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ABSTRACT Pseudorandom sequences with large linear complexity have been widely applied in electronic
countermeasures, mobile communication and cryptography. Linear complexity is considered as a primary
security criterion to measure the unpredictability of pseudorandom sequences. This paper presents the linear
complexity and minimal polynomial of a new family of binary sequences derived from polynomial quotients
modulo an odd prime p in general case. The results indicate that the sequences have high linear complexity,
whichmeans they can resist the linear attack against pseudo-noise or stream ciphers.Moreover, we generalize
the result to the polynomial quotients modulo a power of p in general case. Finally, we design a Gpqs stream
cipher generator based on the generalized binary pseudorandom sequences to implement the sequences in
hardware.
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INDEX TERMS Pseudorandom sequences, electronic countermeasures, stream cipher, linear complexity,
polynomial quotients.

I. INTRODUCTION12

Pseudorandom sequences always have wide applications in13

engineering fields. From a cryptographic point of view, one14

good pseudorandom sequence should have high linear com-15

plexity, which is not less than half of the period of sequence.16

More recently, Fermat quotients and Euler quotients have17

been studied to construct a large number of pseudorandom18

sequences. Similar construction method is naturally general-19

ized to polynomial quotient.20

Let p be an odd prime, f (x)∈ Z[x] a general polyno-21

mial with leading coefficient not divisible by p, where22

Z[x] denotes polynomial ring with integer coefficients.23

The polynomial quotient modulo p in general case is24

The associate editor coordinating the review of this manuscript and

approving it for publication was Aneel Rahim .

defined by 25

Q(u) ≡
f (u)− fp(u)

p
mod p, 0 ≤ Q(u) ≤ p− 1, u > 0, (1) 26

where fp(u) ≡ f (u) mod p [1]. 27

For all integers u and k , under the condition that f ′(u) is 28

not identically zero, it is easy to check that 29

Q(u+ kp) ≡ Q(u)+ kf ′(u) mod p (2) 30

where f ′(u) is defined to be the derivative of f (u). Setting 31

k = p in (2), it is clear to see that Q(u) is periodic with least 32

period p2 [2]. 33

Chen and Winterhof first defined the Polynomial quotient 34

modulo p in general case [1]. After that, cryptographic prop- 35

erties of pseudorandom sequences derived from polynomial 36

quotient began to attract academic attention [3], [4], [5], [6]. 37

Many number theoretic and cryptographic questions have 38
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been studied for polynomial quotients sequences [2], [7],39

[8], [9], [10]. It needs to be pointed out that most studies40

focused on special cases of f (x) but rarely considered the41

general cases [7], [8], [9], [10], [11], [12], [13]. There are42

two families of binary sequences derived from polynomial43

quotients in general case to be discussed from the view point44

of cryptography [2]. One is the binary threshold sequences45

(eu) defined as46

eu =

{
0, if 0 6 Q(u)/p < 1/2,
1, if 1/2 6 Q(u)/p < 1.

(3)47

The other is the general polynomial quotient sequence (hu)48

defined by49

hu =

0, if (
Q(u)
p

) = 1orQ(u) = 0,

1, otherwise.
(4)50

where ( ·p ) is the Legendre symbol [2]. The Legendre symbol51

is defined to be equal to ±1 depending on whether a number52

is a quadratic residue modulo an odd prime.53

Du et al. proved that the two sequences above have high54

linear complexity and extended the constructions to arbitrary55

d-ary sequences for prime d | (p− 1) with d a primitive root56

modulo p2 [2]. In modular arithmetic, a number g is called a57

primitive root modulo n if and only if every number coprime58

to n is congruent to a power of g modulo n.59

In this paper, we define a new binary sequence (su) derived60

from polynomial quotients in general case as61

su =

{
0, if Q(u) ≡ 0 mod 2,
1, if Q(u) ≡ 1 mod 2.

(5)62

Note that (su) is also p2 periodical over the finite field F2.63

In fact, when f (x) = xw, (su) is just the sequence defined by64

Zhao et al., which is only a special case of this article [14].65

Clearly that, the characteristic set of (su) is different from66

(eu) and (hu), and they belong to different sequences. We will67

investigate the minimal polynomial and linear complexity68

of (su). In addition, we extend the general polynomial quo-69

tients Q(u) modulus p to F(u) modulo pr , a prime power.70

We recall that the linear complexity LC((au)) of an71

N -periodic sequence (au) over the binary finite field F2 is72

the least order L of a linear recurrence relation over finite73

field F2 [7].74

au+L + cL−1au+L−1+· · · + c1au+1 + c0au = 0 for u > 0,75

(6)76

which is satisfied by (au) andwhere c0 6= 0, c0 · · · cL−1 ∈ F2.77

The polynomial78

a(x) = c0 + c1x + c2x2 · · · + cN−1xN−1 ∈ F2[x]. (7)79

is called the generating polynomial of (au).80

The polynomial81

m(x) = xL + cL−1xL−1 + · · · + c0 ∈ F2[x]. (8)82

is called the minimal polynomial of (au), which can be 83

obtained by computing 84

m(x) = (xN − 1)/ gcd(xN − 1, a(x)). (9) 85

and the linear complexity of (au) is 86

LC((au)) = deg(m(x))=N − deg(gcd(xN − 1), a(x)). (10) 87

See, e.g., [15], [16] for details. 88

II. THE MINIMAL POLYNOMIAL AND LINEAR 89

COMPLEXITY 90

Note that a conjecture of Artin indicates that approxi- 91

mately 3/8 of all primes have 2 as a primitive root, and that it 92

is very seldom that a primitive root modulo the prime p is not 93

also a primitive root modulo p2 [17], [18]. 94

Lemma 1 [19]: Let p be an odd prime. If 2 is a primitive 95

root modulo p2, then 2 is also a primitive root modulo pi for 96

all i > 1. Consequently, the cyclotomic polynomials 8n(x) 97

are irreducible in polynomial ring over a finite field F2[x], 98

where 8n(x) =
∏

d |n(x
d
− 1)µ(

n
d ) and µ(·) denotes Mobius 99

function. 100

Theorem 1: Let (su) be the p2-periodic binary sequence 101

defined as in (5). If 2 is a primitive element modulo p2, then 102

the minimal polynomial of (su) is 103

m(x) =


8p2 (x), if |D1| = 0,
8p(x)8p2 (x), if |D1| 6= 0 is even,
(x − 1)8p(x)8p2 (x), if |D1| is odd.

104

if p ≡ 1 mod 4, and 105

106

m(x) =


(1+ x)8p2 (x), if |D0| = 0,
8p(x)8p2 (x), if |D0| is odd,
(x − 1)8p(x)8p2 (x), if |D0| 6= is even.

107

if p ≡ 3 mod 4. 108

The corresponding linear complexity of (su) is 109

LC((su)) =

p
2
− p, if |D1| = 0,

p2 − 1, if |D1| 6= 0 is even,
p2 if |D1| is odd.

110

if p ≡ 1 mod 4, and 111

LC((su)) =

p
2
− p+ 1, if |D0| = 0,

p2 − 1, if |D0| is odd,
p2 if |D0| 6= 0 is even.

112

if p ≡ 3 mod 4, where |Di| is the cardinality of Di 113

defined by 114

D0 115

=
{
u | 0 6 u 6 p− 1, f ′(u) ≡ 0 mod p,Q(u) ≡ 0 mod 2

}
, 116

D1 117

=
{
u | 0 6 u 6 p− 1, f ′(u) ≡ 0 mod p,Q(u) ≡ 1 mod 2

}
. 118

Proof: Over the finite field F2, we have 119

xp
2
− 1 = (x − 1)8p(x)8p2 (x), 120
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where 8p(x) =
∑p−1

i=0 x
i
∈ F2[x],8p2 (x) =

∑p−1
i=0 x

ip
∈121

F2[x]. Let m(x) be the minimal polynomial of (su), then m(x)122

is a factor of (x − 1)8p(x)8p2 (x) by Lemma 1.123

For any fixed u with f ′(u) 6≡ 0 mod p, when k ranges124

over {0, 1, 2, · · · , p− 1}, Q(u + kp) takes on each element125

of {0, 1, 2, · · · , p− 1}, Thus su+kp = 0 for (p+1)/2 integers126

k and su+kp = 1 for (p − 1)/2 integers k . We know m(x) -127

(xp − 1), i.e., m(x) - (x − 1)8p(x) since the period of (su) is128

> p. Also, we have
∑p−1

k=0 su+kp = (p− 1)/2.129

On the other hand, for any u with f ′(u) ≡ 0 mod p, we have130

p−1∑
k=0

su+kp =

{
0 mod 2, if u ∈ D0,

1 mod 2, if u ∈ D1.
(11)131

The proof can be given by the two cases of the values of p132

1) p ≡ 1 mod 4133

If ∀u /∈ D1, i.e., |D1| = 0, we have
∑p−1

k=0 su+kp ≡ 0134

mod 2 for any u.Thus m(x) | 8p2 (x) since 8p2 (x) is a char-135

acteristic polynomial of (su). That is, m(x) = 8p2 (x) since136

8p2 (x) is irreducible over F2(x). So the linear complexity of137

(su) is LC((su)) = deg(m(x)) = p2 − p.138

If ∃ ∈ D1, i.e.,|D1| 6= 0, we have
∑p−1

k=0 su+kp = p ≡ 1139

mod 2 for u ∈ D1. At the same time, by (11), we have140 ∑p−1
k=0 su+kp +

∑p−1
k=0 s(u+1)+kp = p ≡ 1 mod 2 for any u.141

Hence m(x) - (1+ x)8p2 (x). Now for all u we find that142

p2−1∑
v=0

su+v =
p2−1∑
v=0

sv =
p−1∑
v=0

p−1∑
k=0

sv+kp143

= (
∑
v∈D1

+

∑
v=0
v/∈D1

)
p−1∑
k=0

sv+kp144

= |D1| p145

=

{
0 mod 2, if |D1| is even,
1 mod 2, if |D1| is odd.

146

for all u, which implies m(x) | 8p(x)8p2 (x) when |D1| is147

even, andm(x) | (xp
2
−1) when |D1| is odd. Then LC((su)) =148

p2 − 1 when |D1| is even, and LC((su)) = p2 when |D1| is149

odd.150

2) p ≡ 3 mod 4151

If ∀u /∈ D0, i.e., |D0| = 0, we have
∑p−1

k=0 su+kp = p ≡ 1152

mod 2 for any u, which implies that m(x) - 8p2 (x). At the153

same time, by (11), we have
∑p−1

k=0 su+kp+
∑p−1

k=0 s(u+1)+kp =154

p + (p − 1)/2 ≡ 0 mod 2 for any u. Hence m(x) | (1 +155

x)8p2 (x), and LC((su)) = deg(m(x)) = p2 − p+ 1.156

If ∃ ∈ D0, i.e.,|D0| 6= 0, we have
∑p−1

k=0 su+kp ≡ 0157

mod 2 only for u ∈ D0. Now we find that158

p2−1∑
v=0

su+v =
p2−1∑
v=0

sv =
p−1∑
v=0

p−1∑
k=0

sv+kp159

= (
∑
v∈D0

+

∑
v=0
v/∈D0

)
p−1∑
k=0

sv+kp160

= (p− |D0|)p 161

=

{
0 mod 2, if |D0| is odd,
1 mod 2, if |D0| is even.

162

for all u, which implies m(x) | 8p(x)8p2 (x) when |D0| is 163

odd, and m(x) = xp
p2
− 1 when |D0| is even since 8p(x) 164

and8p2 (x) are irreducible in F2(x) and neither of them is the 165

characteristic polynomial of (su). Then LC((su)) = p2 − 1 166

when |D0| is odd, and LC((su)) = p2 when |D0| is even. The 167

proof is completed. 168

In the following content, we will give two examples to 169

confirm our main results. 170

Example 1: Let p = 5, f (x) = 4x3 + 3x2 + 5x + 6. Then 171

p ≡ 1 mod 4, and 2 is a primitive root modulo 25. The least 172

period of the binary sequence (su) is 25. |D0| = 0, |D1| = 1 is 173

odd. 174

The sequence (su) in one period is 175

{1,1, 1, 1, 0, 1,1, 1, 1,1, 0, 1,0, 0, 1, 0,1, 0, 0,0, 0,1, 0,0, 0} . 176

The minimal polynomial of the sequence (su) over F2 177

is x25 − 1. 178

And so the linear complexity of this sequence is exactly 179

25 = p2. 180

Example 2: Let p = 11, f (x) = 2x7 + 3x5 + 4x3 + 7x2 + 181

4x + 9. Then p ≡ 3 mod 4, and 2 is a primitive root modulo 182

121. The least period of the binary sequence (su) is p2 = 121. 183

|D0| = 0, |D1| = 0. 184

The sequence (su) in one period is 185

{0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 186

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 187

1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 188

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 189

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0 }. 190

The minimal polynomial of the sequence (su) over F2 is 191

x111+x110+x100+x99+x89+x88+x78+x77+x67+x66+ 192

x56+x55+x45+x44+x34+x33+x23+x22+x12+x11+x+1. 193

And so the linear complexity of this sequence is exactly equal 194

to 111 = p2 − p+ 1. 195

With the help of programming software, more examples 196

have been tested. In fact, all possible values of linear com- 197

plexity of (su) could be taken when the polynomial f (x) is 198

properly chosen. The results are consistent with the Theorem 199

1 in this paper. 200

III. GENERALIZATION TO THE POLYNOMIAL QUOTIENT 201

IN GENERAL CASE 202

For an odd prime p, integers r > 0, and f (x) a polynomial 203

over Z[x], the polynomial quotient modulo pr in general case 204

is defined by 205

F(u) ≡
f (u)− fpr (u)

pr
mod pr , 0 ≤ F(u) ≤ pr − 1, (12) 206

for all u, where fpr (u) ≡ f (u) mod pr . Clearly that F(u) is 207

just the function in (1) when r = 1. For all integers u and k , 208

under the condition that f ′(u) is not identically zero, it is easy 209
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to check that210

F(u+ kpr ) ≡ F(u)+ kpr−1f ′(u) mod pr (13)211

where f ′(u) is defined to be the derivative of f (u). Setting k =212

p in (13), under the condition that f ′(u) is not identically zero,213

it is clear to see that F(u) is periodic with least period pr+1.214

Then we define the binary sequence (fu) by215

fu =

{
0, if F(u) ≡ 0 mod 2,
1, if F(u) ≡ 1 mod 2.

(14)216

Theorem 2: Let (fu) be the pr+1-periodic binary sequence217

defined as in (14). If 2 is a primitive element modulo p2, then218

there exists H = {0, 1, 2, · · · , r − 1} such that the minimal219

polynomial of (fu) is220

m(x) = 8pr+1 (x)
∏
i∈H

8pi (x),221

and the corresponding linear complexity of (fu) is222

LC((fu)) = pr+1 − pr +
∑
i∈H

pi(p− 1)223

Proof: The multiplicative order of 2 mod pi is pi−1(p− 1)224

since 2 is a primitive element modulo p2. Thus the cyclotomic225

polynomial 8pi (x) is irreducible over in F2[x].226

For any fixed u with gcd(u, p) = 1, by (13) we have227

F(u+ kpr )=
{
F(u),F(u)+ pr−1, · · · ,F(u)+ (p− 1)pr−1

}
228

if k runs through the set {0, 1, · · · , p− 1}. Then,229

when F(u) is even, it follows that230

fu + fu+pr + · · · + fu+(p−1)pr =
p− 1
2

.231

when F(u) is odd, it follows that232

fu + fu+pr + · · · + fu+(p−1)pr =
p+ 1
2

.233

So there always exists u such that fu + fu+pr + · · · +234

fu+(p−1)pr 6= 0, which implies that 8pr+1 (x) | m(x) and235

m(x) 6= 8pr+1 (x). We know m(x) | xp
r+1
− 1 and the236

cyclotomic polynomial 8pi (x) is irreducible over in F2[x].237

Thus there exists nonempty set H ⊆ {0, 1, 2, · · · , r − 1}238

such that the minimal polynomial of (fu) is239

m(x) = 8pr+1 (x)
∏
i∈H

8pi (x),240

and the corresponding linear complexity of (fu) is241

LC((fu)) = pr+1 − pr +
∑
i∈H

pi(p− 1).242

The proof is completed.243

The following example helps to confirm our main results.244

Example 3: Let p = 5, r = 2, f (x) = 4x3 + 3x2 + 5x +245

6, fpr (x) = f (x)(ϕ(p
r )+r) meets the condition that f (x)r ≡246

fpr (x) mod pr , where ϕ(x) denote Euler’s function. Then 2 is247

a primitive root modulo 25. The least period of the binary248

sequence (su) is p3 = 125. The sequence (su) in one period is249

{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 250

0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 251

1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 252

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 253

0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 254

0, 0, 0, 0, 0, 0 }. 255

The minimal polynomial of the sequence (su) over F2 is 256

m(x) = x120 + x115 + x110 + x105 + x100 + x95+x90 + x85 257

+x80 + x75 + x70 + x65 + x60 + x55 + x50 + x45 258

+x40+x35 + x30+x25 + x20 + x15 + x10 + x5 + 1. 259

And so the linear complexity of this sequence is exactly 260

equal to 120 = p3 − p2 + p(p− 1). 261

IV. IMPLEMENTATION AND APPLICATION IN STREAM 262

CIPHER SYSTEM 263

After Shannon proved the absolute security of the one-time 264

pad in theory, the research on stream ciphers has been trig- 265

gered. Pseudorandom sequences have been the kernel of 266

stream ciphers. By generalizing to the polynomial quotient 267

modulo pr in general case, we can obtain lots of pseudo- 268

random sequences with high linear complexity [16]. We will 269

apply them to stream cipher system as follows. 270

FIGURE 1. The implementation and application of Gpqs stream cipher
generator.

A stream cipher generator derived from polynomial quo- 271

tients with period pr+1 can be implemented in Fig.1, 272

where CC denote cyclic counter that count the numbers 273{
0, 1, 2, · · · , pr+1 − 1

}
cyclically, and within CC, there are 274

registers to store the current counted number and arithmetic 275

logic unit(ALU) to computer polynomial quotients [20]. 276

We name the generator as Gpqs stream cipher generator. The 277

initial value of the register form the key of this generator. 278

The polynomial f (x) is defined in section 3. The fi denotes 279

pseudorandom sequence, the pi denotes plaintext stream, the 280

ci denotes ciphertext stream, and the symbol⊕ denotes XOR. 281
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By the choices of different polynomials and the power282

of p, the Gpqs stream cipher generator can generate lots of283

pseudorandom sequences with high linear complexity.284

V. CONCLUSION285

In this work, we firstly define a family of new binary sequence286

derived from polynomial quotients modulo an odd prime p in287

general case, then determine the linear complexity and the288

minimal polynomial of the sequences under the condition289

that 2 is a primitive element modulo p2. By the Berlekamp-290

Massey algorithm, the linear complexity of pseudorandom291

sequence must be greater than the half of its period [21]. The292

results show that the sequences have high linear complexity293

to resist the attack of Berlekamp-Massey algorithm. It can be294

seen that Zhao et al.’s conclusion is only a special case of295

our results [14]. Furthermore, we generalize the results to the296

polynomial quotients modulo a power of p in general case297

for the first time. We give the general expression of the linear298

complexity and the minimal polynomial of the sequences299

under the condition that 2 is a primitive element modulo p2.300

The results indicate that the generalized sequences still have301

high linear complexity. In addition, we show the implemen-302

tation and application of the generalized sequences in stream303

cipher system. It is interesting to study pseudorandom prop-304

erties of these sequences when 2 is not a primitive element305

modulo p2.306
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