IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 July 2022, accepted 19 August 2022, date of publication 25 August 2022, date of current version 7 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3201750

== RESEARCH ARTICLE

Design of Memory Shifting System Based on
Dual-Space Storage Architecture

ZHEHE WANG 2, SHUANG LI“3, JIABAO JIANG?, CHUNTENG WANG?,
XIANCHAO WANG 5, AND TAIYU ZHU®

!School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

2College of Computer Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China

3College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
4College of Information Engineering, Chaohu University, Hefei, Anhui 238000, China

3School of Computer and Information Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
6Shanghai Jiling Information Technology Company, Shanghai 201108, China

Corresponding authors: Shuang Li (lishuang @shnu.edu.com) and Jiabao Jiang (jjb15820109@163.com)

This work was supported in part by the National Science Foundation of China under Grant 61672006, in part by the Hainan Provincial
Natural Science Foundation of China under Grant 121RC1071 and Grant 622MS084, in part by the Education Department of Hainan
Province of China under Grant Hnjg2017-46 and Hnjg2022-90, in part by the Natural Science Foundation of Anhui Provincial Education

Department of China under Grant KJ2020A0681, in part by the Shanghai Natural Science Foundation of China under Grant 15ZR1415400,
and in part by the University-Level General Research Project of Shanghai Normal University of China under Grant SK202121.

ABSTRACT The computer system of the traditional storage architecture has many bottlenecks in massive
data transmission, analysis, processing, etc., especially the frequent data migration or copying problem
between memory and external storage, which is the most prominent and restricts the full play of CPU
performance. To address this, Professor Y. Jin proposed a new solution called dual-space storage architecture
based on non-volatile random-access memory (NVRAM) and a data security technique called non-closable
window. For the new storage architecture, a corresponding underlying software management model is
proposed in this paper. The design scheme of the memory shifting system in this model is introduced in
detail, and the feasibility of the scheme is verified through software simulation experiments.

INDEX TERMS Memory shifting system, NVRAM, dual-space storage architecture, non-closeable window.

I. INTRODUCTION

Since the beginning of the 21st century, computer technology
has flourished and played a significant role in applications
such as massive data storage and processing, memory com-
puting, and data-intensive computing, thereby providing new
opportunities for development in each field. However, defects
that require frequent data migration between memory and
secondary storage are more prominent in traditional computer
storage architectures. In response to these defects, academic
and industrial research has achieved remarkable results in
this area, which can be roughly divided into three categories
as shown in Figure 1. The first category uses Nor flash(or
Nand flash) as a substitute or auxiliary tool for mechan-
ical hard disks [1], [2]. This category is mainly used for

The associate editor coordinating the review of this manuscript and

approving it for publication was Chong Leong Gan

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

applications with relatively low performance requirements of
computing systems, such as solid state drives (SSDs) that
replace mechanical hard disk drives for PC and netbooks,
and Nor flash(or Nand flash) are used as main memory for
embedded systems; the second category uses storage class
memory (SCM) [3], [4] as main memory and the buffer
between main memory and secondary storage, and the bound-
aries of memory will no longer be obvious. This category
is primarily for enterprise-class or high-performance com-
puting applications and is part of the multicore processor
shared memory architecture. For example, IBM, Facebook,
Intel, Google, and other research institutes or companies have
been researching or adopting storage class memory architec-
ture storage systems [5], [6], [7], which use this structure
to build hybrid storage arrays to increase DRAM access
speed; Last category uses NVRAM as only storage device [8],
[9]. NVRAM technology [10], [11], [12], which combines

91897

https://orcid.org/0000-0002-1264-4327
https://orcid.org/0000-0001-9618-5414
https://orcid.org/0000-0003-3581-607X
https://orcid.org/0000-0002-2951-1192

IEEE Access

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

Traditional storage
hierarchies

Emerging storage
hierarchies 1

Emerging storage
hierarchies 2

Emerging storage ’

NVRAM
hierarchies 3 M ‘

CAB(-1)~0
CAB (s~

=

gyl

Dual space

storage

DB

9~ (-9gyy
s~ (-smgyy

e LA S |

FIGURE 2. Schematic diagram of dual space storage architecture.

low-latency, low-power consumption, non-volatility, high-
density, and byte-addressable, has become more mature, and
manufacturing costs declining year by year. For example,
phase-change memory (PCM), magnetoresistance random-
access memory (MRAM), resistive random-access memory
(RRAM), and spin-transfer torque random-access memory
(STT-RAM), etc., they have both byte-addressable character-
istics of memory (such as DRAM) and non-volatile charac-
teristics of external storage (such as HDD). However, most
of these storage systems are still in the exploration phase
or in small-scale applications owing to the limitation of the
processor address line number or manufacturing process of
the processor. Currently, the address space that the processor
can directly access remains at 4GB (32-bit address lines,
personal computer) or 4PB (52-bit address lines, advanced
server) [13], and the data to be calculated or processed by the
processor still needs to copy data frequently between memory
and external storage. In 2013,Jin [14], [15] proposed memory
space shifting theory and its implementation technologies.
In the same year, a small-capacity dual-space storage with
1GB for the experimental platform was successfully devel-
oped, which expanded the CPU addressable space from 2MB
to 1GB and zero-copy access data.

Il. DUAL SPACE STORAGE ARCHITECTURE AND ITS
WORKING PRINCIPLE

A schematic diagram of dual-space storage architecture is
shown in Figure 2, which only has dual-space storage,
but includes word space and block space, corresponding to
memory and secondary storage in the traditional storage
hierarchies,respectively. Because they use the same storage
medium, the space state is determined by the CPU accord-
ing to the control signal. Therefore, the components of the
dual-space architecture include hardware and software. The

91898

hardware part mainly includes a push and shift latch set,
an output decoder, an input decoder, and dual-space storage;
the software part mainly includes window wall management,
window frame management, shifting vector table manage-
ment, and shutdown status table management, etc.

The core of building a dual-space storage architecture is
design of shifting latch set. This design schematic is shown by
the dotted blue box in Figure 2. This technology called mem-
ory space shifting technologies automatically map A
times (m > n — s) larger than itself. Its working principle is
summarized as follows.

First, the memory address line output from the processor
are divided into two parts: low and high address lines. The
low address lines AB;_1)_¢ are directly connected to the low
address line CAB;_1)_q of dual space storage; And the high
address lines AB(,—g)—s are connected to decoder Y,, through
the input signal terminal /(,—s) of Y,, and then the output
signal terminal P; after the Y, decoding is strobed to the
output control signal terminal OF of the corresponding latch
Latch;, and finally the value (D;,Dy,—1 - - - Do) of Latch; is
output to the high address lines CAB;;45—1)—s of the dual
space storage via the data line DB via the output signal
terminal Q of the latch.

Secondly, the low address lines CAB(;,—s_1)—¢ of the dual
space storage is connected to Y; through the input signal ter-
minal /(,_s) of decoder Y;, and then the output control signal
terminal P; via Y; decoding is gated to the corresponding
lock. The write control signal terminal IE of latch Latch;, and
then the value (D,,D,,—1 - - - Dg) of the corresponding latch
Latch; is modified to the value on the data line DB, thereby
establishing a new mapping relationship to achieve memory
space in entire word space. In other words, users can access
entire word space by modifying corresponding latch value as
needed.

In general, a part of dual-space storage, called non-
closeable window, is used to store programs or important
data, and these window frames cannot be moved. The value
of the corresponding latch will be precured (in this case, the
line marked with red “X’’ in Figure 2 is turned off) or set
by the system designer using software. For example, if the
value of each bit of the latch Latchg in Figure 2 is set to
1 and cannot be arbitrarily modified, then NO.2"~! window
wall is regarded as a non-closeable window of the current
storage system. The program or data frequently used will
be stored in non-closeable window, and mainly includes an
initialization program involving the security of the computer
system, a transition vector table, an interrupt vector table,
a shutdown state table, a window wall management table,
a window frame management table, etc., and these parts space
play a resident memory role.

Ill. DESIGN OF MEMORY SHIFTING SYSTEM

Based on the dual-space storage architecture, we propose a
dual-space storage management system model that consists
of two core subsystems (as shown in Figure 3), including
a memory shifting system (blue dashed box) and dual-space

VOLUME 10, 2022

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

IEEE Access

file system (green dashed box), which function similarly to
the memory management module and file system in modern
operating systems, respectively. In this paper, we discuss only
the design scheme of the memory shifting system, and the
design scheme of the dual-space file system is described in

|

Dual-space file

system

Window entity Block allocation Block recycling Window frame Window frame Window frame
management table strategy strategy management table allocation strategy recycling strategy
I I

Block Window entity File management
management table management unit table management unit

|

Memory shifting

|
|
|
|
|
|
|
Window frame :
|
|
|
|
|
|

FIGURE 3. Dual space storage management model.

detail in a new paper.

A. STRUCTURE DESIGN OF THE CORE DATA TABLE

The core data tables of the memory shifting system include
window entity management table, window frame manage-
ment table, window frame status bitmap, shutdown status
table, and shifting vector table, etc. Their data structures are

as follows.

(1) window entity management table

/* Used to record the space usage of the dual-space
storage. W_ENTITY _BLOCKS_COUNT is the num-
ber of blocks contained in a window entity and
DSFS_NAME_LEN is the maximum length of the file

name */

struct window_entity_table {

/Iwindow entity number

unsigned long w_entity_no;

// current position of the window entity

unsigned long w_position;

/I whether the user is visible or not

unsigned short user_visiable;

/I whether window entity is closeable or not
unsigned short closeable;

//data blocks

unsigned long
w_blocks[W_ENTITY_BLOCKS_COUNT];
char file_name[DSFS_NAME_LEN]; //file name
/* file type and operation privileges such as drwxrwxr-x*/
unsigned short i_mode;

/* Leverages out-of-page exceptions in traditional storage
architectures to trigger shifting interruptions*/
struct GDT_PAGE{

/I pte_P = 0, trigger fault page exception
unsigned short pte_P;

/I pte_RW =, allow reading and writing
unsigned short pte_RW;

VOLUME 10, 2022

...... // Omitted

...... // Omitted

(2) window frame management table.
/* Records the status of the window frame assignment.
This table is only required to initialize the settings when
the system is booted on the first time but is not loaded
repeatedly thereafter. */

struct window_frame_table {

// window frame number

unsigned long w_ frame _no;

unsigned long w_frame_movable; /*

whether window frame can be moved or not*/

unsigned long Inu_count;// least recently used

unsigned short distribution_mark; /*

assign mark to match the window frame status bitmap™/

unsigned short shared_num;/*

If the shared number is not 0, it means this window frame

cannot be reclaimed temporarily. The shared number is

added to 1 when there is an occupied process, subtracted

from 1 when it is released, and is 0 when there is

no occupation™/

/I window entity number

unsigned long w_entity_no;

...... // Omitted

(3) window frame status bitmap
/* Designed to quickly query the usage status of win-
dow frames, its data comes from the window frame
management table.*/
struct frame_state_bmp {
unsigned long w_ frame _no;
unsigned short distribution_mark;/*assignment identifier,
0 means the window frame is not assigned, 1 means the
window frame is assigned*/
b
(4) shutdown status table.
/*Record the status of the computer at the time of shut-
down. These status values include the open program
status values and the values of the general registers, flag

91899

IEEE Access

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

MaxAddress ; 7
Bootstrapping program >
Q
close_state table z
push_shift table* %
o
frame state bmp g
window_frame_table a
window_entity table %
Operating System | “
A= Data blocks A=
0x00000000

FIGURE 4. Layout of the core tables on the dual space strorage.

registers, pointer registers, etc. (stored as a task chain
table).*/

struct close_state_table {

unsigned long c_ task_id;// task ID

struct TSS C_task;/* Task status table. Save the
register information of all opened tasks */
unsigned short c_ task_state;/* Task status.

The current active task is 1 (only one), and the silent
task is 2. */

struct close_state_table * next;

}

/* Task status table. Save the register information
corresponding to the current task*/

struct TSS {

unsigned long link; // Save the previous

TSS segment selector

unsigned long esp0;

unsigned long eflags;

unsigned long 1dt;

...... // Omitted

(5) shifting vector table
/*Record the value of the shifting latch. This table is
implemented directly by the hardware circuit and is
listed here for the purpose of illustrating the simulation
experiments in this paper.*/
struct push_shift_table {
/*vector number,corresponding window frame number*/
unsigned long p_shift_no;
unsigned long p_shift_value;/* vector value,corresponding
window entity number */
// wrote port address
unsigned long write_port_addr;
b
The layout of the core data table for dual-space storage is
shown by the dashed red box in Figure 4. They are gener-
ally loaded into non-closable window entities (see the data
structure of the window entity table), that can be controlled
by hardware or user programs.

91900

B. WORKFLOW DIAGRAM OF MEMORY SHIFTING SYSTEM
According to the working principle of dual space storage, the
memory shifting system workflow can be outlined as three
steps.

Step 1: The user or program sends a request to the OS to
access a file, and then sends the file name to the file system.
The file system queries from the window entity management
table based on file name. If the corresponding file is not found
in the window entity management table, invalid information
is sent back to the OS and the OS notifies the user. If the
corresponding file is found, then the starting address (dual-
space storage address) of the target file and its corresponding
window frame and window entity numbers are obtained.

Step 2: According to the window frame number and win-
dow entity number obtained in Step 1, the memory shifting
system checks whether there is a correspondence between
them in the window frame management table. If there is a
correspondence between the two, the file is accessed directly
according to the target address and the processing result is
returned to the OS, which then notifies the user. Go to Step
1. If no correspondence exists between the two, then the
interrupt controller sends a shifting interrupt request to the
CPU. Then go to Step 3.

Step 3: After the CPU receives the shifting interrupt
request, it continues to execute the running program and
starts the field protection mechanism immediately after the
running program. It then sends the interrupt response signal
to the interrupt controller by saving the current values of all
registers involved. Immediately afterward, the CPU jumps
to execute the shifting interrupt handler, which checks the
window frame usage using the window frame status bitmap.
If there are free frames, one of the free frames is randomly
(or sequentially) assigned to the current request, and the
value of the corresponding latch is modified according to the
obtained window entity number to establish the correspon-
dence between the currently assigned window frame number
and window entity number of the target file, and the window
entity management table, window frame management table,
and window frame status bitmap are updated simultaneously.
Finally, the target file is directly accessed from dual-space
storage, the processing result is returned to the OS, and the OS
notifies the user. If there is no free window frame, a certain
window frame is reclaimed and reassigned to the current
request according to the window frame reclaim policy (e.g.
LRU), the window frame is shifted, and the window entity
management table, window frame management table, win-
dow frame status bitmap, etc., are simultaneously updated.
Finally, the target file is directly accessed from dual-space
storage, the processing result is returned to the OS, and the OS
notifies the user. At this point, the processing of the shifting
interrupt is finished, and the CPU needs to start the recovery
mechanism immediately, and the values of the registers orig-
inally stored in the wharves will be stacked out and passed
into the corresponding registers in reverse order, and then the
CPU will intermittently execute the program instructions that
were forced to abort due to the shifting interrupt.

VOLUME 10, 2022

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

IEEE Access

Request accessing o a file program

oS
(File system)

Search by file name from
w indow_entiy_tb kb, or
wihdow_entiy_tab P isupdated

Does the target file exist?
YES

1.Get the starting address of the target file storage (dual space memory address)
2.address resolution and get the corresponding window entity number(#_entdy_n0) and window frame

number(w_fian &_n0)
w_fian e no=NULL?

YES
Generate shifting
interruptions

Check the usage status of the window
frame from fiam e stat_bmp , or
fran &_state_bm p isupdated

Have a free window frame?
YES

Randomly assign a free window frame|
to the current request

Bessou Jowd 5900y

Select corresponding latch
by
w_fiam e_no

I

Address space directly accessible
by the CPU is mapped to the
location in the dual

space storage

Reclaim a window frame and assign

it to the current request according to

the window frame recycling policy
(such as LRU)

Window frame is mapped to the corresponding
window entiy by modifying the corresponding
latch value, and three core tables are updated
simultancously

Dual space storage

s

Return processing results

End

FIGURE 5. Workflow diagram of memory shifting system.

Workflow diagram of memory shifting system is shown in
Figure 5.

C. ALLOCATION AND RECYCLING STRATEGY OF WINDOW
FRAME

1) WINDOW FRAME ASSIGNMENT STRATEGY

This policy adopts the allocation principle of sequence or
priority. If there are multiple processes (tasks) that simulta-
neously make access requests, the request priority queue is
first established and then assigned according to the priority of
the processes (tasks) from highest to lowest. Otherwise, the
window frame is assigned according to the order of requests,
and the implementation process is as follows.

Step 1: Randomly (or sequentially) assign a window frame
to the current request if there is a free window frame based
on the window frame status bitmap. Otherwise, go to Step 2.

Step 2: One of the allocated window frames is reclaimed
according to the window frame reclamation policy, and this
window frame is assigned to the current request. For addi-
tional details, please refer to Section 3.2.

2) WINDOW FRAME RECYCLING STRATEGY

When there is no free window frame to be allocated, the least
recently used policy (LRU) and the program’s space local
priority principle are used to reclaim the allocated frames

VOLUME 10, 2022

(except for those corresponding to non-closable windows).
The window frame with Inu_count = 0 is the most recently
used window frame, and its corresponding window entity
number is W_entity_no. The reclamation process is as fol-
lows.

Step 1: Calculate the absolute value of the subtraction
of the window entity number and W _entity_no in the win-
dow frame management table, sort these absolute values in
descending order, and prioritize the window frame corre-
sponding to the window entity with the maximum absolute
value. If the absolute values are the same, go to Step 2.

Step 2: The value [nu_count in the window frame manage-
ment table are sorted in descending order, and the window
frame with the maximum value Inu_count is recycled in
priority. If the maximum value /nu_count is the same, then
the first one is taken.

IV. SIMULATION EXPERIMENT OF RESOURCE
MANAGEMENT STRATEGY BASED ON DUAL SPACE
STORAGE

Currently, many NVRAM are still in the exploratory stage
and no products are available. Therefore, this experiment
simulated the workflow of a memory shifting system on a
PC in order to verify the feasibility of the proposed design
scheme.

A. EXPERIMENTAL ENVIRONMENT AND PROCEDURE

1) EXPERIMENTAL ENVIRONMENT

In this experiment,the software and hardware used
include:Intel(R) core(TM) i3-5005U CPU @2.00GHz, 4GB
DDR3, Windows 7, VMware® Workstation 14 Pro, CentOS
7.0, 16GB USB flash drive, and so on.

2) EXPERIMENTAL DESIGN

According to the construction principle of dual-space stor-
age in Section 2, in this experiment, we assume that the
addressable space of the CPU is 2 MB (= 2/21), where three
high address lines of the CPU are used as selected shifting
latches (window frames), each latch is 12 bits and is used as
the high address line of dual-space storage, represented by
the shifting vector table; the remaining 18 low address lines
are directly connected to the low address line of dual-space
storage. Its addressing space is extended to 1 GB (= 2730)
by the memory shifting system, and its extension schematic
is shown in Figure 6.

3) EXPERIMENTAL PROCEDURE

a) Write the boot program Boot.bin, the loader program
Loader.bin, the simple kernel program Dsmos_kernel.bin and
the initialization program Dsmos_init.bin, where the initial-
ization program includes the installation and initialization of
the window wall management table, the shifting vector table,
the window frame management table, the window frame
status bitmap, the shutdown status table, etc.;

91901

IEEE Access

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

Memory space (2MB)

High 3 address lines | Low 18 address lines

Memory address lines from CPU

4095
7 12 bits
0 12 bits 0

Shifting latch set Dual space strorage (1GB)

FIGURE 6. Diagram of the expansion of 2MB to 1GB addressable space.

Core table
close_state_table

push_shift_table

OX3FFFFFFF DT

test
O0X3FFFF000 frame_state_bmp

= L%g window_frame_table

~- window_entity_table
Dsmos_kemel ~~ T —
0x30000000 |l _ _ _Loader ~< GDT

-~ ~ LDT

Dsmos_init N ~
0x00020000 Loader N N

Loader
0x00010000

Boot

0x00007C00

0 512B 16GB
0x00000000

Dual space storage(1GB) USB flash drive

FIGURE 7. Layout of simulation program before and after loading into
dual space storage.

Please select experiment NO.:
0: Exp0-test example.

1: Expl-test moveable instruction and watch latch's value changing.

2: Exp2-test to access any word-memory units and write any data into these units randomly.

3: Exp3-test window-frame moving from one window-entity to other window-entity.

4: Expi-test to verify whether NO.0 window-frame can't be moved to other window-entity from non-closable
window.

5: Exp5-test to init latch whether get from high 32 bytes in non-closable window automatically.

6: EXP6-test to get flashid.

7: EXP7-test to initialize dsms core data tables.

8: EXP8-test to generate interrupt(open led).

9: EXPO-test to access any dual space strorage address(ds_addr) for pshsystem(after excute NO.7 to init latch).

10: EXP10-test to operate data from any PC address(pc_addr).

11: EXP11-test to operate data from any dual space strorage address(ds_addr).

>>

FIGURE 8. Memory shifting system main interface.

b) Writing the shifting interrupt-handling simulation pro-
gram;

¢) Writing of window frame allocation and recycling sim-
ulation programs;

d) Creating a system boot integration image and burning it
in a USB flash drive;

e) Load the integrated image into the specified location
of the DDR3 memory using the USB flash drive bootloader,
as shown in Figure 7;

f) Randomly input ten sets of addresses of dual-space stor-
age and verify that the above simulation program execution
process is executed according to the preset flow.

B. SIMULATION RESULTS AND ANALYSIS

In this experiment, there are 8 window frames and 4096
window entities. It is assumed that window frame #0, cor-
responding to window entity #0 and window frame #1
corresponding to window entity #1 are solidified. These
are called non-closable window entities. In other words,
only six window frames can be moved between window
entity #2 and #4095. The main interface appears after the

91902

Please select experiment NO.:
0: BxpO-test example.

1: Expl-test moveable instruction and watch latch's value changing.

2: Exp2-test to access any word-memory units and write any data into these units randomly.

3: Bxp3-test window-frame moving from one window-entity to other window-entity.

4: Expd-test to verify whether NO.0 window-frame can't be moved to other window-entity from non-closable
window.

5: BxpS-test to init latch whether get from high 32 bytes in non-closable window automatically.

6: EXP6-test to get flashid.

7: BXP7-test to initialize dsms core data tables.

8: EXP8-test to generate interrupt(open led).

9: BXP9-test to access any dual space strorage address(ds_addr) for pshsystem(after excute NO.7 to init latch).

10: EXP10-test to operate data from any PC address(pc_addr).

11: EXP11-test to operate data from any dual space strorage address(ds_addr).

>>7¢

All core tables have been initialized successfully.

>>

FIGURE 9. Initializing all core tables of dual space strorage.

simulation program finishes initializing the relevant data and
loading the program as shown in Figure 8. There are eleven
options, and we mainly choose #7 and #9 to perform the
test experiments. Option #7 performs the initialisation of
the core tables for dual space strorage as shown in Fig-
ure 9. By inputting different target addresses, we focus on
observing the changes of the four core data tables. For ease
of description, the addresses in this simulation are writ-
ten in 32-bit hexadecimal form. At the same time, con-
sidering the length of the article, we only take the target
address ds_addr = 0X00008000 as an example to analyze
the entire access process. And then obtained its high 12-bit
address 00000000000000 (w_entity_no = 0) and low 18-bit
address 100000000000000000 in Figure 6. Therefore, the
high 3-bit address 000 (w_frame_no = 0) and the low 18-bit
address from ds_addr are stitched together to form the pro-
cessor’s access address pc_addr = 0X00008000. According
to the workflow diagram of the memory-shifting system (in
Figure 5), the first step is to examine the window entity man-
agement table to determine whether there is a corresponding
window frame exists for window entity #0. Because we have
already assumed that window entity #0 is a non-closable
window, and it corresponds to window frame #0. In other
words, a mapping relationship exists between the two. Target
address ds_addr can be accessed directly via pc_addr. Once
accessed, the window entity management table (Figure 8),
window frame management table (Figure 9), and window
frame status bitmap (Figure 10) must be updated simultane-
ously. The shifting vector table (Figure 11) is mainly used
to modify the value of the shifting latch for simulation. It is
automatically implemented using a hardware circuit; there-
fore, it can be ignored. The remaining nine sets of test data are
presented in Table 1. In Table 1, the bold blue font indicates
that there is already a correspondence between the window
frame and window entity; therefore, the target address can be
accessed directly. The bold red font indicates that the window
frame and window entity do not have correspondence, such as
ds_addr = 0X00FF0020; the corresponding window frame
must be recycled, and the recycled window frame is then
assigned to the current request.

From the test results in Table 1, the simulation experiment
meets the expected goal, which proves the feasibility of the
memory shifting system workflow and the correctness of the
window frame allocation and recycling strategy.

VOLUME 10, 2022

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

IEEE Access

TABLE 1. Ten sets of test data and results.

NO ds_addr w_entity no w_frame no pc_addr Inu_count Note result

1 0x00008000 0 0 0X00008000 0 Non-closable window y

2 0x00040000 1 1 0X00040000 0 Non-closable window y

3 0x00080000 2 2 0X00080000 1 y

4 0x000C0020 3 3 0X000C0020 1 y

5 0x00180000 6 4 0X00100000 1 y

6 0x001C0020 7 5 0X00140020 1 y

7 0x003C0020 F 6 0X00180020 1 y

8 0x002C0020 B 7 0X001C0020 1 y
9 | 00030020 | F L 6 | OX001BOO20 | 2 | sopnewwonsp |y |
10D OowoFFOR0 | 3F L 7| OXO0IF0020 | 2 Redemdrdue oy |

y

Please select experiment NO.:

=9+

Please input ds_addr in 0x00000000~0x1FFFFFFF:

>>00008000+

The fllowing data from current window enfity management table (only top 10)

w_entity_no w_frame _no

0x00000000 0x00000000
0x00000001 0x00000001
0x00000002 0x00000008
0x00000003 0x00000008
0x00000004 0x00000008
0x00000005 0x00000008
0x00000006 0x00000008
0x00000007 0x00000008
0x00000008 0x00000008
0x00000000 0x00000008

FIGURE 10. Window entity management table after accessing to the
target address 0X00008000.

Please select experiment IVO.:

=9+

Please input ds_addr in 0x00000000~0x1FFFFFFF:
>>00008000+

The fllowing data from current window frame management table

w_ frame _no w_entity_no distribution_mark Inu_count
0x00000000 0x00000000 1 0
0x00000001 0x00000001 1 0
0x00000002 0x00000400 0 0
0x00000003 0x00000400 0 0
0x00000004 0x00000400 0 0
0x00000005 0x00000400 0 0
0x00000006 0x00000400 0 0
0x00000007 0x00000400 0 0

FIGURE 11. Window frame management table after accessing to the
target address 0X00008000.

V. COMPARISON WITH TRADITIONAL STORAGE
ARCHITECTURE AND STORAGE MANAGEMENT MODEL
Compared with traditional storage architecture, the dual-
space storage architecture has many advantages.

A. MORE FLEXIBLE SCALABILITY AND COMPATIBILITY
Users do not need to replace major devices such as moth-
erboards or CPUs, but simply choose the right size of
dual-space storage modules to be installed in memory slots
according to their needs.

VOLUME 10, 2022

=9+
Please input ds_addr in 0x00000000~0x1FFFFFFF:
=>00008000+

The fllowing data from current window frame status bitmap

w_frame o distribution_mark

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007

coococoor~

FIGURE 12. Window frame status bitmap after accessing to the target
address 0X00008000.

Please select experiment NO.:

>>9¢!

Please input ds_addr in 0x00000000~0x1FFFFFFF:
>>00008000+

The fllowing data from current shifting vector table

p_shift_no p_shifi_value write_port_addr
0x00000000 0x00000000 0x081FFFEO
0x00000001 0x00000001 0x081FFFE4
0x00000002 0x00000000 0x081FFFE8
0x00000003 0x00000000 0x081FFFEC
0x00000004 0x00000000 0x081FFFFO
0x00000005 0x00000000 0x081FFFF4
0x00000006 0x00000000 0x081FFFF8
0x00000007 0x00000000 0x081FFFFC
>>

FIGURE 13. Shifting vector table after accessing to the target address
0X00008000.

B. FASTER ACCESS SPEED

Logically, dual-space storage can be divided into word and
block spaces. They belong to the same media and physical
storage entity with the same access speed. Next, the speed
difference between the two storage architectures is discussed
in terms of the time required for the CPU to read the same data
D with u MB. Assuming that Ti,c, denotes the time required
to modify the shifting latch value (typically in nanoseconds).
According to the DDR4 SDRAM data sheet from micron
website, read/write speeds of the current mainstream DRAM

91903

IEEE Access

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture

can reach to 40GB/s, wroten as V_Rpram = V_WDraMm =
40GB/s. By the literature [10], [12], we can deduce that read
speed of PCM about 20GB/s, wroten as V_Rpcym = 20GB/s.
In the HDD/SSD data sheet from the Western Digital website,
typical read/write speeds of HDD can be top out at 200 MB/s,
SSD top out at 7100MB/s, and are denoted as V_Rypp =
V_Wupp = 200MB/s, V_Rssp = 7100MB/s, respectively.
In a conventional storage structure with DRAM/ SSD (or
HDD), the time required Tgq is:
if D is in the DRAM at moment then

Tod = u/V_Rpram = u/(40 x 1024) ~ 2.4u x 1077 s,

else

Tolda = u/V_Rssp + u/V_Wpram + u/V_Rpram
1/7100 + u/(40 x 1024) + u/(40 x 1024)

16.4u x 1077 s,

X

at this time, D must first be copied from the HDD into the
DRAM,;

In the new storage structure, the time required Tyey iS:

if the window entity where D is located has a mapping
relationship with the window frame then

Thew = u/V_Rpem = u/(20 x 1024) ~ 4.8u x 107> s,
else

Thew = u/V_RpcMm + Thatch
= u/(20 x 1024) + Tiach ~ 4.8u x 1077 s,

Clearly, Tiach is negligible when D increases and They <K
Tolg- If a conventional storage structure with DRAM/HDD,
To1a will become larger. Although the write operation of PCM
is unsatisfactory, it can be solved in the future by improving
the fabrication process.

C. SUITABLE FOR MULTI-CORE OR MULTI-PROCESSOR
SHARED STORAGE

It is only necessary to modify the value of the corresponding
shifting latches to the same value to share the same storage
space. Therefore, it is more useful in computation-intensive
applications.

D. HIGHER SECURITY
The non-closable window allows hardware or software con-
trol. For example, the shift vector table can be solidified by
hardware when it leaves the factory. At the same time, core
data tables can be installed in the non-closable window, and
general users are not allowed to access these space. Therefore,
this technology can enhance system security.

Additionally, compared with traditional storage manage-
ment model, the dual-space storage management model also
has some advantages.

91904

1) STORAGE SPACE MANAGEMENT MADE EASY

Storage space is no longer separated into memory and exter-
nal storage, and only logically divided into word space and
block space in the same storage entity. All spaces are allowed
random access by byte in units. Other technologies, such
as virtual memory and address relocation technology will
are discarded and replaced by memory space shifting tech-
nology. This technology is automatically implemented using
hardware. Therefore, from a space management perspective,
we maintain only a few core data tables and leave the remain-
der of the work to hardware.

2) ZERO COPY

To be compatible with conventional storage devices, dual-
space storage is logically divided into word and block space,
which correspond to the internal and external memory of con-
ventional storage devices, respectively. However, in practice,
both parts of the space can be accessed randomly by bytes.
When there is no mapping relationship between window
entity and window frame, it is sufficient to modify the value of
the corresponding shifting latch. Therefore, there is no need
to migrate data between the word space and block space.

3) WORK-ON-START

When the computer system is ready to shut, it automatically
records its current running status and writes it into the shut-
down status table; When computer system is ready to start,
it directly starts from its last status. Therefore, we call it
work-on-start(WOS). Therefore, these non-closable windows
become a new fast startup mode and security mode, which
makes users feel that program initialization or application
loading process do not occur.

VI. CONCLUSION

In this paper, we first briefly introduce a dual-spacer storage
architecture and its working principle. To address the man-
agement issues of this new storage architecture, the design
of a memory-shifting system is proposed, and its design
and implementation processes are described in detail. The
correctness and feasibility of the system design are verified
through software simulation experiments. Finally, compared
with traditional storage, the advantages and potential appli-
cations of this new architecture and its space management
model are discussed from the perspective of hardware and
space management.

However, the implementation of the proposed memory-
shifting system relies on immature NVRAM technology.
Therefore, this is verified only through software simulations,
and a preliminary prototype of the memory-shifting system is
established. This study provides a theoretical basis for future
research into dual-space file systems.

ACKNOWLEDGMENT
The authors would like to thank to Prof. Jin Yi, Prof. Shen
Yunfu, Dr. Ouyang Shan, all Ph. D candidates, and master’s

VOLUME 10, 2022

Z. Wang et al.: Design of Memory Shifting System Based on Dual-Space Storage Architecture I E E EACC@SS

graduate students of their research center for their kind help
and valuable discussions in preparing the article.

DISCLOSURES
The authors declare that there are no conflicts of interest
regarding the publication of this article.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM memory man-
agement made easy,” in Proc. 8th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), Mar. 2011, pp. 1-14.

P. Yang, “HB-storage: Optimizing SSDs with a HDD write buffer,” in
Proc. Int. Conf. Web-Age Inf. Manage. Berlin, Germany: Springer, 2013,
doi: 10.1007/978-3-642-39527-7_5.

S. W. Fong, C. M. Neumann, and H.-S. P. Wong, “‘Phase-change memory-
towards a storage-class memory,” IEEE Trans. Electron Devices, vol. 64,
no. 11, pp. 4374-4385, Nov. 2017, doi: 10.1109/TED.2017.2746342.

R. Freitas, “Storage class memory: Technology, systems and applica-
tions,” in Proc. IEEE Hot Chips Symp. (HCS), Aug. 2010, pp. 1-37, doi:
10.1109/HOTCHIPS.2010.7480060.

H. Kim, “Evaluating phase change memory for enterprise storage systems:
A study of caching and tiering approaches,” ACM Trans. Storage, vol. 10,
pp. 1-22, Oct. 2014, doi: 10.1145/2668128.

A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong,
K. Hazelwood, C. Petersen, A. Cidon, and S. Katti, ‘“‘Reducing DRAM
footprint with NVM in Facebook,” in Proc. 13th EuroSys Conf., Apr. 2018,
pp. 1-13, doi: 10.1145/3190508.3190524.

NVML Library. Accessed: Feb. 2, 2022. [Online]. Available: http:/
pmem.io/nvml

C. Xiao, L. Zhang, and M. Zhou, ‘“Tnvmalloc: A thread-level-
based wear-aware allocator for nonvolatile main memory,” J. Cir-
cuits, Syst. Comput., vol. 31, no. 4, Mar. 2022, Art. no. 2250066, doi:
10.1142/S0218126622500669.

Q. Liu and P. Varman, ““Ouroboros wear leveling for NVRAM using hier-
archical block migration,” ACM Trans. Storage, vol. 13, no. 4, pp. 1-31,
Dec. 2017, doi: 10.1145/3139530.

Z.Zhang,Z. Wang, T. Shi, C. Bi, F. Rao, Y. Cai, Q. Liu, H. Wu, and P. Zhou,
“Memory materials and devices: From concept to application,” InfoMat,
vol. 2, no. 2, pp. 261-290, Mar. 2020, doi: 10.1002/inf2.12077.

A. Makarov, V. Sverdlov, and S. Selberherr, “Emerging memory tech-
nologies: Trends, challenges, and modeling methods,” Microelectron. Rel.,
vol. 52, no. 4, pp. 628-634, 2012, doi: 10.1016/j.microrel.2011.10.020.
W. Banerjee, “Challenges and applications of emerging nonvolatile
memory devices,” Electronics, vol. 9, no. 6, p. 1029, Jun. 2020, doi:
10.3390/electronics9061029.

Intel. (2022). Intel 64 and IA-32 Architectures Software Developer’s
Manual ~ Volume 3A: System Programming Guide, Part 1.
Accessed: Jul. 16, 2022. [Online]. Available: https://www.intel.com

Y. Jin, S. Ouyang, S. Yunfu, P. Junjie, and X. Liu, “Dual space storage
management system and data read/write method,” U.S. Patent 10042759,
Jun. 7, 2017.

J. Peng, Y. Shen, S. Ouyang, X. Liu, W. Li, and Y. Jin, “Structure
and theory of dual-space storage for ternary optical computer,” SCIEN-
TIA SINICA Informationis, vol. 46, no. 6, pp. 743-762, Jun. 2016, doi:
10.1360/n112015-00036.

ZHEHE WANG was born in 1980. He is cur-
rently pursuing the Ph.D. degree with the School
of Computer Engineering and Science, Shanghai
University. He is a Lecturer with Hainan Tropi-
cal Ocean University. His main research interests
include storage architecture, file systems, embed-
ded systems, and ternary optical computers.

VOLUME 10, 2022

SHUANG LI was born in 1988. She received the
Ph.D. degree from the School of Computer Engi-
neering and Science, Shanghai University, Shang-
hai, in 2019. She is currently a Lecturer with the
College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, China.
Her research interests include parallel computing,
swarm intelligence systems, and ternary optical
computer.

JIABAO JIANG was born in 1968. He is currently
pursuing the Ph.D. degree with the School of Com-
puter Engineering and Science, Shanghai Univer-
sity. He is an Associate Professor with Chaohu
University. His main research interests include
embedded systems and ternary optical computers.

CHUNTENG WANG was born in 1976. He is
currently an Associate Professor with the School
of Computer Engineering, Hainan Tropical Ocean
University. His main research interests include
storage architecture, file systems, embedded sys-
tems, and ternary optical computers.

XIANCHAO WANG was born in Suzhou, Anhui,
China in 1973. He received the B.S. degree in
mathematics education from Fuyang Normal Uni-
versity, Anhui, China, in 1997, the master’s degree
in computer science from Northeastern University,
Liaoning, China, in 2004, and the Ph.D. degree
in computer science from Shanghai University,
Shanghai, China, in 2011.

From 2010 to 2016, he was an Assistant Pro-
fessor at the School of Mathematics and Statistics,
Fuyang Normal University, where he has been a Professor with the School
of Computer and Information Engineering, since 2017. He has coauthored
a book, about 30 conference publications, journal articles, and holds five
patents. His research interests include queueing modeling and theory, com-
puter software, optical computing, complex network, big data, and embedded
systems. He is a member of ACM and a Senior Member of the China
Computer Federation.

TAIYU ZHU received the bachelor’s degree from
the Shenyang Institute of Chemical Technology in
1995. He is currently a Senior Engineer with the
Technology Centre of Shanghai Jiling Information
Technology Company.

91905

http://dx.doi.org/10.1007/978-3-642-39527-7_5
http://dx.doi.org/10.1109/TED.2017.2746342
http://dx.doi.org/10.1109/HOTCHIPS.2010.7480060
http://dx.doi.org/10.1145/2668128
http://dx.doi.org/10.1145/3190508.3190524
http://dx.doi.org/10.1142/S0218126622500669
http://dx.doi.org/10.1145/3139530
http://dx.doi.org/10.1002/inf2.12077
http://dx.doi.org/10.1016/j.microrel.2011.10.020
http://dx.doi.org/10.3390/electronics9061029
http://dx.doi.org/10.1360/n112015-00036

