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ABSTRACT Pseudorandom sequences with large linear complexity have been widely applied in electronic
countermeasures, mobile communication and cryptography. Linear complexity is considered as a primary
security criterion to measure the unpredictability of pseudorandom sequences. This paper presents the linear
complexity and minimal polynomial of a new family of binary sequences derived from polynomial quotients
modulo an odd prime p in general case. The results indicate that the sequences have high linear complexity,
which means they can resist the linear attack against pseudo-noise or stream ciphers. Moreover, we generalize
the result to the polynomial quotients modulo a power of p in general case. Finally, we design a Gpqs stream
cipher generator based on the generalized binary pseudorandom sequences to implement the sequences in

hardware.

INDEX TERMS Pseudorandom sequences, electronic countermeasures, stream cipher, linear complexity,

polynomial quotients.

I. INTRODUCTION

Pseudorandom sequences always have wide applications in
engineering fields. From a cryptographic point of view, one
good pseudorandom sequence should have high linear com-
plexity, which is not less than half of the period of sequence.
More recently, Fermat quotients and Euler quotients have
been studied to construct a large number of pseudorandom
sequences. Similar construction method is naturally general-
ized to polynomial quotient.

Let p be an odd prime, f(x)e Z[x] a general polyno-
mial with leading coefficient not divisible by p, where
Z[x] denotes polynomial ring with integer coefficients.
The polynomial quotient modulo p in general case is
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defined by

_ S ) = fp(w)
————— m
p

Ou) = odp, 0=Qw) =p—1uz=0, (1)

where f,(u) = f (1) mod p [1].
For all integers u and k, under the condition that f”(u) is
not identically zero, it is easy to check that

O(u + kp) = Q(u) + kf'(u) mod p @

where f'(u) is defined to be the derivative of f(u). Setting
k = pin (2), it is clear to see that Q(u) is periodic with least
period p? [2].

Chen and Winterhof first defined the Polynomial quotient
modulo p in general case [1]. After that, cryptographic prop-
erties of pseudorandom sequences derived from polynomial
quotient began to attract academic attention [3], [4], [5], [6].
Many number theoretic and cryptographic questions have
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been studied for polynomial quotients sequences [2], [7],
[8], [9], [10]. It needs to be pointed out that most studies
focused on special cases of f(x) but rarely considered the
general cases [7], [8], [9], [10], [11], [12], [13]. There are
two families of binary sequences derived from polynomial
quotients in general case to be discussed from the view point
of cryptography [2]. One is the binary threshold sequences
(e,) defined as

0, if0<Qw/p<1/2,
ey = . (3)
1, if1/2<Q0w/p < 1.
The other is the general polynomial quotient sequence (/)
defined by
Q(u)

0, if(——=)=1orQ(u) =0,
p

hy = “

1, otherwise.

where (;) is the Legendre symbol [2]. The Legendre symbol
is defined to be equal to =1 depending on whether a number
is a quadratic residue modulo an odd prime.

Du et al. proved that the two sequences above have high
linear complexity and extended the constructions to arbitrary
d-ary sequences for prime d | (p — 1) with d a primitive root
modulo p? [2]. In modular arithmetic, a number g is called a
primitive root modulo 7 if and only if every number coprime
to n is congruent to a power of g modulo n.

In this paper, we define a new binary sequence (s,,) derived
from polynomial quotients in general case as

{o, if O(u) = 0 mod 2,
Sy = ] (5)
1, if Q(u) =1 mod 2.

Note that (s,,) is also p? periodical over the finite field 5.
In fact, when f (x) = x", (s,) is just the sequence defined by
Zhao et al., which is only a special case of this article [14].
Clearly that, the characteristic set of (s,) is different from
(ey) and (h,,), and they belong to different sequences. We will
investigate the minimal polynomial and linear complexity
of (s,). In addition, we extend the general polynomial quo-
tients Q(u) modulus p to F(u) modulo p”, a prime power.

We recall that the linear complexity LC((a,)) of an
N-periodic sequence (a,) over the binary finite field [y is
the least order L of a linear recurrence relation over finite
field F; [7].

uyr, +cp—1au4p—1+- -+ crau41 + coay, = 0 foru > 0,

(©)

which is satisfied by (a,) and where co # 0, co - - - cp—1 € Fa.
The polynomial

a(x) =cy+c1x + czx2 s cN,ch_1 e Fx]. (7)

is called the generating polynomial of (a,).
The polynomial

m(x) = xb 4 cp_xF 4 e € Falx]. ®)
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is called the minimal polynomial of (a,), which can be
obtained by computing

m(x) = &Y — 1)/ gedx" — 1, a(x)). 9)
and the linear complexity of (a,) is
LC((ay)) = deg(m(x))=N — deg(ged(x" — 1), a(x)). (10)
See, e.g., [15], [16] for details.

Il. THE MINIMAL POLYNOMIAL AND LINEAR
COMPLEXITY

Note that a conjecture of Artin indicates that approxi-
mately 3/8 of all primes have 2 as a primitive root, and that it
is very seldom that a primitive root modulo the prime p is not
also a primitive root modulo p2 [17], [18].

Lemma 1 [19]: Let p be an odd prime. If 2 is a primitive
root modulo p?, then 2 is also a primitive root modulo p’ for
all i > 1. Consequently, the cyclotomic polynomials @, (x)
are irreducible in polynomial ring over a finite field Fa[x],
where ®,(x) = ]_[dln(xd — 1)/‘(5) and u(-) denotes Mobius
function.

Theorem 1: Let (s,) be the p?-periodic binary sequence
defined as in (5). If 2 is a primitive element modulo p?, then
the minimal polynomial of (s,) is

P2 (x), if [D1| =0,
m(x) = Qp(x)P 2 (x), if |D1] # O is even,
(x = D@p(x)®P,2(x), if |D1] is odd.
if p =1 mod 4, and
1+ 0P, (x), if |Dg| =0,
m(x) = § @p(x)P,2(x), if |Dg| is odd,
x— 1)d>p(x)<1>pz(x), if |Dg| # is even.
if p = 3 mod 4.
The corresponding linear complexity of (s,) is
LC((sy)) = {p*> — 1, if |Dy| # Ois even,
P’ if |Dyq] is odd.
if p = 1 mod 4, and
p>—p+1, if Dol =0,
LC((sy) = §p* — 1, if |Dy| is odd,
P? if |[Dg| # 0 is even.

if p = 3 mod4, where |D;| is the cardinality of D;
defined by

Dy

= {u|0§u§p—l,f/(u)EOmOdp,Q(u)EOmOdZ},

D

={ul0<u<p—1,f'(w)=0modp, Qu) = 1 mod 2}.
Proof: Over the finite field IF», we have

P = (x — D)d,(x)d
X (-x ) p(-x) pz(x)a
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where ®,(x) = Y x' € Fyx], @) = Yo x? e

F,[x]. Let m(x) be the minimal polyn0m1al of (sy), then m(x)
is a factor of (x — 1)<D,,(x)d>pz(x) by Lemma 1.

For any fixed u with f'(u) #% 0 mod p, when k ranges
over {0,1,2,---,p— 1}, O(u + kp) takes on each element
of {0,1,2,---,p— 1}, Thus s, 44 = O for (p+1)/2 integers
k and sy = 1 for (p — 1)/2 integers k. We know m(x) i
&P — 1), ie,mx)t(x — 1)®,(x) since the period of (s,,) is
> p. Also, we have Zi;(l) Surkp = (p — 1)/2.

On the other hand, for any u with f/(1) = 0 mod p, we have

”X‘:s _ |omod2, ifue Dy, an
T mod 2, ifu e Dy
The proof can be given by the two cases of the values of p

1) p=1mod 4

If Vu ¢ Dy, ie., |Di| = 0, we have Zi;ésmp =0
mod 2 for any u.Thus m(x) | ®,2(x) since P ,2(x) is a char-
acteristic polynomial of (s,). That is, m(x) = ,2(x) since
,2(x) is irreducible over [F2(x). So the linear complexity of
(su) is LC((su)) = degm(x)) =p* =p.

If3 € Dy, ie.,Di| # 0, we have > ¥ _suip = p = 1
mod 2 for u € D1 At the same time, by (11), we have

Zk Os,H_kp + Zk s(u+1)+kp = p = 1 mod 2 for any u.
Hence m(x) { (1 + x)<1> 2(x). Now for all u we find that

pP—1 pP—1 p—1p-1
DTN SO 5} S
v=0 v=0 v=0 k=0

p—1
= QDD s

veDq v=0 k=0
¢

vé¢D
= |Dilp
Omod 2, if |Dq]| iseven,
1 mod 2, if |Dq| isodd.

for all u, which implies m(x) | CI>p(x)d>p2(x) when |Dq]| is
even, and m(x) | (xf”2 — 1) when |D;|is odd. Then LC((s,)) =
p?> — 1 when |Dy] is even, and LC((s,)) = p* when |Dy] is
odd.

2)p=3mod4

If Vu ¢ Do, ie., Dol = 0, we have 37— 4ty = p = 1
mod 2 for any u, which implies that m(x) 1 @,2(x). At the
same time, by (11), we have Zi;(l) su+kp+2£;(l) S(u-+1)Hhp =
p+ (@ —1)/2 = 0mod 2 for any u. Hence m(x) | (1 +
x)®,2(x), and LC((s,)) = deg(m(x)) = p* —p + 1.

If 3 € Dy, ie.lDol # 0, we have 30— su4hp = O
mod 2 only for u € Dy. Now we find that

p27] p2*] p—1p-1
D Sun =D =D ) vty
v=0 v=0 v=0 k=0

p—1
=D+ D) sewip
veDy v=0 k=0
vé¢Dq
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= (p — |Dol)p
_ 0 mod 2, if |Dg| is odd,
~ |1 mod2, if|Dy| iseven.

for all u, which implies m(x) | ®,(x)®,2(x) when [Do] is

odd, and m(x) = )c”p2 — 1 when |Dy| is even since ®,(x)
and @2 (x) are irreducible in > (x) and neither of them is the
characteristic polynomial of (s;,). Then LC((s,)) = p2 —1
when |Dg| is odd, and LC((s,)) = p2 when |Dg| is even. The
proof is completed.

In the following content, we will give two examples to
confirm our main results.

Example 1: Letp =5, f(x) = 4x> + 3x% + 5x + 6. Then
p = 1 mod 4, and 2 is a primitive root modulo 25. The least
period of the binary sequence (s,,) is 25. |Dg| = 0, |D1| = 11is
odd.

The sequence (s,) in one period is

{1,1,1,1,0,1,1,1,1,1,0,1,0,0, 1,0,1, 0, 0,0, 0,1, 0,0, O} .

The minimal polynomial of the sequence (s,) over [,
isx? — 1.

And so the linear complexity of this sequence is exactly
25 = p2.

Example 2: Letp = 11, f(x) = 2x7 4+ 3x° +4x3 + 7x2 +
4x 4+ 9. Then p = 3 mod 4, and 2 is a primitive root modulo
121. The least period of the binary sequence (s,) is p*> = 121.
|Do| =0, [D1] = 0.

The sequence (s,) in one period is

{0,0,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0,0,0,0,0, 1, 0,
1,1,1,1,1,1,10,1,1,1,0,0,0,0,1,0,0,0,0,1, 1,0, 0,0,
11,111011,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,0, 1,
0,010010,0,1,0,0,1,0,0,0,0,1,0,1,0, 1, 1,0, 0,
0,010,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,1,1,0 }.

The minimal polynomial of the sequence (s,) over [ is
xlll +x110+x100_,’_x99+x89 +x88 +x78 +x77+x67 +x66+
x50 x5S 45 A (344 033003 020 12 Dy g
And so the linear complexity of this sequence is exactly equal
tol1l =p> —p+1.

With the help of programming software, more examples
have been tested. In fact, all possible values of linear com-
plexity of (s,) could be taken when the polynomial f(x) is
properly chosen. The results are consistent with the Theorem
1 in this paper.

IIl. GENERALIZATION TO THE POLYNOMIAL QUOTIENT
IN GENERAL CASE

For an odd prime p, integers r > 0, and f(x) a polynomial
over Z[x], the polynomial quotient modulo p" in general case
is defined by

J ) = fr ()
pr

F(u) = modp”, O0<Fw<p —1, 12

for all u, where f,r(u) = f(u) mod p”. Clearly that F(u) is
just the function in (1) when r = 1. For all integers u and k,
under the condition that f’(u) is not identically zero, it is easy
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to check that
F(u+kp") = F(u) + kp"~'f'(u) mod p” (13)

where f/(u) is defined to be the derivative of f (). Setting k =
p in (13), under the condition that f/(u) is not identically zero,
it is clear to see that F(u) is periodic with least period p"*!.
Then we define the binary sequence (f;,) by

0, if F(u) =0 mod?2,
Ju= . . (14)
1, if F(u) =1 mod 2.

Theorem 2: Let (f,) be the p"!-periodic binary sequence
defined as in (14). If 2 is a primitive element modulo pz, then

there exists H = {0, 1,2, ---, r — 1} such that the minimal
polynomial of (f;,) is
m(x) = <I>pr+1 x) 1_[ <I>pi(x),

ieH
and the corresponding linear complexity of (f;,) is
LC(f ) =p™ —p" + ) pp-1)
icH

Proof: The multiplicative order of 2 mod p' is p'~'(p — 1)
since 2 is a primitive element modulo p?. Thus the cyclotomic
polynomial chi(x) is irreducible over in [F>[x].

For any fixed u with ged(u, p) = 1, by (13) we have

F@+p =y

if k runs through the set {0, 1, --- , p — 1}. Then,
when F'(u) is even, it follows that

Flu+kp')= {F(u), Fa +p ", ...

p—1
fu +fu+pr + .- +fu+(p—l)p’ = T
when F'(u) is odd, it follows that
p+1
Ju +furpr + o+ furponpr = —

So there always exists u such that f, + fy4pr + --- +
Jusrp—1pr # 0, which implies that ®,r+1(x) | m(x) and
m(x) # Pp+1(x). We know m(x) | " 1 and the
cyclotomic polynomial ®,i(x) is irreducible over in F»[x].
Thus there exists nonempty set H < {0,1,2,---,r — 1}
such that the minimal polynomial of (f,) is

m(x) = @1 (x) [ | ©,i(0),
ieH

and the corresponding linear complexity of (f,,) is

LCW() =p ' =p"+ ) =D
ieH

The proof is completed.

The following example helps to confirm our main results.

Example 3: Letp = 5,r = 2, f(x) = 4x> + 3x% + 5x +
6, fr(x) = f(x)®P)+7) meets the condition that f(x)" =
fpr(x) mod p", where ¢(x) denote Euler’s function. Then 2 is
a primitive root modulo 25. The least period of the binary
sequence (sy) is p3 = 125. The sequence (s,) in one period is
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{o,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,1,1,1,0,0, 1,
0,1,11,00,0,0,0,0,0,1,0,0,1,1,0,0,1,0,0,0, 1, 0,
1, 101,1,1,1,1,1,0,1,1,0,0,0,1,0,1, 1, 1,0, 1, 1, 1,
0,101,1,1,1,0,0,1,0,1,0,1,0,0,0,1, 1,1, 1, 1,0, 0,
0,001,1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0, 1, 1, 0,
0,0,0,0,0,0 }.

The minimal polynomial of the sequence (s,) over [F; is

120 115 110 105 100

m(x) = x120 4 x5 110 g 105 4 100 4 (951 390 4 185
4180 4 x4 x70 4 x84 x00 4 133 4 0 4 B
a0 30 xB a0 x5 0 x5 41

And so the linear complexity of this sequence is exactly
equal to 120 = p> — p?> 4+ p(p — 1).

IV. IMPLEMENTATION AND APPLICATION IN STREAM
CIPHER SYSTEM

After Shannon proved the absolute security of the one-time
pad in theory, the research on stream ciphers has been trig-
gered. Pseudorandom sequences have been the kernel of
stream ciphers. By generalizing to the polynomial quotient
modulo p” in general case, we can obtain lots of pseudo-
random sequences with high linear complexity [16]. We will
apply them to stream cipher system as follows.

Clock Clock
cC cC
Key
R R
: S ) :
ALU < > ALU
mod p” mod p”
mod 2 mod 2
I '
Di > > > @ > D

FIGURE 1. The implementation and application of Gpgs stream cipher
generator.

A stream cipher generator derived from polynomial quo-
tients with period p’*! can be implemented in Fig.l,
where CC denote cyclic counter that count the numbers
{0,1,2,---,p"™' — 1} cyclically, and within CC, there are
registers to store the current counted number and arithmetic
logic unit(ALU) to computer polynomial quotients [20].
We name the generator as Gpgs stream cipher generator. The
initial value of the register form the key of this generator.
The polynomial f(x) is defined in section 3. The f; denotes
pseudorandom sequence, the p; denotes plaintext stream, the
¢; denotes ciphertext stream, and the symbol @ denotes XOR.
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By the choices of different polynomials and the power
of p, the Gpgs stream cipher generator can generate lots of
pseudorandom sequences with high linear complexity.

V. CONCLUSION

In this work, we firstly define a family of new binary sequence
derived from polynomial quotients modulo an odd prime p in
general case, then determine the linear complexity and the
minimal polynomial of the sequences under the condition
that 2 is a primitive element modulo p?. By the Berlekamp-
Massey algorithm, the linear complexity of pseudorandom
sequence must be greater than the half of its period [21]. The
results show that the sequences have high linear complexity
to resist the attack of Berlekamp-Massey algorithm. It can be
seen that Zhao et al.’s conclusion is only a special case of
our results [14]. Furthermore, we generalize the results to the
polynomial quotients modulo a power of p in general case
for the first time. We give the general expression of the linear
complexity and the minimal polynomial of the sequences
under the condition that 2 is a primitive element modulo p.
The results indicate that the generalized sequences still have
high linear complexity. In addition, we show the implemen-
tation and application of the generalized sequences in stream
cipher system. It is interesting to study pseudorandom prop-
erties of these sequences when 2 is not a primitive element
modulo p?.
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