: d. = 4}’1

20: te = t;*l

21: else

22: d. < getCurrentDate (clock)
23: t. < getCurrentTime (clock)
24: end if

25: else

26: d. < getCurrentDate (clock)
27: t. < getCurrentTime (clock)
28: end if

29:  end if

30: end if

31: 1) =10+ AT

32: dy =d. + AT

33 1f = 1;7! + eet!

34 df = dit! + eet!

35: S; < createNewSession(t}, d;, t;, d;, P, “i’d’ji‘d’ stat")
36: Allot Session S; to the platform of id P;y4

37: RO =RQUS;

and status(stat’) of the job i. The algorithms begins with
extraction of a request(R;) from the wait_table WQ(line-1).
The platform id of the extracted request is obtained by calling
function getPlatformld(R;) (line-2). The last schedule ses-
sion on platform P§ 4> the same platform for which R; made
request, is obtained by calling function getLastScheduleSes-
sion (RQ,Pﬁd )(line-3). The expected execution time of the
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request R; is extracted in line-4 while current date(d,) &
time(z.) of the system is initialised in line-5 & 6 respectively.
The set RQ either has an empty scheduled session or at least
one scheduled session for the platform Pf ;- If set RO has an
empty schedule session or has the last scheduled session as
NULL(line-7) on platform Pf , then current date and time is
initialized by obtaining the current date and time from the sql
clock object(line-8,9). The current date and time is consid-
ered later as the start date and time of the next session. If the
last scheduled session of set RQ is not NULL(non empty
schedule) on platform Pﬁ , then start date and time for the
next session is computed through line 11-29. If run_queue
has at least one scheduled session then the last finish date and
time of the last scheduled session is extracted in line-11 & 12
respectively. A comparison is performed between current
date and last finish date(line-13) to find out if the last finish
date is ahead of current date. In case it is true, then the
current date and time is initialized to last finish date and
time respectively(line-14, 15). The else part of line-13 further
checks whether the cases of last finish date matches with
current date and last finish date is behind the current date.
If current date and last finish date matches then current date
and time initialised through line 17-24. If last finish time is
ahead of current time(line-18) then current date and time is
initialised by last finish date and time respectively(line-19,
20) else current date and time is initialized by getting current
date and time from the clock(line-22 & 23). If last schedule
date is behind the current date then current date and time
is initialized by getting the current date and time from the
clock(line-26, 27). The start time of the session is computed
by adding break time AT to the current time(line-31). The
break time AT denotes the ready time for the client. The
changes in current time can change the current date also.
Therefore, start date of the experiment is computed by adding
the break time AT to the current date(line-32). Similarly
finish time and finish date is computed in line 33 & 34 by
adding execution time of the application. A new session S;
is created with computed start date and time for the request
R;(line-35). The newly created session S; is alloted to the
platform of id Pﬁ: ,(line-36) and added to the set run_queue
RQ(line-37).

Algorithm 1 involves mostly initialization(line 5-34)
instructions that execute in constant time (O(1)) and func-
tion call such as getFirstRow (WQ), getPlatformld (R;),
getLastScheduleSession (RQ, Pi: d) and getExpectedEx —
ecutionTime (R;) (line 1-4) which also execute in O(1) time,
since they are mostly read operation on database table. There-
fore, overall time complexity of the algorithm is O(1). The
space complexity of the algorithm is determined by the size of
database table. The database table is of size n x k where n is
the number of previously stored sessions(row) and k is fixed
number of attributes(column). Therefore, space complexity
of the algorithm is O(nk) which eventually comes down to
O(n) as k is constant.

Grant of Privileges : The attribute privileged priv’ (type :
Boolean) in wait_queue represents the permission to execute
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Algorithm 2 StartClock-1

Input: WQ={R|,R2,R3...... R},
RQ={S1, S, S3 R Sy}

Output: priv', stat' o ‘ '
Each R; = < u},, ji,, eet', P, stat', priv' >

Each S; = < dj, dfi, t;:, tfi, Péd, ufd,jfd, stat’ >

1: while true do

2 S; < getScheduleSession (RQ)

3 if (S; == true) then

4 d§ <« getStartDate (S;)

5: tsi <« getStartTime (S;)

6 end if

7 while (S; == true) do

8 d. < getCurrentDate (clock)
9: t. < getCurrentTime (clock)
10: if (d ==d. & t! == 1.) then
11: privt == TRUE
12: stat! == WAITING
13: updatePriviledge (privi, WQ)
14: updateJobStatus (stati, RQ)
15: break
16: end if

17:  end while
18: end while

the job i on the experimental board and is set to a default value
False. The value gets updated to True dynamically when the
current date and time matches with the schedule start date and
time. The technique to set the privilege of a job is described
in Algorithm 2.

Algorithm 2 takes two input sets the wait table WQ and
RQ, the run table. The algorithm begins with extraction of a
scheduled session from the run_queue RQ (line-2) followed
by extraction of scheduled start date and time of the extracted
session, if existence of session S; is True (line 3-5) i.e. the
session exists. The current date and time gets initialized at
line-8 & 9 respectively. The inner loop between line 7-17
continuously compares the current date and time of a job
to the scheduled start date and time(line-10). If True, the
attribute priv’ gets initialized with value True (line-11) while
attribute stat' gets initialized with value WAITING (line-12).
The attribute stat’ of run_queue RQ defines the status of the
job and holds three type of information such as WAITING,
RUNNING & COMPLETED. The WAITING state denotes
that a job has the permission to execute but the clients have not
started it as yet. The RUNNING state denotes that the job is
currently running and hasn’t completed while the state named
COMPLETED denotes that the job has completed its execu-
tion. The privilege priv' & and state of the job stat’ get updated
through line-13 & 14 in WQ and RQ respectively. Once the
privilege and status is updated, the inner loop breaks(line-15)
and allow outer loop to reiterate to enable the permission of
next scheduled job. The outer loop iterates forever to enable
all future scheduled sessions (line 1).
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The status of the job gets updated from WAITING to
RUNNING automatically whenever a client starts the experi-
ment. Once a task get completed, its privilege is lowered(the
value of priv' turned back to False) and the value of stat’ gets
updated to COMPLETED from RUNNING. This is ensured
by the algorithm StartClock-2. We do not provide its details
since it is similar to StartClock-1 except lines 11 and 12.
A third algorithm named StartClock-3 is also similar to the
StartClock-1 except line 11 and 12 where stat’ gets updated to
COMPLETED from WAITING and the privilege gets lowered
from True to False. The algorithm StartClock-3 is required
to prevent session overlapping which may occur if a client
executes the experiment at a later date and time which may
be scheduled for some other client.

Algorithm 2 runs for infinite time in order to enable exe-
cution permission and change job status of future allotted
sessions. Therefore, time complexity of the algorithm is not
expressible. The space complexity of the algorithm mainly
depends upon function call getScheduleSession (RQ) (line-2).
The algorithm extracts one session (S;) in each iteration from
a view of large session (virtual table) of size O(nk) where k is
fixed number of attributes and » is the number of previously
scheduled sessions, therefore space complexity of the func-
tion getScheduleSession (RQ) is O(nk) that eventually comes
down to O(n) as k is constant.

C. VISUALIZING THE UTILIZATION OF THE PLATFORM

As different applications get executed on different computing
nodes, it is necessary to monitor the utilization of each plat-
form so that new client requests can be scheduled effectively.
With this in view, we provide two dashboards, one for the
client and the other for the admin. These dashboards help in
visualizing the status of the requested session and utilization
of the platform. The client can access the dashboard by the
link given in the profile page. The dashboard of the client
provides the schedule status of the requested session. The
client can view the schedule start date, start time and finish
time of the experiment. Similarly the admin can enquire
about how many session requests have arrived, how many got
scheduled and which platform is used for the experiment and
list of the idle platforms.

D. TOOL SUPPORT

Our proposed SLePaasS platform provides three tools for three
different purposes. The clients subscribed to the platform can
make use of these tools for their own purpose. The tools are :

1) Nirikshak*- The Profiling Tool : This tool allows
generation of thermal profile of applications during
execution on a certain computing node (target hardware
platform). The generated thermal profile not only pro-
vides an estimate of the range of different temperatures
during execution but also serves as input to the other
two tools. In addition to generating thermal profile

4Hindi word meaning one who monitors.
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FIGURE 5. Operational flow of Nirikshak.

of applications, Nirikshak can be used for generating
performance and power profile of applications as well.

2) Sahayak® - The Thermal Predictor : This tool helps
users to predict the average temperature of the
application prior to execution of the application. The
prior knowledge of average temperature helps the task
schedulers to select the suitable processor for the appli-
cation depending on the thermal profile.

3) Nirdharak®- The Platform Predictor : This tool aids
users in deciding the suitable platform of execution for
OpenCL applications such that the expected thermal
characteristics are met.

In the next three sections we discuss in details each of the
three tools.

V. Nirikshak : THE PROFILING TOOL
This tool facilitates subscribed users of the SLePaasS to exe-
cute their application code on three different computing nodes
(Hardware Platforms) and obtain the performance, power and
thermal profile of their applications. The operational flow of
the Nirikshak tool has been illustrated in Figure 5.
Assuming a client has already subscribed to the SLePaaS,
he/she logs in and moves to the Request for Experiment
Session stage. In this step, the client requests for a separate
experiment session by providing the name of the bench-
mark, application and platform he/she wishes to run. The
next step is Allot Session where an experiment session id is
allotted against the client request, a query is performed on the
session database and new session details are provided to the
client. The details include session start date, start time and
finish time. The client can then view the allotted experiment
session details in the View Allotted Session step.

SHindi word meaning one who assists.
%Hindi word meaning one who decides.
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The start experiment feature (in client profile) of the tool is
disabled by default for all users and is enabled by the resource
manager. This ensures that only one user of each platform
is allowed to execute an application on a computing node.
The resource manager enables the experiment session exactly
on the same start date and time as scheduled by the allotted
session. The next step is Session-login where the user has to
login on the scheduled start date and time. If the session start
date and time matches with current date and time then such
user can access the computing nodes (hardware platforms i.e.
the experimental boards) and run their application on them.
The user session remains valid for three hours after scheduled
start time.

In addition, an App Repository is maintained that provides
users features of pre-compiled applications of the repos-
itory on request. The applications maintained within the
App repository includes applications from different bench-
mark suites such as Polybench-ACC-Master, Parboil &
Rodinia-3.1. The tool also provides facility to add applica-
tions to the existing repository.

Once the user uploads the application, next he/she needs to
select the computing node (experimental platform) and one
of the thermal management units. The next step is the Execute
Application which execute the application on the selected
platform. At the end of the execution, results are obtained
and displayed on request. After the execution is over, the user
session is disabled and the user profile is logged out.

A. THERMAL MANAGEMENT UNIT SUPPORTED

BY NIRIKSHAK

The prediction of peak temperature of the application is non
trivial in real time and inappropriate thermal management
techniques can lead to several thermal issues. Therefore,
efficient dynamic thermal management techniques(DTM)
are required to prevent peak thermal violation. In order to
avoid peak thermal violation we propose two DTM technique
based on dynamic voltage frequency scaling(DVFS) and task
migration(TM) in addition to the baseline approach.

Baseline Approach: The baseline approach executes
applications on default system configuration. The baseline
approach does not include a thermal management at user
level. The default scheduler used in baseline approach is
Complete Fair Scheduler(CFS) that shares the CPU time
equally among all processes. CFS scheduler is provided by
most of the latest linux operating systems.

Customized Frequency Governor(CFG): The CFG is
our proposed thermal management unit(TMU) developed at
user level with the help of system level utilities. It uses
userspace frequency governor to scale the operating fre-
quency dynamically. The mechanism to regulate the core
temperature is illustrated in Algorithm 3.

Algorithm 3 takes two threshold temperature limit(Tfigh
& T} ), max and min frequency(fuix & fo ) of the operat-
ing core and application name as input. The high threshold
temperature limit(T;figh) is used to guard the critical tem-
perature of the processor, similar to the techniques used
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Algorithm 3 Customized Frequency Governor

Input: App', Ty s T Foas Fopiy

I: Pfd <~ getProcessId(Appi)

2 ¢; < getMappedCore(P};)

3. while (P}, > 0) do

v < getClockFreq(c;)

5. Teir < getCoreTemperature(c;)
6 if (Toir > Tpo&feir > fp,) then
T chfr chctjr - Af
g
9

»

ff,ﬁ = fui, // Initializing max operating frequency
:elseif (Teh < TP &feir < fun) then

Ci Ci

10: cur = Jeur + Af

11: on = feur // Initializing max operating frequency
122 endif

13: P§ 4 < getProcessld(App")
14: end while

in [4] to guard the thermal design power(TDP). The low
threshold temperature limit(Tl‘Zw) is used to scale up the
core frequency and to enhance the performance when tem-
perature of the processing core become normal. The max
and min frequency defines the operating frequency range
of the processing core. The algorithm starts with initial-
ization of process identifier (Pfd) and initial core mapped
of the application(line 1-2). The while loop continues
until process terminates(line 3-14). In each iteration current
frequency(ff,jr) and current temperature(TCC,ir) of the process-
ing core is obtained through system level utilities(line 4-5).
The current temperature(7 ;) is compared with high thresh-
old limit of the processing core(Tfl’igh)(line—6). If current
temperature(7.,) is greater than high threshold tempera-
ture limit(T}?i gh) and current frequency(fy,) is greater than
min frequency of the core(f,;;n) then operating frequency is
scaled down by Af where Af is the incremental frequency
difference between two frequency label(line 7-8). Similarly,
if current temperature(ch,jr) is lower than low threshold tem-
perature limit(Tliw) and current frequency(fcifr) is lower than
max frequency of the core(fy:) then operating frequency
is scaled up by Af to increase the performance of the sys-
tem(line 10-11). At the end of iteration, process identifier
is again initialized(line 13) and this iteration continue until
process terminate(line 3).

The time complexity of Algorithm 3 mainly depends on
iterative loop. The while loop continues until process id Pﬁ Y
of i application exists. The process id Pﬁ , Temains valid until
process terminates. Therefore, the termination condition of
while loop depends upon the execution time of application.
Let us assume an application has m seconds of execution
time and polling interval of Pf ; of a process i is k seconds.
Therefore, the time complexity of the loop can be expressed
as O(m/k). Since k is constant, therefore time complexity
of while loop comes down to O(n). The other operation
involves initialization of variable that can be executed in O(1)
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time. Therefore, overall time complexity of the algorithm is
O(n). Since the algorithm uses a fixed number of variables
to hold temporary values, therefore space complexity of the
algorithm is O(1).

Thermal Aware Scheduler(TAS): The second DTM tech-
nique proposed at user level is TAS which uses a similar
algorithms as the Customized Frequency Governor except
for the DVFS technique (line 7-8 & line 10-11) where it
uses task migration instead of frequency scaling. It migrates
a task from high processing core to low power core when
current temperature of the core is greater than high threshold
temperature limit while it migrates a task from low power
core to high performing core when current core temperature
is lower than low threshold temperature limit of the core.

VI. Sahayak : THE THERMAL PREDICTOR

Literature suggests that over the years a number of soft-
ware based techniques for thermal management of embedded
devices have been proposed [21], [39], [49]. Majority of them
involve a task scheduler that performs thermal aware task
allocation to cores. A prior knowledge about the temperature
profile of an application can help the task schedulers to
take more informed decision while allocating tasks to cores.
Our proposed tool Sahayak is able to predict the average
temperature of the application prior to the execution of the
application. The prior information about average temperature
of the application will help the task scheduler to allocate tasks
to cores judiciously at the same time will foster research on
other thermal management techniques.

A. WORKING PRINCIPLE OF SAHAYAK
The Sahayak tool works in three phases as illustrated in
Figure 6.

The first phase is the Feature Engineering phase, where
the static and dynamic features of the application are
extracted. Static features of an application are the attributes
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that represent the execution flow of the application. They
include information about number of basic blocks, number
of edges in control flow graph(CFG) of the application, crit-
ical edges in the CFG, number of direct calls in a method,
number of conditional branches in CFG, number of local,
static and external variables in a method etc. The com-
plete list of all static features of an application has been
illustrated in Table-1. These features uniquely represent an
application. We extract the static features of the application
using LLVM front-end Clang making use of LLVM compiler
library (LibStaticFeatExt.so) to analyse the source code and
collect the features. The list of all static features generally
associated with programs has been illustrated in Table-1.

Dynamic Features of an application are the attributes which
state about the actual resources used during execution of the
application such as cpu-cycle, bus-cycle, cache-references,
branch-instruction etc. The complete list of dynamic feature
consider in this experiment are illustrated in Table 2. The
dynamic features of the application are extracted by the hard-
ware event monitoring tool perf [2] during the execution of
the application.

The next phase is the Profile and Mapping phase where
the applications are executed on the hardware platforms
and the corresponding thermal variations are recorded. The
temperature values are recorded using the on-chip thermal
sensors available on the target hardware platforms. Once an
application completes its execution on a target platform, the
average range of temperature is obtained from its temperature
profile. This average temperature is the thermal label that is
associated with the application. Table 3 highlights the thermal
labels obtained for the different set of applications.

Once thermal labels have been determined, the thermal
label are mapped to the static and dynamic features of the
applications extracted during the Feature Engineering phase.
Thus, the output of the Profiling and Mapping Phase yields
a vector having features appended with the thermal label.
It looks something as :

Static Feature 1, Static Feature 2, ............ ,Dynamic
Feature 1, Dynamic Feature 2, ............. * label where label
is the average temperature range obtained while executing the
application on CPU and GPU.

The final phase involves the Training and Predic-
tion phase where the labelled data set (feature vector
with the temperature label) is fed to a machine learning
model. We tried with a number of ML models such as
Naive Bayesian, K-Nearest Neighbour(KNN), Support Vec-
tor Machine(SVM) and Random Forest (RF) on the prepared
data-set. Among them, Random Forest algorithm provided
the highest accuracy of 66.6 % in predicting the thermal label
of an application when only static feature of the applica-
tion were considered. The accuracy improved on considering
dynamic feature along with static features. The accuracy of
the ML model in Random Forest (RF) algorithm increased to
75% when both static and dynamic features of the application
were considered. The predictive model used in Sahayak was
validated by testing it on a varied applications chosen from
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TABLE 1. Static feature considered in this experiment.

sftl | Number of basic blocks in the method

sft2 | Number of basic blocks with a single successor

sft3 | Number of basic blocks with two successors

sft4 | Number of basic blocks with more then two successors

sft5 | Number of basic blocks with a single predecessor

sft6 | Number of basic blocks with two predecessors

sft7 | Number of basic blocks with more then two predecessors

sft8 | Number of basic blocks with a single predecessor and a single
successor

sft9 | Number of basic blocks with a single predecessor and two succes-
Sors

sft10| Number of basic blocks with a two predecessors and one successor
sft11| Number of basic blocks with two successors and two predecessors
sft12| Number of basic blocks with more then two successors and more
then two predecessors

sft13| Number of basic blocks with number of instructions less then 15
sft14| Number of basic blocks with number of instructions in the interval
[15, 500]

sft15| Number of basic blocks with number of instructions greater then
500

sft16| Number of edges in the control flow graph

sft17| Number of critical edges in the control flow graph

sft18| Number of abnormal edges in the control flow graph

sft19| Number of direct calls in the method

sft20| Number of conditional branches in the method

sft21| Number of assignment instructions in the method

sft22| Number of binary integer operations in the method

sft23| Number of binary floating point operations in the method

sft24| Number of instructions in the method

sft25| Average of number of instructions in basic blocks

sft26| Average of number of phi-nodes at the beginning of a basic block
sft27| Average of arguments for a phi-node

sft28| Number of basic blocks with no phi nodes

sft29| Number of basic blocks with phi nodes in the interval [0, 3]

sft30| Number of basic blocks with more then 3 phi nodes

sft31| Number of basic block where total number of arguments for all
phi-nodes is in greater then 5

sft32| Number of basic block where total number of arguments for all
phi-nodes is in the interval [1, 5]

sft33| Number of switch instructions in the method

sft34| Number of unary operations in the method

sft35| Number of instruction that do pointer arithmetic in the method
sft36| Number of indirect references via pointers ("*" in C)

sft37| Number of times the address of a variables is taken ("&" in C)
sft38| Number of times the address of a function is taken ("&" in C)
sft39| Number of indirect calls (i.e. done via pointers) in the method
sft40| Number of assignment instructions with the left operand an integer
constant in the method

sft41| Number of binary operations with one of the operands an integer
constant in the method

sft42| Number of calls with pointers as arguments

sft43| Number of calls with the number of arguments is greater then 4
sft44| Number of calls that return a pointer

sft45| Number of calls that return an integer

sft46| Number of occurrences of integer constant zero

sft47| Number of occurrences of 32-bit integer constants

sft48| Number of occurrences of integer constant one

sft49| Number of occurrences of 64-bit integer constants

sft50| Number of references of a local variables in the method

sft51| Number of references (def/use) of static/extern variables in the
method

sft52| Number of local variables referred in the method

sft53| Number of static/extern variables referred in the method

sft54| Number of local variables that are pointers in the method

sft55| Number of static/extern variables that are pointers in the method

different benchmark suits such as Parboil, Rodinia-3.1 and
Polybench-ACC-Master. 75% of the data set generated from
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TABLE 2. Dynamic feature considered in this experiment.

dyftl |cpu-cycles:u

dyft2 | instructions:u

dyft3 | bus-cycles:u

dyft4 | cache-references:u
dyft5 | cache-misses:u

dyft6 | branch-instructions:u
dyft7 | branch-misses:u

dyft8 | L1-dcache-loads:u

dyft9 | L1-dcache-load-misses:u
dyft10 | L1-dcache-stores:u
dyftl1 | L1-dcache-store-misses:u
dyft12 | L1-icache-loads:u

dyft13 | L1-icache-load-misses:u
dyft14 | dTLB-load-misses:u
dyftl5 | iTLB-load-misses:u
dyft16 | LLC-loads:u

dyft17 | LLC-load-misses:u
dyft18 | LLC-stores:u

dyft19 | LLC-store-misses:u

TABLE 3. Thermal label for training dataset.

Thermal Label Application

A Tapp <70 atax,  bicg, correlation, covariance,
gesummy, gramschmidt, heartwall, nn
gemm, gemver, jacobi-1D, syrk, nw, particle
filter

bfs, cutep, histo, spmv, backprop, hotspot3D,
2mm, 2D_convolution, 3D_convolution,
doitgen, gaussian, lud, myocyte

B:70 <= Tupp < 75

C:75 <= Tupp < 80

TABLE 4. Application for validation.

Application | Short Description
adi Alternating Direction Implicit solver
Iu LU decomposition
mvt Matrix Vector Product and Transpose
syr2k Symmetric rank-2k operations
sgemm | Dense Matrix Operation
stencil An iterative jacobi stencil operation on a regular 3D grid
pathfinder | Dynamic programming algorithm to find the shortest path of a 2D grid
3mm 3 Matrix Multiplications
fdt2d 2-D Finite Different Time Domain Kernel

these benchmarks was used for training while 25% was used
for testing. The results predicted by the ML model were
compared with the average temperature range recorded dur-
ing execution of the same applications on the actual target
hardware platform. The prediction and execution results were
compared and have been presented in Table 5.

The prior information about thermal characteristic of an
application such as average temperature (thermal label) helps
to classify applications as a hot apps and cold apps ( when
compared with a threshold limit). Such task classification
allows the task scheduler to allocate tasks in an intelligent
way so that the core temperature remains within an optimal
range. For example, for the ODROID-XU4 platform that
contains both high performing cores and low power cores,
the task scheduler can allocate hot tasks to low power cores
(LITTLE cores) while the cold tasks to the high performing
cores (big cores) [26].
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TABLE 5. Validation of predictive ML model.

Application | Predicted Thermal Label | Actual Average Temperature
adi A Tapp <70 68.4
Iu A Tapp <70 69.8
mvt B 70 <= Tapp <75 72.9
syr2k A Topp < 70 68.6
sgemm | C': 75 <= Typp < 80 79.7
stencil C:75 <=Tyupp < 80 78.2
pathfinder | C': 75 <= Typp < 80 79.2
3mm C:75 <= Tapp < 80 78.9
fdt2d C:75 <=Tupp < 80 77.9

TABLE 6. OpenCL BenchMarks application supported by Nirdharak tool.

Benchmark Aplication

Parboil bfs, cutcp, histo, sgemm, spmv, stencil

Rodinia-3.1 backprop, hotspot3D

Polybench- 2mm, 3mm, 2DConvolution, 3DConvolution, adi,

ACC-Master atax, bicg, correlation, covariance, doitgen, fdt2d,
gemm, gemver, gesummy, gramschmidt, jacobilD,
lu, mvt, syr2k, syrk

Vil. Nirdharak : PLATFORM PREDICTOR FOR

OpenCL APPLICATIONS

OpenCL is a programming framework that allows users to
develop applications for multiple platforms. These applica-
tions can be developed for Central Processing Units(CPUs),
Graphical Processing Units(GPUs), Digital Signal Proces-
sors(DSPs) or for Field Programmable Gate Arrays(FPGAsS).
Presently, the Nirdharak tool considers OpenCL app
development only for CPUs and GPUs. The GPU bound
OpenCL applications contain two parts: the host code and
the kernel code. The host code runs on the CPU and sets
up the environment for the application run. The host code
performs functions such as initializing the platform id, device
type, OpenCL context and command queue; creates memory
buffer and program object, load and executes the kernel. The
kernel code on the other hand gets executed on the GPU and
performs the actual computation on the data.

Nirdharak supports a set of OpenCL applications devel-
oped from different benchmark suits such as Parboil,
Rodinia-3.1 and Polybench-ACC-Master. Each application
has two variants - a CPU based and the other GPU based.
The CPU based variant is targeted to run on a CPU while the
GPU based variant is targeted to run on a GPU platform.
The two variants of the same application running on different
hardware platforms yield different performance profile. Thus,
it becomes important for the OpenCL application user to
decide whether to execute the CPU variant or the GPU variant
in order to achieve better performance. The Nirdharak tool
helps the user to make such a choice. If an user wishes to
execute an OpenCL application on the ODROID XU4 board
provided through the SLePaaS, Nirdharak is able to predict
whether the application should be run on the Exynos-5422
System-on-Chip(SoC) (the ARM based CPU platform) or
on the Mali-T628 ( GPU platform ) for better performance.
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Application
(Source Code)

LLVM Compiler Lib.
(LibStaticFeatExt.so)

Feature Engineering

Profiling & Mapping

ML Algorithm
Random Forest

Training & Prediction

Optimal Platform

FIGURE 7. Operational flow of Nirdharak.

Table 6 provides the complete list of applications supported
by the Nirdharak tool.

A. WORKING PRINCIPLE OF NIRDHARAK

The Nirdharak tool also has three phase working procedure
as illustrated in Figure 7. The first phase is the Feature Engi-
neering phase, where the static features of the application are
extracted following the technique mentioned in Section VI.
The next phase is the PCM (Profiling, Classification and
Mapping) Phase. In this phase, each application is executed
twice, the CPU variant of the application is executed on a
CPU platform and then the GPU variant of the same appli-
cation on the GPU platform. We considered the Exynos-5422
System-on-Chip(SoC) as the experimental platform. The SoC
has both the CPU as well as the GPU cores. We make use
of both to run the CPU and GPU variants of an application.
We executed the CPU variant of an application on the ARM
cores (supporting the big. LITTLE architecture ) and then the
GPU variant was executed on the Mali-7628 embedded GPU.
During execution of the applications, the temperature values
were recorded using the thermal sensors available on the CPU
and GPU cores.

Once each application has been profiled for temperature
on CPU and GPU, the values are compared to decide on
the platform that operates at minimum temperature for an
application. This classifies an application as a CPU bound
application - one that operates at minimum temperature when
executed on a CPU or GPU bound - one that operates at
minimum temperature when executed on a GPU. In addition
to thermal profile, performance of an application on a CPU
and GPU platform can also be used to classify applications
as CPU bound or GPU bound. The performance and ther-
mal profile of different benchmark applications from the
Polybench-ACC-Master, Parboil & Rodinia-3.1 suites are
presented in Tables 7 and 8 respectively. In both tables the
applications performing better on the CPU platform have
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TABLE 7. Performance of OpenCL application on CPU & GPU platform.

Application | Execution Time on | Execution Time on | Predicted

CPU(in Seconds) | GPU(in Seconds) | Platform
bfs 244 30.5 CPU
cutcp 726.9 40.1 GPU
histo 205.3 648.8 CPU
sgemm 146.0 14.5 GPU
spmv 16.1 8.9 GPU
stencil 555.3 41.7 GPU
backprop 27.4 329 CPU
hotspot3d | 7.1 20.6 CPU
2mm 204 4 GPU
3mm 10 1 GPU
2DConvolution | 6 4 GPU
3DConvolution | 3 2 GPU
2mm 204 4 GPU
adi 1 0.1 GPU
atax 1 0.1 GPU
bicg 1 0.1 GPU
correlation | 606 239 GPU
covariance | 594 232 GPU
doitgen 6 0.1 GPU
fdt2d 143 24 GPU
gemm 3 0.1 GPU
gemver 3 1 GPU
gesummy 1 1 GPU
gramschmidt | 1371 36 GPU
jacobilD 8 4 GPU
lu 52 11 GPU
mvt 2 1 GPU
syr2k 39 14 GPU
syrk 18 3 GPU

been highlighted by bold font. Both these tables classify the
applications into two classes CPU bound and GPU bound.
A CPU bound application performs better on the CPU plat-
form whereas a GPU bound application performs better on
a GPU platform. After Classification comes the Mapping
phase where each application is mapped to its class depend-
ing on the target objective - better performance or lower
temperature. In the mapping phase, a label (better perfor-
mance or minimum temperature platform ) is attached to the
static features of the application extracted during the Feature
Engineering phase. Thus, the output of the PCM (Profiling,
Classification and Mapping) Phase yields a vector having
features appended with the output class. It looks something
as:

Feature 1, Feature 2, ............. :

The label is either CPU or GPU.

The third and the last phase is the Training and Decision
Phase where a supervised learning approach is utilized to pre-
dict the most suitable platform for an OpenCl application. The
output of the PCM (Profiling, Classification and Mapping)
Phase is used as input data set to the Random Forest machine
learning algorithm which once trained is able to predict the
suitable platform for any OpenCL application. The Nirdharak
tool when experimented with the benchmark set mentioned
in Table 7 was found to predict the suitable platform for
an application with 80% accuracy. In order to validate the
prediction of the tool, we chose to execute all applications
used in the test set of the ML model on both platforms and
then compared with the results predicted by Nirdharak.
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TABLE 8. Thermal profile of OpenCL application on CPU & GPU platform.

Application Compiled for CPU Compiled for GPU
CPU GPU CPU GPU
Avg.Temp. | Avg.Temp. | Avg.Temp | Avg.Temp
bfs 79.3 65.5 79.4 65.5
cutcp 79.4 65.7 79.9 72
histo 79.6 65.9 79.8 67.8
sgemm 79.7 66.2 78.3 64.6
spmv 79.4 65.5 77.8 64
stencil 78.2 66.6 79.5 67.9
backprop 78.8 65.3 78.6 64.7
hotspot3d | 78.2 64 78.5 64.7
2mm 78.8 66 69.8 64
3mm 78.9 65.5 66 60.5
2DConvolution | 75.1 62.7 72.1 60.6
3DConvolution | 75.3 62 68.5 57.6
adi 68.4 57.6 65 55.6
atax 69.1 58.8 67.3 58.6
bicg 69.8 59.1 66.8 58
correlation | 67.7 589 64.4 61.4
covariance | 66.8 584 62.4 60
doitgen 77.9 64.3 64.4 57.9
fdt2d 77.9 68.8 62.9 62
gemm 73.3 60.2 59.6 54
gemver 73.1 60.7 65.8 57.5
gesummy 68.7 58 68.4 58.8
gramschmidt | 63.9 57.5 61.7 59.8
jacobilD 73.1 60.6 71.8 59.6
lu 69.8 60.7 60.3 59.1
mvt 72.9 60.5 66.7 57.5
syr2k 68.6 59.8 63.8 62.5
syrk 71.5 62.3 62.5 61

VIIl. EVALUATION OF SLePaaS
The SLePaaS prototype is available for use. One may
visit https://systemslab.iiita.ac.in/imprint/ to know about the
details. In order to use the platform and the tools, each user
has to register by filling up an on-line form.
Proof-of-Concept Implementation: As a proof-of-
concept of the prototype, we present the execution of the
pathfinder application from the Rodinia benchmark suite on
the Odroid-XU4 board making use of the SLePaaS platform.
The Odroid-XU4 is an ARM based embedded platform
having Exynos 5422 System-on-Chip(SoCs) with advanced
Mali T628 Graphics Processing Unit(GPU). The SoCs con-
tains four high performance big cores and four low power
LITTLE cores. Howeyver, only the big cores are equipped with
temperature sensors. Therefore, to record the thermal profile
of the application all the host code of the application has to be
executed on the big cores. The legends Core 4,5,6,7 used in
Figure 8, 9 and 10 represent the big cores of the ODROID
XU4 board. The GPU is also equipped with temperature
sensors that are utilized to capture the thermal readings during
execution of the the GPU kernel code of the application.
In the current prototype version, the tools Sahayak and
Nirdharak have been developed for the Odroid-XU4 embed-
ded platform. However, we plan to extend the architectural
support in course of time. The experiments were performed
on default frequency governor Performance(Baseline TMU)
with maximum clock frequency of 2000MHz for the big

VOLUME 10, 2022

95
wCore-4 Core-5 Core-6 Core-7 —=GPU
90

85

Mg
80 'hh“d"uh\'l. A oo
75+

70

Temperature(in Degree Centigrade)

65 | —
I A
60 |

55 |

50

0 250 500 750 1000 1250 1500 1750
Time(in MiliSecond)

FIGURE 8. Thermal profile of pathfinder application.

cores and 1400MHz for the LITTLE cores. The ambient
temperature was recorded at 21°C.

The process begins with a request for an experiment ses-
sion which gets scheduled on the allotted date and time. This
is ensured by the StartClock-1() module of resource manager
utility. Once a session is allotted, user uploads the source code
or selects the application from AppRepository. Then he/she
selects the platform, thermal management unit and executes
it using the interface provided through HTML page.

Next we invoke the Sahayak tool to predict the thermal
label of the pathfinder application deciding on Odroid-XU4
as the computing node running with maximum frequency.
Sahayak utilizes feature vectors of the application and
ML models to find the average temperature range (ther-
mal label) of the application prior to its execution on the
computing node. The predicted average temperature of the
pathfinder application as computed by Training and Deci-
sion Phase of Sahayak lies in the temperature range of
75°C-80°C(Thermal Label-C). The predicted thermal label
of the application is then validated by comparing it with
the experimental readings obtained after execution of the
application on the actual hardware platform. Figure 8 displays
the thermal gradient of the application when executed on
Odroid-XU4. The average temperature of the application is
observed as 79.2°C. The experimental readings lie in the
temperature range as predicted by Training and Decision
Phase of Sahayak, ensuring that the tool Sahayak is working
properly. The prior knowledge of average temperature of
the application obtained through Sahayak helps the user to
select suitable processor or clock frequency for an embedded
application.

The Nirdharak tool utilizes the static feature vector set and
machine learning models to predict the optimal platform for
executing an OpenCL application given a target optimization
objective. For the pathfinder application considered for vali-
dation, if the objective is to optimize performance, Nirdharak
predicted that executing the CPU variant of the pathfinder
application on the ARM big or LITTLE cores would be
better off in terms of performance rather than executing the
GPU variant of the same on the Mali GPU of the ODROID
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TABLE 9. Performance counter stat of CPU variant of pathfinder 95
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L1-icache-load-misses:u 139,143,866 FIGURE 9. Thermal profile of CPU variants of pathfinder application.
dTLB-load-misses:u 797,495
iTLB-load-misses:u 626,662
LLC—loads:u 164’756’971 * ——Core-4 ——Core-5 ——Core-6 Core-7 GPU Core-4 Core-5
LLC-load-misses:u 3,426,564 .
LLC-stores:u 7,753,260 & T WAV e A
LLC-store-misses:u 2,377,055 ' ! )

75

) ,; Tr i Wnlvlllf”r“

TABLE 10. Performance counter stat of GPU variant of pathfinder

Temperature(in Degree Centigrade)

application. "
Hardware Performance Counter Value 65 u_/_rl_mm
execution time(in seconds) 53.349068530 rmrE
cpu-cycles:u 66,224,915,185 60
instructions:u 35,059,555,369
bus-cycles:u 13,257,788,983 =0
cache-references:u 14,624,440,855 © . , . . . . , , .
cache-misses:u 12,054,466 (IJ 2;0 stlm 7éo 10‘00 12I50 15Ino 17I50 zuvou zzvso zs‘uu
branch-instructions:u 6,730,890,569 Time(in Milisecond)
branch-misses:u 11,932,275
L1-dcache-loads-a 0.778.636.863 FIGURE 10. Thermal profile of GPU variants of pathfinder application.
L1-dcache-load-misses:u 7,579,883
L1-dcache-stores:u 5,411,828,999 sd AllotSession ]
L1-dcache-store-misses:u 4,239,571 .Database A=
L1-icache-loads:u 8,919,531,555
L1-icache-load-misses:u 140,598,025 Web
dTLB load misses:u 1,334,000 Server
1TLB-load-misses:u 1,25 1 ,61 1 retrieveUnschedule
LLC-loads:u 176,127,580 Session()
LLC-load-misses:u 7,073,703
LLC-stores:u 14.306.385 UnscheduleSession(benchm
" . > : ark,app,platform)
LLC-store-misses:u 3,304,299 A allotSession(req date,req
time)
»
XU4 board. Later the prediction was validated by executing queryLastSheduledSession()
both the CPU and GPU variant of the application in sepa- < _
rate sessions on the CPU and GPU cores respectively. The | ngL?Sthhfdflefsefs'?ng scheduleNext
performance profile of CPU and GPU variants are presented _ 3ession()
. . . . updateScheduleSession(
in Table 9 & 10 respectively. The execution time recorded start date,start time)
for CPU variant of pathfinder is 36.6 seconds while the schedulesession(start
X X R . ate, start time)
execution time of GPU variant is recorded as 53.3 seconds. SO R ERLLEEEEEEET
The results clearly show that execution of the CPU variant of
the pathfinder application on the CPU cores is a better choice

than running its GPU variant on the GPU cores. However, the
results change if the objective is to optimize temperature. FIGURE 11. Allot session sequence diagram.

As predicted by the Nirdharak tool, GPU variant of the
pathfinder application when executed on the GPU cores has a executed on the CPU cores. This is validated by the tempera-
lower peak temperature than CPU variant of pathfinder when ture profiles recorded during execution of the CPU and GPU
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sd PredictPlatform ]

:ClientProfile :WebServer

Client

open predict platform menu
-
Ll

upload file form

< 777777777777777777777

uploadSourceCode(app_codeL

uploadSourceCode(app_code)
»

>

notify upload status

executeMLModel()

predicted platform

predicted platform TR byl

FIGURE 12. Predict platform sequence diagram.

sd ViewSession

:ClientProfile :Database

Client
viewSessionStatus()

> querySession(userld)
T —

sessionDetails(start date,
start time)

sessionDetails(start date,
start time)

e |

FIGURE 13. View session sequence diagram.

sd ViewResult/

:ClientProfile :WebServer :Node

Client

click on get result

P

select platform menu

select platform retrieveResult

(platform) retrieveResult
(platform) >
sendResult()
sendResult()

viewresult [>T

{ ,,,,,,,,,,,,,,,,

FIGURE 14. View result sequence diagram.

variants of the code on CPU and GPU cores respectively.
Figure 9 & Figure 10 present the thermal profile of CPU
and GPU variants of pathfinder application when executed
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sd PredictAvgTemperature )

:ClientProfile :Webserver

Client

open predict temperature
menu

»
upload file form
uploadSourceCode(App
code) p! uploadsourceCode(App code)

A 4

notify upload status

uploadDynamicFeature(dynami
c_feature)

P uploadDynamicFeature(dynamic_|

feature)
»
Ll
< notify upload status
executeMLModel()
predicted 7
temperature
predicted temperature G

< ,,,,,,,,,,,,,,,,,,,,

FIGURE 15. Predict average temperature sequence diagram.

on their respective cores. The average temperature of CPU
variant is recorded as 79.2°C while average temperature of
GPU variant is recorded as 79°C. The results clearly validate
the claim by Nirdharak tool that if the operating platform has
to be decided based on operating temperature, executing the
GPU variant of the pathfinder application on the GPU core
is a better option than running the CPU variant on the CPU
cores.

IX. CONCLUSION AND FUTURE WORK
In this paper, we present to the embedded research com-
munity an embedded platform as a service facility SLePaaS
which would facilitate research on thermal management of
embedded systems. We present the basic architecture and
working of this embedded platform as a service facility and
discuss in details each of its components. In addition to
providing users the remote access of hardware platforms,
SLePaasS also provides three tools which help users in obtain-
ing performance, power and thermal profile of applications,
help users to choose the suitable processor based on predicted
average temperature and to decide the platform (CPU or
GPU) that would be suitable for execution of applications
considering a certain target objective. The tools in the devel-
oped prototype currently support three hardware platforms
namely ODROID XU4, Jetson TX1 and Jetson Nano. How-
ever, in future, we plan to add support to more architectures.
In the paper we explain the working of each tool and validate
their working by comparing their results with the results
obtained when same applications are executed on the actual
hardware.

A prototype implementation of the platform-as-a service
facility and the three tools is available at https://systemslab.
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sd StartExperiment )

:ClientProfile

login(userld,password)

:Sessionlogin

:Database

T T
I I
I I
I I
! I
» I
|
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1
|
|
|
|

‘ :UploadFile

checkApp(App) >
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|
|
|
|
|
|
|
|
|
|
|
|
|

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[App==Available]
select platform
|-
Ll
executeA|
lelsel uploadFile o
71| executeApp()

‘ :SelectPlatform ‘ ‘ :ExecuteApp

validateLogin(userld,
password)
login status
alt
[login status == TRUE]
checkExecutionPermission(
permission
< ,,,,,,,,,,,,,,,,,,,
alt
permission==TRUE]
startExperiment() I
Login on qchedule
date &jtime - -- ﬂ)
——————————————— - - - [else]
[efs& R
Invalid Login Sequence Diagram--ExecuteProfiling
1
I
I
I
T I
transmit result | I
LT S BRREEEEEEEEEEE
| I o
[ I I
sd ExecuteProfiling )
:AppMenu

:GetResult

getResult()

FIGURE 16. Sequence diagram of start experiment and execute profiling.

iiita.ac.in/imprint/. A proof-of-concept implementation of the
prototype is presented by making use of the SLePaas$ facility
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each of the tools.

and validating the working of the pathfinder application on
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APPENDIX A: SEQUENCE DIAGRAM
See Figures 11-16.
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