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ABSTRACT In this work, we propose low-complexity detectors for massive multiple-input multiple-output
(MIMO) systems. Particularly, we leverage variants of truncated polynomial expansion (TPE) in order to
reduce the computational complexity of the signal detection in the uplink direction. Linear detectors such as
zero-forcing (ZF) and minimummean square error (MMSE) involve expensive matrix-matrix multiplication
and matrix inversion operations. TPE-based detectors are appropriate candidates for approximating these
linear detectors. However, tuning the normalization factor of TPE-based detectors may require calculating
the minimum and the maximum eigenvalues of the channel Gram matrix. These calculations become
computationally expensive for some massive MIMO systems, especially for systems with a large ratio of
single-antenna user terminals to the number of antennas at the base station, i.e., loading factor. We propose
to tune the normalization factor using appropriate approximations for the extreme eigenvalues. The proposed
TPE-based detectors exhibit a bit error performance similar to that of the TPE-based detector with the
optimal normalization factor. Moreover, our proposed detectors achieve the error performance of ZF and
MMSE for different loading factors of spatially correlated and uncorrelated massive MIMO channels. The
computational complexity of the proposed detector is proportional to the number of base station antennas
and the number of users.

INDEX TERMS Multiple-input multiple-output (MIMO) channels, uplink, massive MIMO, multiuser,
truncated polynomial expansion (TPE), zero-forcing (ZF), minimum mean square error (MMSE).

I. INTRODUCTION
Multiple-input multiple-output (MIMO) is an essential tech-
nology in modern wireless systems as it offers significant
capacity and link reliability improvements [1]. Despite these
benefits of regular MIMO technology, it does not meet
the ever-increasing demand for connectivity driven by the
unprecedented introduction and adoption of new applica-
tions such as vehicle to everything, augmented and virtual
reality, and connected autonomous systems. The massive
MIMO technology has been investigated and considered by
academic, standardization, and industrial bodies to achieve
the requirements of these applications, such as coverage,
capacity, and user throughput. Massive MIMO technology
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tightly packs a large number of antennas at network terminals,
e.g., base stations (BSs), which are simultaneously serving
several low-end single-antenna user terminals (UTs) [2], [3],
[4], [5]. It has been shown in [3] that the matched filter (MF)
detector can achieve similar performance to the zero-forcing
(ZF) or minimum mean square error (MMSE) detector in
the uplink of massive MIMO systems. However, it has been
shown in [6], [7] that the regime of number of BS anten-
nas per user at which matched filter detector achieves the
performance of the ZF or MMSE detector is impractically
large [8]. Therefore, for practical massive MIMO configura-
tions, the ZF or MMSE detector must be used to exploit the
full potential of massive MIMO systems. One main benefit
of massive MIMO is that linear detectors, such as ZF and
MMSE, achieve similar performance to sophisticated optimal
detectors.
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Employing extensively large numbers of antennas at the
base stations, the implementation of these linear detectors
becomes computationally expensive. The exact solutions of
ZF and MMSE involve a matrix-matrix multiplication to
compute the channel Gram matrix 1 and a matrix inversion.
These two operations require a computational complexity of
O(NK 2) and O(K 3), respectively, where N is the number of
receive antennas at the BS, andK is the number of UTs. In [9],
an algorithm based on the alternating direction method of
multipliers (ADMM) has been proposed, which also involves
a matrix-matrix multiplication and a matrix inversion. Such
operations become computationally expensive for massive
MIMO where N and K are large. Several techniques have
been proposed in the literature to reduce the computational
complexity of these two operations. With the help of a trun-
cated Neumann series expansion, approximate algorithms
avoid direct matrix inversion [10], [11], [12], [13]. Replac-
ing the Neumann series approximation with other iterative
algorithms such as the Gauss-Seidel (GS) [14], successive
over-relaxation (SOR) [15], Jacobi [16], and Richardson [17]
methods can result in further improvements. These methods
reduce the complexity of the matrix inversion from O(K 3)
to O(K 2). However, they still have O(NK 2) computational
complexity due to the Gram matrix calculation [18].

Another class of approximate methods uses the truncated
polynomial expansion (TPE), in which the matrix inversion
is approximated by J finite terms of the Taylor series expan-
sion [8], [19], [20], [21], [22]. Suchmethods can approximate
the ZF and the MMSE solutions by a weighted summa-
tion of a series of matrix-vector multiplications implemented
iteratively. By assuming that appropriate coefficients of the
summation are given, the computational complexity of the
matrix-vector multiplications will be proportional to the num-
ber of BS antennas and the number of users, i.e., O(JKN ).
However, the convergence speed of the TPE for approxi-
mating the ZF and the MMSE solutions highly depends on
a normalization factor in the polynomial coefficients. The
optimal normalization factor, in the sense of convergence
speed, requires the calculations of the largest and the smallest
eigenvalues of the channel Gram matrix [23]. This implies
calculating the Gram matrix and its eigenvalues, increasing
the overall computational complexity to O(NK 2

+ K 3).

A. MAIN CONTRIBUTION
In this work,2 we propose TPE-based detectors where the
normalization factor is tuned for massive MIMO systems
with various loading factors β = K

N . The contributions of
this work are summarized as follows:
• For massive MIMO systems with small β’s, we develop
a TPE-based detector where we approximate the eigen-
values of the Gram matrix of the massive MIMO chan-
nel using the asymptotic properties of complex Wishart

1For a channel matrix H, the channel Gram matrix is defined as G =
HHH.

2This work has been published as part of the first author’s Ph.D. thesis
in [24].

matrices. This aims at efficiently tuning the normaliza-
tion factor of the proposed TPE-detector in a way to
enhance its convergence performance. Such a normal-
ization factor is calculated using the dimensions of the
system.

• For massive MIMO systems with large β’s, we develop
another TPE-based detector where we approximate the
extreme eigenvalues of the Gram matrix of the massive
MIMO channel by devising an efficient algorithm based
on the power method. We utilize the derived approxi-
mate extreme eigenvalues in tuning the normalization
factor of the proposed detector.

• We provide a comprehensive computational complexity
analysis for the proposed detectors. We also compare
the computational complexity of the proposed detectors
with the relevant prior art. The proposed detectors are
shown to have a significant computational complexity
reduction compared to prior works, such that the overall
computational complexity is O(JNK ).

• We provide extensive numerical simulation results for
the proposed detectors over both spatially correlated and
uncorrelated channels. The proposed detectors achieve
the error performance of the linear detectors, ZF and
MMSE. Further, we provide conclusive convergence
simulation results where the convergence rate of the
proposed detectors is shown to be comparable to that of
the TPE-based detectors with the optimal normalization
factor.

B. COMPARISON WITH PRIOR ART
In the literature, there exist detection schemes with a com-
putational complexity of O(mNK ), where m is the number
of iterations of the schemes. Approximate message passing
(AMP)-based detectors [25], [26], [27], [28] offer a compu-
tational complexity of O(mNK ) by deploying matrix-vector
multiplications rather than the matrix-matrix multiplication.
However, AMP-based detectors require the knowledge of
noise variance, and consequently, inappropriate noise vari-
ance adjustments can lead to performance degradation.More-
over, they suffer from severe performance degradation for
massiveMIMO systems with large loading factors. Also, they
may not converge even with many iterations for spatially
correlated MIMO channels. In contrast to AMP-based detec-
tors, our proposed TPE-based detector ensures convergence
for both small and large loading factors of massive MIMO
systems for both scenarios of spatially uncorrelated and cor-
related massive MIMO channels.

Optimized coordinate descent (OCD)-based detectors [29]
offer a fast converging performance with a computational
complexity ofO(mNK ), where m is the number of iterations.
These detectors perform a series of coordinate-wise updates
in order to solve the main optimization problem. Despite the
fast converging performance of OCD-based detectors, their
main challenge resides in the data dependency of successive
updates. In these detectors, the update of each coordinate
corresponding to a user depends on the previous coordinates
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updates. The work in [30] also suffers from the dependency
of successive updates. Such a dependency prevents fully-
parallel implementation [29]. Also, it increases each user’s
processing delay to a number proportional to the number of
users and iterations, i.e., mK . Pipeline interleaving addresses
this challenge by simultaneously processing multiple coor-
dinates. However, this approach results in a significant hard-
ware overhead [29]. On the other hand, although our proposed
TPE-based detector may need a larger number of iterations to
achieve the error performance of ZF or MMSE, the detection
of all users is simultaneously calculated in each iteration.
Consequently, the processing delay is independent of the
number of users and only scales with the number of iterations.
This property enables fully-parallel implementation of our
proposed TPE-based detector with architecture pipelining.

The conjugate gradient (CG) is an efficient iterative algo-
rithm for solving the problem of signal detection for the
uplink of massive MIMO systems. One key advantage of
the CG-based detector is that it converges in K iterations.
It can even be terminated with fewer iterations while being
sufficiently close to the exact solution [31]. However, one
disadvantage of the CG-based detector is that it does not
provide the post-processing signal-to-interference-plus-noise
ratio (SINR) information required for the calculations of
log-likelihood ratio (LLR) values for the soft-output version
of the detector. In [31], a CG-based soft-output detection
scheme is proposed for massiveMIMO systems. Some works
in the literature, for example [32], consider the Gram matrix
(or its regularized version) as an input to the CG-based detec-
tion algorithm. Such an implementation requires a matrix-
matrix multiplication to calculate the Gram matrix. However,
one can easily verify that the corresponding matrix-matrix
multiplication can be replaced with matrix-vector multiplica-
tions. Therefore, as Table 1 shows, the overall computational
complexity of the CG-based detector is O(mKN ).

C. ORGANIZATION AND NOTATION
The rest of the paper is organized as follows: we introduce the
system model in Section II by briefly explaining the details
of TPE-based detectors. Our efficient TPE-based detectors
are detailed in Section III. We discuss the computational
complexity analysis of our proposed methods in Section IV.
This section also compares our proposed detectors with the
state-of-the-art low-complexity detectors for massive MIMO
systems. Section V contains simulation results for various
massive MIMO systems. Section VI concludes this paper.
Matrices and vectors are denoted by bold-face capital

and small letters, respectively. For a given matrix A: AH ,
AT , and A−1 denote the Hermitian transpose, transpose, and
inverse of A, respectively. The columns of A are denoted by
{a1, a2, . . . , aK }. Moreover, ai,j indicates the (i, j)-th element
of A. The K × K identity matrix is denoted as IK .

II. SYSTEM MODEL
We consider an uplink multiuser massive MIMO system with
N receive antennas at the BS and K single-antenna UTs. The

received signal is written as

y = Hx̃+ n, (1)

where x̃ = (x̃1, . . . , x̃k )T ∈ XK×1 is the transmitted signal
vector, whose entries are from a given constellation, X with
an average energy of Ex such that E

[
|x̃|2

]
= pk .Ex , where

pk .Ex is the transmit power of k-th user with the sum power∑K
k=1 pk .Ex = K .Ex . The entries of the channel matrix H =

1
√
N
[h1,h2, . . . ,hK ] ∈ CN×K are assumed to be independent

and identically distributed (i.i.d.) ∼ CN (0, 1/N ). Moreover,
n ∈ CN×1 is the noise vector at the BS with i.i.d. entries
∼ CN (0,N0). The above model can be rewritten as

y = HP1/2x+ n, (2)

such that E
[
|x̃|2

]
= Ex , and P is a diagonal matrix with

non-zero entries of (p1, p2, . . . , pK ). Among the solutions for
multiuser uplinkmassiveMIMOdetection are the ZF detector

x̂ZF = P−1/2G−1HHy, (3)

and the MMSE detector

x̂MMSE = P1/2(GP+ µIK )−1HHy, (4)

where G = HHH is the channel Gram matrix, and µ = N0
K .Ex

is the regularization factor of the MMSE detector.
For the sake of simplicity, we assume that all users have the

same transmit power, i.e., P = IK . Such an assumption will
not affect the overall mechanism of the proposed methods in
Section III. The effect on the computational complexity of the
proposed methods will be discussed in Section IV. With this
assumption, the received signal is simplified to

y = Hx+ n. (5)

Note that even if all the users transmit with different powers,
the power control mechanism will compensate for the large-
scale fading. Consequently, the signals arrive at the BS with
equal powers, which justifies the model presented in (5). For
this model, we have

x̂ZF =WZFy = (HHH)−1HHy, (6)

and

x̂MMSE =WMMSEy = (HHH+ µIK )−1HHy. (7)

Both detectors require a matrix inversion with O(K 3) opera-
tions and a matrix-matrix multiplication with O(NK 2) oper-
ations.
An alternative approach to the matrix inverse calculation is
the TPE since the inverse of the Grammatrix can be expressed
as a matrix polynomial [21], where the low-order terms are
the most dominant ones.
Lemma 1 ([21]): For any positive definite Hermitian

matrix X,

X−1 = α(I− (I− αX))−1 = α
∞∑
l=0

(I− αX)l, (8)
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where the second equality holds when 0 < α < 2
λmax (X)

such
that λmax(X) is the largest eigenvalue of X. The parameter α
is referred to as the normalization factor.
By using this lemma and X = HHH, the ZF can be approxi-
mated as

WZF = (HHH)−1HH

≈

J−1∑
l=0

(
α

J−1∑
n=l

(
n
l

)
(−α)l

)
(HHH)lHH . (9)

Similarly, using X = HHH + µIK , the MMSE detector can
be expanded as

WMMSE (10)

= (HHH+ µIK )−1HH (11)

≈

J−1∑
l=0

(
α

J−1∑
n=l

(
n
l

)(
1− µ

)n−l(−α)l)(HHH)lHH . (12)

We denoteWTPE as the TPE detector such that

WTPE =

J−1∑
l=0

wl
(
HHH

)l
HH , (13)

where for ZF

wl = α
J−1∑
n=l

(
n
l

)
(−α)l, (14)

and

wl = α
J−1∑
n=l

(
n
l

)(
1− µ

)n−l(−α)l, (15)

for MMSE, and J is the TPE order. Note that when N � K ,
the matrix-matrix multiplication is even more expensive than
the matrix inversion. Hence, the matrix-matrix multiplication
is avoided by implementing iterative computations of the
J terms where a series of matrix-vector multiplications are
performed to detect the transmitted symbols vector. Hence,
one can write

xTPE =
J−1∑
l=0

wl x̂l, (16)

where

x̂l =
{
HHy, l = 0
HH (Hx̂l−1), 1 ≤ l ≤ J − 1.

(17)

From (13) and (17), it can be shown that the computational
complexity3 of

x̂TPE =WTPEy (18)

requires (16J −8)KN − (2J −2)N + (J −2)K floating-point
operations (FLOPs). Moreover, the calculations of wl’s need
some additional operations. For a given α, the computations
of all coefficients require J2 + 25J − 12 and J2 + 37J − 16
FLOPs, respectively for ZF and MMSE versions of the TPE
detector.

3The computational complexity calculations are based on the computa-
tional complexity of matrix operations in [33].

III. PROPOSED LOW-COMPLEXITY TPE-BASED
DETECTORS
The normalization factor α has a crucial impact on the con-
vergence of the TPE detector. The convergence requirement
in Lemma 1 results in the following condition

0 < α <
2

λmax(G)
, (19)

for ZF and

0 < α <
2

λmax(G)+ µ
, (20)

for the MMSE, where λmax(G) denotes the maximum eigen-
value ofG = HHH. This normalization factor is used to shift
the eigenvalues of G to the convergence area as they may
lie outside of the area. A coarse choice for the normalization
factor can be α = 2

Trace(G) , as one can write∑
n

λn(G) =
∑
n

gn,n = Trace(G) > λmax(G), (21)

where λn(G) is the n-th eigenvalue of G. However, the
convergence of the TPE with this value of α is slow. This
approximation needs 8NK −2 operations for the calculations
of the summation of the diagonal entries of G. It is shown
in [34] that the fastest convergence happens when the two
extreme cases, αλmin(X) and αλmax(X), are equally distant to
unity. Hence, one can write

αopt =
2

λmin(G)+ λmax(G)
, (22)

for ZF and

αopt =
2

λmin(G)+ λmax(G)+ µ
, (23)

for the MMSE. However, the calculation of G itself requires
O(NK 2) operations. In addition, the calculations of λmin(G)
and λmax(G) require O(K 3) operations. An approximate
method is proposed in [23] by offering intervals for the
eigenvalues of G. This method reduces the complexity of the
eigenvalues calculations toO(K 2). However, it still needs the
computation of the entries of G.

A. PROPOSED NORMALIZATION FACTOR FOR SMALL
LOADING FACTORS
In an effort to reduce the computational complexity per-
taining to the calculations of optimal normalization factor,
we here propose to set the normalization factor based on the
approximation for the extreme eigenvalues of G. Since G is
a complex central Wishart matrix, when N and K grows we
have [35]

λmax(G) ≈ (1+
√
β)2,

λmin(G) ≈ (1−
√
β)2, (24)

where β = K
N is the loading factor of the massive MIMO

system. The approximations in (24) are accurate when K and
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Algorithm 1 Power Method for Extreme Eigenvalues
Input: H, y, J
Output: λmax(G), λmin(G)
1: x0 = HHy
2: xmax = x0, xmin = x0
3: for l = 1, · · · , J − 2 do
4: vmax = HHHxmax
5: xmax = vmax
6: if l = 1 then
7: λ̂max =

(HHHxmax )H xmax
xmaxH xmax

8: end if
9: vmin = (HHH− λ̂maxI)xmin
10: xmin = vmin
11: end for
12: λmax(G) = (HHHxmax )H xmax

xmaxH xmax

13: λmin(G) = ((HHH−λ̂max I)xmin)H xmin
xminH xmin

+ λmax(G)

N are large and the loading factor is small. Suppose we are
using the ZF version of the TPE detector. If we select

α =
2

(1−
√
β)2 + (1+

√
β)2

(25)

=
1

(1+ β)
, (26)

this normalization factor satisfies the convergence condition
in Lemma 1, as one can write

α =
2

(1−
√
β)2 + (1+

√
β)2

(27)

≈
2

λmin(G)+ λmax(G)
<

2
λmax(G)

. (28)

The computational complexity of calculating the proposed
normalization factor in (26) is O(1) as it only needs one
addition and one division. Moreover, as will be shown in
SectionV, by using this normalization factor, the convergence
of the TPE is similar to that of the TPE with the optimal
normalization factor in (22).

B. MASSIVE MIMO SYSTEMS WITH LARGE LOADING
FACTORS
The approximations for the extreme eigenvalues of G in (24)
are accurate when K and N are large and β is small. For large
β’s, the eigenvalues may be different from the approxima-
tions, which will affect the error performance of the system.
As shown in Section V, for a large β, e.g., β = 16

64 = 0.25,
the proposed TPE-based detector’s bit error (BER) perfor-
mance diverges from that of the TPE-based detector with
αopt. To address this shortcoming, we propose approximating
the extreme eigenvalues of G using a low-computational
complexity algorithm. Particularly, we exploit the power iter-
ation method in approximating these eigenvalues which are
ultimately utilized in the normalization factor for massive
MIMO systems with large loading factors.

The powermethod [33] is an iterative algorithm for approx-
imating the largest eigenvalue of a matrix with linearly inde-
pendent eigenvectors and a dominant eigenvalue. The algo-
rithm starts with a non-zero initialization vector iteratively
multiplied by matrix G, i.e.,

x1 = Gx0,

x2 = Gx1 = G2x0,
...

xm = Gxm−1 = Gmx0. (29)

For large powers ofm, a good approximation of the dominant
eigenvector of G is obtained. The corresponding eigenvalue
is obtained by the Rayleigh quotient

λmax(G) ≈
(Gxm)Hxm
xmHxm

. (30)

Here, we propose initiating the algorithm with x0 = HHy
and limiting the number of iterations of the power method
in (29) to m = J − 2 in order to use the already calculated
TPE terms in (17) for the calculation of the largest eigenvalue.
By comparing (17) and (30), one can write

λmax(G) ≈
x̂HJ−1x̂J−2
x̂HJ−2x̂J−2

. (31)

With these choices of initialization and number of iterations,
the power method only needs 16K + 2 additional FLOPs
for the calculation of λmax(G). We note that since we utilize
the TPE terms for the calculation of λmax(G), it can be
implemented in parallel to the TPE terms calculations without
imposing further processing delay on the system.

In the following, we discuss how efficiently we can obtain
an approximation for λmin(G). As G is a positive definite
matrix, matrix G′ = G − λmax(G)IK is a negative definite
matrix with the dominant eigenvalue λmin(G) − λmax(G).
As a result, by inputting matrix G′ to the power method,
an approximation of λmin(G) can be calculated as follows

λmin(G) ≈
((G− λmaxI)xm)Hxm

xmHxm
+ λmax(G). (32)

For this approach, the approximation of λmin(G) requires
prior knowledge of λmax(G). The straightforward solution is
to calculate λmin(G) after obtaining λmax(G) in (30) using
two separate instances of the power method. However, this
approach increases the processing delay by the number of
iterations of the power method for calculating λmin(G). As a
result, we propose to calculate both λmin(G) and λmax(G)
simultaneously, where a coarse approximation of λmax(G),
which is obtained at the early steps of the power method,
is used for λmin(G) approximation. Algorithm 1 contains the
detailed steps of the proposed approach.

Remark 1: For massive MIMO systems with large loading
factors, using the proposed method, a relatively accurate
approximation of λmax(G) can be attained. However, the
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approximated λmin(G) might differ from the actual smallest
eigenvalue for some channel realizations. This mismatch can
be reduced by increasing the number of iterations or selecting
an appropriate initialization at the cost of increased compu-
tational complexity. However, for our application, as shown
in Section V, such a mismatch does not affect the system’s
performance.

C. SPATIALLY CORRELATED MASSIVE MIMO CHANNELS
In realistic wireless communication environments, the error
performance of the uplink of massive MIMO systems is
affected by the spatial correlation between the antennas at
the BS. We consider the spatially correlated channel model
in [36] and [37] such that

Hsc = R1/2H, (33)

where R ∈ RN×N is the correlation matrix defined as

R =


1 ρ . . . ρN−1

ρ 1 . . . ρN−2

...
...

. . .
...

ρN−1 ρN−2 . . . 1

 ,
where ρ is the correlation coefficient. In Section V, we evalu-
ate the error performance of our proposed TPE-based detector
for spatially correlatedMIMO channels.We replace the chan-
nel matrix H in (5) with Hsc in (33). We also normalize Hsc
in (33) by the norm ofR1/2 in order to have a consistent SNR
adjustment with the uncorrelated MIMO channel scenario.
We also note that for such channels, we use the TPE-based
detectors with the proposed normalization factor using Algo-
rithm 1 as the extreme eigenvalues approximations in (24) are
not valid for such channels.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we verify the computational complexity of
the proposed TPE-based detectors. We assume six and two
FLOPs per complex multiplication/division and complex
addition/subtraction, respectively. We note that the multipli-
cation of sizeK×N andN×M matrices requires (8N−2)KM
FLOPs [33]. For a given massive MIMO system, one can
show that:

• The calculation of α requires 8 FLOPs.
• For a given α, the calculations of all wl’s require J2 +
25J − 12 and J2 + 37J − 16 FLOPs for the ZF and the
MMSE versions of the TPE, respectively.

• The iterative computations of J terms in (17) require
(16J − 8)KN − (2J − 2)N + (J − 2)K FLOPs.

Consequently, the computational complexity of our proposed
TPE-based detector with the constant normalization factor
in (26) is O(JKN ).
For massive MIMO systems with large loading factors, one
needs to add the computational complexity of Algorithm 1.
One can show that:

• Calculation of λ̂max needs 16K + 2 FLOPs.

• We need to calculate

(G− λ̂maxI)lHHy =
l∑

k=0

(
l
k

)
(−λ̂max)kGl−kHHy

(34)

for l = 1, · · · , J − 1. For all iterations, the calculations
of the required powers of λ̂max and the coefficients need
12(J − 2) FLOPs.

• Given the coefficients, the calculation of the expression
in (34) needsK . J (J−1)2 additions andK .( J (J+1)2 −1)mul-
tiplications for all iterations. Hence, it needs K (4J2 +
2J − 6) FLOPs.

• By using the already calculated terms in (17), the calcu-
lation of λmax(G) needs 16K + 2 FLOPs.

• The calculation of λmin needs 16K + 4 FLOPs.
As a result, compared to the constant normalization factor,
the computational complexity of Algorithm 1 increases by
O(J2K ). Hence, for both cases of small and large loading fac-
tors of massive MIMO, the overall computational complexity
of our proposed TPE-based detector is O(JKN ).

In Section II, we assumed that all users have the same
transmit power. Now, we discuss how different transmit
power of users will affect the computational complexity of
the proposed methods. It can be shown that the TPE of the
ZF solution in (3) requires only K extra multiplications, and
consequently O(K ) extra FLOPs, compared to TPE of the
equal transmit power case in (6). For the MMSE solution,
by writing the TPE of (4), in each iteration, the multiplication
of matrix P with the estimated vector requires K multiplica-
tions. Therefore, it requires O(JK ) extra FLOPs compared
to the equal transmit power case in (7). Therefore, for the
unequal transmit power scenario, the overall computational
complexity of the proposed method will also be O(JKN ).
We should also note that as the results in Section V show, the
ZF and theMMSE detectors have the same error performance
for considered massive MIMO configurations. Therefore,
a small saving in computational complexity can be achieved
by the ZF implementation for both scenarios of equal and
unequal users’ transmit power.

In Table 1, we compare the complexity of different detec-
tion schemes. For m = J , our proposed TPE-based detec-
tor has the same computational complexity as AMP-based
and OCD-based detectors. In Section V, for different mas-
sive MIMO systems, we compare the error performance
of our proposed TPE-based detector with AMP-based and
OCD-based detectors.

The AMP-based detectors fail to converge for large
loading factors of massive MIMO systems or spatially cor-
related massive MIMO channels. Moreover, an inappropri-
ate adjustment of the noise variance can degrade the error
performance of the AMP-based detectors. In contrast, our
proposed TPE-based detector ensures convergence to the ZF
or the MMSE detectors. Also, the ZF version of the proposed
TPE-based detector does not require knowledge of noise
variance.
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TABLE 1. Computational complexity in terms of complex multiplications.

FIGURE 1. Convergence evaluation of TPE for different normalization factors.

The OCD-based detector can converge fast for different
scenarios of massive MIMO systems. However, the main
drawback of the OCD-based scheme lies in its processing
delay, as the update of each coordinate (corresponding to a
user) depends on the updates of previous coordinates. This
dependency increases the processing delay to a number pro-
portional to both the number of users and iterations, i.e., mK ,
and prevents fully-parallel implementation of the scheme.
However, although our proposed TPE-based detector needs
a larger number of iterations to approach the error perfor-
mance of the ZF or the MMSE, it can be implemented in
a fully-parallel manner. In each iteration of our proposed
detectors, the estimates of all users are calculated simulta-
neously, resulting in a processing delay proportional only to
the number of iterations (or TPE terms), i.e., m.
Table 1 also includes the overall computational complexity

of the CG-based detector, which isO(mKN ). It is worth men-
tioning that some works in the literature, for example [32],
have reported a higher computational complexity for the
CG-based detector. In those works, it is assumed that the
Gram matrix (or its regularized version) is given as an input
to the CG-based detector, which requires a matrix-matrix
multiplication. However, one can easily verify that the corre-
sponding matrix-matrix multiplication can be replaced with
matrix-vector multiplications. Therefore, the overall compu-
tational complexity of the CG-based detector is O(mKN ).

V. SIMULATION RESULTS
In this section, we consider several massive MIMO systems
in order to investigate the error performance of the proposed

TPE-based detectors. For all simulations, we refer to the
proposed constant normalization factor in (26) and using
Algorithm 1 as αconstant and αpower, respectively.
Fig. 1 shows the averagemean square error (MSE) between

the exact inverse of G and its approximation using TPE for
10, 000 channel realizations. We consider different normal-
ization factors and TPE orders in order to investigate the
convergence of the TPE. Our proposed normalization fac-
tor αconstant exhibits an MSE similar to the TPE with αopt.
Moreover, α = 2

Trace(G) has a very slow convergence. Also,
α = 1

λmax (G) shows a better convergence speed, but it still is
far from the optimal convergence speed. The simple choice of
α = 1 diverges at large TPE orders when the loading factor
is large. It is worth mentioning that the provided results in
Fig. 1 are the average MSE for 10, 000 channel realizations
while the worst case MSE is also important, especially for the
BER of wireless communication systems where one coarse
approximation can result in a poor error performance, espe-
cially at high SNRs.

As Fig. 2 shows, the BER performances of the TPE-based
detector with αconstant are similar to the case when αopt
is used for 128 × 16, 256 × 16, and 512 × 16 MIMO
systems. Moreover, J = 5, J = 4, and J = 3 are
respectively sufficient for these systems to approach the
BER performances of the ZF and the MMSE detectors with
exact inversion. However, for a 64 × 16 massive MIMO
system, although the TPE-based detector with αconstant per-
forms similar to the TPE-based detector with αopt at low and
moderate SNRs, there is a performance gap at high SNRs.
It happens due to the inaccuracy of the extreme eigenvalues
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FIGURE 2. BER performances of the TPE-based detector using the proposed constant normalization factor for massive MIMO systems with different
loading factors and 16-QAM modulation.

approximations in (24) for systems with large loading
factors.

In Fig. 3, we use the TPE-based detector with αpower in
order to resolve the convergence issue with αconstant for the
64 × 16 MIMO systems, which has a large loading factor.
As Fig. 3a shows, the TPE-based detector converges with
αpower, and it requires J = 10 to approach the BER of the ZF
or the MMSE for 16-QAM modulation. In Fig. 3b, we eval-
uate our proposed TPE-based detector for the higher-order
64-QAM modulation. For this system, a similar convergence
behaviour is observed, and αpower with J = 12 is required to
approach the BER of the ZF or the MMSE detectors.

We should note that for this MIMO system with 16-QAM
modulation, for SNRs higher than approximately 10 dB,
to approach the BER of ZF/MMSE, the proposed method
requires a TPE order J that results in a higher computational
complexity than the direct implementation of ZF/MMSE.
However, this is not the case for all MIMO configurations

with β = 0.25. For example, doubling the number of users
and BS antennas, we have a 128×32 MIMO system with the
same β = 0.25. For this MIMO system with 16-QAMmodu-
lation, according to our simulations, at high SNRs, J = 10 is
required to achieve the BER of ZF/MMSE. Table 2 contains
the computational complexity of ZF/MMSE detectors and
the proposed methods in terms of FLOPs for different BER
requirements. For a 128 × 32 MIMO system with 16-QAM
modulation, the computational complexity reduction of the
proposed method compared to the ZF/MMSE detector is
about %11.67 at the SNR of 20 (BER≈ 10−6). The reduction
improves to %30.48 and %49.16 for BERs of 10−4 and 10−2,
respectively, where J = 8 and J = 6 are required to achieve
these BERs.

Despite such a limitation for our proposed methods for
some MIMO configurations, our proposed methods have
advantages over the ZF/MMSE detector. Besides the fully-
parallel implementation capability, our proposed methods
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FIGURE 3. BER performances of the TPE-based detector with the proposed normalization factor using Algorithm 1 for a 64× 16 MIMO system with
16-QAM and 64-QAM modulations. For this system, the loading factor is large, β = 16

64 = 0.25.

FIGURE 4. BER performances comparison of the proposed TPE-based detector with AMP-based and OCD-based detectors for (a) 64×16 and (b) 256×16
MIMO systems with 16-QAM modulation. The TPE-based detector is tuned using the proposed (a) constant normalization factor and (b) Algorithm 1.

offer a flexible framework where the computational com-
plexity can be adjusted based on BER requirements with
considerable computational complexity savings at low to
medium SNRs. For example, for a 64 × 16 MIMO system
with 16-QAM, the proposed methods has less computational
complexity than the direct implementation of the ZF/MMSE
detector for SNRs less than 10 dB, where J = 6 or less is
needed to approach the BER of the ZF/MMSE detector.

In Fig. 4, we compare our proposed TPE-based detector
with AMP-based and OCD-based detectors. We consider a
64 × 16 massive MIMO system with a large loading factor
of β = 0.25 and a 256 × 16 massive MIMO system with a
small loading factor of β = 0.0625. The proposed TPE-based
detector converges for these two systems. However, although

the AMP-based detector converges with m = 3 for massive
MIMO systems with small β in Fig. 4b, it fails to converge
for the massive MIMO systems with large β in Fig. 4a such
that it cannot approach the BER of MMSE and after a certain
point increasing the number of iterations will not improve the
BER performance.

According to Fig. 4, the OCD-based detector converges
to the BER of the MMSE with m = 6 and m = 3 iter-
ations for 64 × 16 and 256 × 16 massive MIMO systems,
respectively. In contrast, the proposed TPE-based detector
requires m = J = 10 and m = 4 iterations for these two
systems. However, the processing delay associated with the
OCD-based detector for these two systems with the men-
tioned number of iterations are respectively proportional to
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FIGURE 5. BER performances comparison of the proposed TPE-based detector with AMP-based and OCD-based detectors for a spatially correlated
128× 16 MIMO channel with (a) ρ = 0.2 and (b) ρ = 0.3 with 16-QAM modulation. The normalization factor of the TPE-based detector is obtained using
Algorithm 1.

TABLE 2. Computational complexity comparison with direct ZF/MMSE implementation in terms of FLOPs.

FIGURE 6. BER performances comparison of the proposed TPE-based detector with the CG-based detector for a 128× 16 massive MIMO channel with
16-QAM modulation; (a) uncorrelated and (b) spatially correlated with ρ = 0.2.

mK = 96 and mK = 48, while those of our proposed
TPE-based detector are respectively proportional to m =
10 and m = 4. Such smaller processing delays are achieved
because of the fully-parallel implementation capability of our
proposed TPE-based detector.

In Fig. 5, we consider a 128 × 16 massive MIMO system
with two different correlation coefficients, ρ = 0.2 and
ρ = 0.3. For these two systems, the AMP-based detector
suffers from a severe performance degradation such that it
cannot approach the BER of the MMSE detector even with a
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large number of iterations. The proposed TPE-based detector
approaches the BER of theMMSEdetector, respectively, with
J = 12 and J = 16. Although the OCD-based detector can
achieve these BER performances with approximately half of
the number of iterations required for the TPE-based detector,
the processing delays of the OCD-based detector for these
two systems are proportional to 96 and 128, while those of
the proposed TPE-based detectors are proportional to 12 and
16, respectively.

We should note that for spatially correlatedmassiveMIMO
channels, the superiority of our proposed methods in terms
of computational complexity holds up to a specific BER.
Furthermore, the BER range is extended when the spatial cor-
relation reduces. For example, in Fig. 5b, only for BERs less
than ≈ 10−2 the proposed method has a smaller complexity
than the direct implementation of ZF/MMSE. For the spatial
correlation of ρ = 0.2 in Fig. 5a, the BER range is extended
to BER≈ 0.04. According to our simulation results, the BER
range is extended to≈ 10−3 and≈ 3×10−4 for ρ = 0.1 and
ρ = 0.5, respectively.

In Fig. 6, we compare our proposed TPE-based detector
with the CG-based detector for a 128 × 16 massive MIMO
system with 16-QAM modulation. As Fig. 6a shows, for this
system with the uncorrelated channel matrix, the proposed
TPE-based detector with αconstant requires m = J = 5 while
the CG-based detector requires m = 4 in order to approach
the ZF or MMSE solution. For the system with the spatial
correlation of ρ = 0.2 between BS antennas in Fig. 6b,
the CG-based detector converges with m = 6 while our
proposed TPE-based detector needs m = J = 12 in order
to approach the ZF or MMSE solution. Similar to our pro-
posed TPE-based detectors, in each iteration, the CG-based
detector updates the detected signal vector for all users simul-
taneously. However, the CG-based detector will not provide
the post-processing SINR information for the calculations of
LLR values for the soft-output detection.

VI. CONCLUSION
We proposed efficient TPE-based detectors for uplink mul-
tiuser massive MIMO systems. The efficiency of the pro-
posed detectors is realized based on achieving comparable
performance to linear detectors while requiring significantly
lower computational complexity. FormassiveMIMO systems
with small loading factors, we exploited the asymptotic prop-
erties of the complex Wishart matrices and proposed a con-
stant normalization factor for the TPE-based detector. Also,
we proposed an efficient algorithm for systems with large
loading factors by utilizing the power method for approxi-
mating the extreme eigenvalues of the channel Gram matrix
for tuning the corresponding normalization factor. The pro-
posed detectors have a linear computational complexity in the
dimensions of the system and the order of the TPE.Moreover,
our proposed detectors ensure convergence to the ZF or the
MMSE detectors with a fully-parallel implementation capa-
bility and, consequently, a small processing delay. One future
direction for this work is to extend the proposed schemes to

the case of coordinatedmulti-point transmissionwhere two or
more based stations cooperate in serving multiple users. Such
a system model requires processing the proposed schemes in
a distributed manner.

REFERENCES
[1] G. J. Foschini, ‘‘Layered space-time architecture for wireless communi-

cation in a fading environment when using multi-element antennas,’’ Bell
Labs Tech. J., vol. 1, no. 2, pp. 41–59, Feb. 1996.

[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
‘‘An overview of massive MIMO: Benefits and challenges,’’ IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[3] T. L. Marzetta, ‘‘Noncooperative cellular wireless with unlimited numbers
of base station antennas,’’ IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive
MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, ‘‘Scaling up MIMO: Opportunities and challenges with
very large arrays,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60,
Dec. 2013.

[6] J. Hoydis, S. T. Brink, and M. Debbah, ‘‘Massive MIMO: How many
antennas do we need?’’ in Proc. 49th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Sep. 2011, pp. 545–550.

[7] H. Huh, G. Caire, H. C. Papadopoulos, and S. A. Ramprashad, ‘‘Achiev-
ing ‘massive MIMO’ spectral efficiency with a not-so-large number of
antennas,’’ IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3226–3239,
Sep. 2012.

[8] A. Benzin, G. Caire, Y. Shadmi, and A. M. Tulino, ‘‘Low-complexity trun-
cated polynomial expansion DL precoders and UL receivers for massive
MIMO in correlated channels,’’ IEEE Trans. Wireless Commun., vol. 18,
no. 2, pp. 1069–1084, Feb. 2019.

[9] Q. Zhang, X. Zhao, J. Wang, and Y. Wang, ‘‘Designing a QAM signal
detector for massive MIMO systems via PS-ADMM approach,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2022,
pp. 5333–5337.

[10] M. A. M. Albreem, A. A. El-Saleh, andM. Juntti, ‘‘On approximate matrix
inversion methods for massive MIMO detectors,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[11] M. Wu, B. Yin, A. Vosoughi, C. Studer, J. R. Cavallaro, and C. Dick,
‘‘Approximate matrix inversion for high-throughput data detection in
the large-scale MIMO uplink,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2013, pp. 2155–2158.

[12] B. Yin, M. Wu, C. Studer, J. R. Cavallaro, and C. Dick, ‘‘Implementation
trade-offs for linear detection in large-scale MIMO systems,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2013,
pp. 2679–2683.

[13] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, ‘‘Large-
scale MIMO detection for 3GPP LTE: Algorithms and FPGA implemen-
tations,’’ IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 916–929,
Oct. 2014.

[14] L. Dai, X. Gao, X. Su, S. Han, I. Chih-Lin, and Z.Wang, ‘‘Low-complexity
soft-output signal detection based on Gauss–Seidel method for uplink
multiuser large-scale MIMO systems,’’ IEEE Trans. Veh. Tech., vol. 64,
no. 10, pp. 4839–4845, Oct. 2015.

[15] X. Gao, L. Dai, Y. Hu, Y. Zhang, and Z. Wang, ‘‘Low-complexity signal
detection for large-scale MIMO in optical wireless communications,’’
IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1903–1912, Sep. 2015.

[16] W. Song, X. Chen, L. Wang, and X. Lu, ‘‘Joint conjugate gradient and
Jacobi iteration based low complexity precoding for massive MIMO sys-
tems,’’ in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Jul. 2016,
pp. 1–5.

[17] X. Gao, L. Dai, Y.Ma, and Z.Wang, ‘‘Low-complexity near-optimal signal
detection for uplink large-scale MIMO systems,’’ Electron. Lett., vol. 50,
no. 18, pp. 1326–1328, Aug. 2014.

[18] J.-C. Chen, ‘‘A low complexity data detection algorithm for uplink mul-
tiuser massive MIMO systems,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 8, pp. 1701–1714, Aug. 2017.

[19] A. Kammoun, A. Müller, E. Björnson, and M. Debbah, ‘‘Linear precoding
based on polynomial expansion: Large-scale multi-cell MIMO systems,’’
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 861–875, Oct. 2014.

91620 VOLUME 10, 2022



K. Izadinasab et al.: Low-Complexity Detectors for Uplink Massive MIMO Systems Leveraging TPE

[20] J. Hoydis, M. Debbah, and M. Kobayashi, ‘‘Asymptotic moments for
interference mitigation in correlated fading channels,’’ in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2011, pp. 2796–2800.

[21] A. Müller, A. Kammoun, E. Björnson, and M. Debbah, ‘‘Efficient lin-
ear precoding for massive MIMO systems using truncated polynomial
expansion,’’ in Proc. IEEE 8th Sensor Array Multichannel Signal Process.
Workshop (SAM), Jun. 2014, pp. 273–276.

[22] S. Zarei, W. Gerstacker, and R. Schober, ‘‘Low-complexity widely-linear
precoding for downlink large-scale MU-MISO systems,’’ IEEE Commun.
Lett., vol. 19, no. 4, pp. 665–668, Apr. 2015.

[23] G. M. A. Sessler and F. K. Jondral, ‘‘Low complexity polynomial expan-
sion multiuser detector for CDMA systems,’’ IEEE Trans. Veh. Technol.,
vol. 54, no. 4, pp. 1379–1391, Jul. 2005.

[24] K. Izadinasab, ‘‘Low-complexity near-optimal detection algorithms for
MIMO systems,’’ Ph.D. dissertation, Dept. ECE, Univ. Waterloo,
Waterloo, ON, Canada, 2020.

[25] S. Wu, L. Kuang, Z. Ni, J. Lu, D. Huang, and Q. Guo, ‘‘Low-complexity
iterative detection for large-scale multiuser MIMO-OFDM systems using
approximate message passing,’’ IEEE J. Sel. Topics Signal Process., vol. 8,
no. 5, pp. 902–915, May 2014.

[26] C. Jeon, R. Ghods, A. Maleki, and C. Studer, ‘‘Optimality of large MIMO
detection via approximate message passing,’’ in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 1227–1231.

[27] C. K. Wen, C. J. Wang, S. Jin, K. K. Wong, and P. Ting, ‘‘Bayes-optimal
joint channel-and-data estimation for massive MIMO with low-precision
ADCs,’’ IEEE Trans. Signal Process., vol. 64, no. 10, pp. 2541–2556,
May 2016.

[28] T. C. Zhang, C. K. Wen, S. Jin, and T. Jiang, ‘‘Mixed-ADC mas-
sive MIMO detectors: Performance analysis and design optimiza-
tion,’’ IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7738–7752,
Sep. 2016.

[29] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, ‘‘High-throughput
data detection for massive MU-MIMO-OFDM using coordinate descent,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2357–2367,
Dec. 2016.

[30] A. Elgabli, A. Elghariani, V. Aggarwal, andM. R. Bell, ‘‘A low-complexity
detection algorithm for uplink massive MIMO systems based on alter-
nating minimization,’’ IEEE Wireless Commun. Lett., vol. 8, no. 3,
pp. 917–920, Jun. 2019.

[31] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, ‘‘Conjugate
gradient-based soft-output detection and precoding in massive
MIMO systems,’’ in Proc. IEEE Global Commun. Conf., Dec. 2014,
pp. 3696–3701.

[32] Y. Hu, Z. Wang, X. Gaol, and J. Ning, ‘‘Low-complexity
signal detection using CG method for uplink large-scale MIMO
systems,’’ in Proc. IEEE Int. Conf. Commun. Syst., Nov. 2014,
pp. 477–481.

[33] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ. Press, 2013.

[34] G. M. A. Sessler and F. K. Jondral, ‘‘Rapidly converging
polynomial expansion multiuser detector with low complexity for
CDMA systems,’’ Electron. Lett., vol. 38, no. 17, pp. 997–998,
Aug. 2002.

[35] L. Liu, G. Peng, and S.Wei,MassiveMIMODetection Algorithm and VLSI
Architecture. Singapore: Springer, 2019.

[36] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, ‘‘Fading
correlation and its effect on the capacity of multielement antenna
systems,’’ IEEE Trans. Commun., vol. 48, no. 3, pp. 502–513,
Mar. 2000.

[37] J. Choi, S. R. Kim, and I. K. Choi, ‘‘Statistical eigen-beamforming with
selection diversity for spatially correlated OFDM downlink,’’ IEEE Trans.
Veh. Technol., vol. 56, no. 5, pp. 2931–2940, Sep. 2007.

KAZEM IZADINASAB (Member, IEEE) received
the B.Sc. degree from Shiraz University, Iran,
in 2012, the M.Sc. degree from the University
of Tehran, Iran, in 2015, and the Ph.D. degree
in electrical and computer engineering from the
University of Waterloo, Canada, in 2020. He is
currently working as a Senior Software Technol-
ogist at Dell Technologies Canada. He received
the Doctoral Thesis Completion Award and the
Faculty of Engineers (FOE) Award from the Uni-

versity of Waterloo, in 2020. He also received the Jim and Diane Ohi Memo-
rial Award for his leadership contributions to the Electrical and Computer
Engineering Department, University of Waterloo, and his high academic
achievement. His research interests include 5G communications, detection
algorithms for MIMO systems, and machine learning applications for wire-
less communication.

AHMED WAGDY SHABAN (Member, IEEE)
received the B.Sc. degree in electrical engineer-
ing from Alexandria University, Egypt, in 2010,
the M.Sc. degree in wireless communications
and information technology form Nile University,
Egypt, in 2014, and the Ph.D. degree in electri-
cal and computer engineering from the University
of Waterloo, Canada, in September 2020. He is
currently working as a Research Engineer at the
Wireless Advanced Systems Competency Center,

Huawei Technologies Canada. He was worked as a Research Assistant at
Qatar University, Qatar, and a Visiting Research Assistant at the Wireless
Intelligent Networks Center (WINC), Nile University. His research interests
include interference alignment and management, beamforming for massive
MIMOmillimeter wave systems, and integrated sensing and communication.
He received the Faculty of Engineers (FOE) Award and the Best Teach-
ing Assistantship Award from the Electrical and Computer Engineering
Department, University of Waterloo, in fall 2016 and spring 2018, respec-
tively. In addition, he received the Technology New Star Award and the
Rising Future Star Award from Huawei technologies Canada, in November
2021 and March 2022, respectively.

OUSSAMA DAMEN (Senior Member, IEEE)
received the Ph.D. degree in electronics and com-
munications from the École Nationale Supérieure
des Télécommunications (ENST) de Paris, France,
in October 1999. He did postdoctoral research at
the ENST, Paris, France, from November 1999 to
August 2000, and Electrical and Computer Engi-
neering Department, University of Minnesota,
from September 2000 toMarch 2001. FromMarch
2001 to June 2004, he was with the Electrical and

Computer Engineering Department, University of Alberta, working as a
Senior Research Associate of Alberta Informatics Circle of Research Excel-
lence (ICORE). In June 2004, he joined the Electrical and Computer Engi-
neering Department, University of Waterloo, Ontario, where he is currently
working as a Professor. He also held a visiting position at The Ohio State
University, in the summer of 2002. His current research interests include
codes and modulation design for wireless communication, beamforming for
massive MIMO systems, and fast decoding and detection algorithms.

VOLUME 10, 2022 91621


