
Received 2 August 2022, accepted 19 August 2022, date of publication 25 August 2022, date of current version 1 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3201536

Frequency Excursion Likelihood Constrained
Resource Scheduling for Large-Scale
Renewable Energy Integration
AKILA HERATH1, (Student Member, IEEE), M. A. MOHAMMED MANAZ 2, (Member, IEEE),
KITHSIRI M. LIYANAGE1, (Senior Member, IEEE), TAISUKE MASUTA3, (Member, IEEE),
CHAN-NAN LU 2, (Fellow, IEEE), AND KOJI NISHIO3
1Department of Electrical and Electronic Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
2Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
3Department of Electrical and Electronic Engineering, Meijo University, Nagoya 468-8502, Japan

Corresponding author: M. A. Mohammed Manaz (mohdmanaz@gmail.com)

This work was supported in part by the Taiwan Ministry of Science and Technology under Grant MOST 108-2221-E-110-036-MY3 and
Grant MOST 110-2222-E-110-002-MY3, and in part by the Meijo Asian Research Center.

ABSTRACT Net-load variability and uncertainty in high renewable penetration networks have imposed new
challenges to the system operators; adequate ramping, restart, and wider frequency and voltage operation
capabilities provided by responsive resources are required to preserve acceptable service quality. Flexibility
indicators and resource requirement constraints are proposed for unit commitment studies to address fast net-
load variations. However, there is a gap in demonstrating the application of proposed flexibility indicators
to determine the required minimum cost flexibility reserves to maintain desired operational performance.
To address this issue for system operation planning purposes, a two-stage corrective flexibility constrained
unit commitment (FCUC) formulation supported by a data-driven scheme for uncertainty quantification of
flexibility shortage driven under and over frequency events is proposed. The first stage unit commitment
(UC) is solved with relaxed flexibility constraints to determine the nominal resource schedules. A statistical
test is used to determine if the second stage UC is needed. The second stage UC is solved with tighter
flexibility constraints. A procedure to quantify the additional flexibility resources needed in the second stage
UC to achieve adequate frequency regulation performance with lower operational costs is presented. Test
results under various operation scenarios and comparisons with previous flexibility deployment methods
illustrate the effectiveness of the proposed method. Test results indicate that in certain situations, flexible
resources should remain online and be prioritized against less flexible (although cheaper) resources. The
costs incurred by the additional system flexibility required to maintain good frequency control performance
can be evaluated.

INDEX TERMS Flexibility, flexibility constraints, renewable energy, under/over frequency probability, unit
commitment.

NOMENCLATURE
A1,A2 Numerators resulting from the partial fraction

expansion of the transfer function 1f(s).
d The next day for which the operation is

planned.
dh dh ∈ � represents a past day belonging

to set �.
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approving it for publication was Zhouyang Ren .

D Damping constant of the system.
DTi Minimum downtime of unit i.
f± (i, t, d) Upward/downward (+/−) flexibility of unit i

at hour t of day d .
f̌±(i, t, d) Auxiliary variables representing the upward

and downward (+/−) flexibility required
from each unit i at hour t during next day
operations.
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Fr Fraction of spinning reserve capacity
deliverable readily.

F± (t, d) Upward/downward (+/−) flexibility of
the system at hour t of day d .

F̂
ad
± (t, d) Upward/downward (+/−) normalized

additional flexibility of the system at
hour t of day d .

F̂
ad
±,req (t, d) Upward/downward (+/−) normalized

additional flexibility needed to achieve
an acceptable reduction in under/over
frequency probability at hour t during
next-day operations.

Fad± (t, d) Upward/downward (+/−) additional
flexibility of the system at hour t of day
d .

Fad±,req (t, d) Upward/downward (+/−) additional
flexibility required to achieve a desired
operation at hour t of next day

H Total inertia of the system.
i An index representing each generator.
km Effective gain constant of the aggregated

spinning reserve generators
Load (t, d) Forecasted Load for hour t of day d .
n An index representing a possible realiza-

tion of net-load profile.
NL (t, d) Forecasted net-load for hour t of day d .
NLR±(t, d) Forecasted 1-hour upward/downward

(+/−) net-load ramp for hour t of day
d .

1NLR±(t, d) 1-hour upward/downward (+/−) net-
load ramp deviation from the forecast for
hour t of day d .

OL(i, t, d) Online status of unit i at hour t of day d .
(1 if it is online, 0 otherwise).

p1, p2 Poles of the transfer function 1f (s).
P(i, t, d) Scheduled power of unit i for hour t of

day d .
Pmin(i) Minimum output power limit of unit i.
Pmax(i) Maximum output power limit of unit i.
PLFC (i) Frequency regulation reserve capacity

committed from unit i.
R Equivalent system droop
Rload Frequency regulation reserve as a per-

centage of the load.
RES (t, d) Forecasted RES generation for hour t of

day d .
RR(i, t, d) Ramp rate of unit i during hour t of day

d .
RRmin(i) Minimum ramp rate capacity of unit i.
RRmax(i) Maximum ramp rate capacity of unit i.
t Time in hours.
1t Duration of unit commitment interval.
Tr Reheat time constant.
u (τ ) Unit step function.
UTi Minimum uptime of unit i.

τ Time elapsed from the power mismatch
event.

� Set of historical days having similar
characteristics to the next day opera-
tions.

n#(·) Represents a variable #(·) associated
with nth randomly generated net-load
realization.

#(·)′ Represents the actual value of the fore-
casted value given by variable #(·)

I. INTRODUCTION
As the electricity generation moves towards cleaner
renewable energy sources (RES), their inherent variable and
random nature pose new challenges to the power system
operators. In the past, the power system operation involved
committing generation capacity and ramping capability to
meet relatively smooth and predictable daily load demands.
Whereas today, due to intra-day variations of RES and
mismatch between the peak load and peak RES output hours,
it would require the system operators to repeatedly ramp
down and ramp up power outputs from energy resources to
match the net-load variations. The increased variability (due
to the diurnal nature of RES and load) and uncertainty (caused
by load and RES forecast errors) of the net-load, and the
replacement of traditional units by inverter-based renewables,
would require an improved scheduling algorithm to optimally
dispatch flexible resources to balance the net-load (the load
not served by the renewable energy sources) variations.

The ability of a power system to deploy its resources
to respond timely to net-load changes is called the power
system’s flexibility [1], [2], [3], [4], [5], [6]. It is reported
that when adding 14.5 GW of solar generation to the Electric
Reliability Council of Texas (ERCOT) power system, the
flexibility requirement could increase for the 1-hour ramp by
135% and for the 3-hour ramp by 30% [1]. It is predicted that
for 100% renewable electricity supply scenarios in 2030 and
2050, a generation mix with a nominal capacity of more than
twice the maximum demand is required [2] to ensure reliable
operations. Failing to meet the system flexibility require-
ments would lead to frequency deviations and excessive use
of frequency regulation resources [7]. Contingency reserve
capacity determined in security-constrained unit commitment
(SCUC) algorithms [8], [9], [10] must be supplemented with
flexibility reserves to ensure net-load following capability
amid increased variability and uncertainty.

Scheduling excessive flexibility reserves to support the
largest net-load ramps would increase operating costs.
To achieve efficient operations, system operators need a tool
to find a tradeoff between ‘‘low risk- high operation cost
options’’ and ‘‘high risk- low operation cost options’’ and
quantify the operation cost impact of flexibility reserve short-
age to make a sound decision.

Several flexibility metrics, such as periods of flexibility
deficit (PFD), insufficient ramp resource expectation (IRRE),
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etc., are proposed in the literature to assist power system plan-
ning studies [2], [11], [12], [13], [14], [15], [16], [17]. These
metrics give a statistical estimate of the flexibility shortage in
terms of rate of occurrence and expectation. Other flexibility
metrics, such as normalized flexibility index, measure the
generator unit-wise flexibility and are aggregated to get a
system-wise figure [18], [19], [20].

A flexibility shortage can result in a power imbalance and
affect the system frequency quality [21]. The swing equation
describes the relationship between the power mismatch (1P)
on the system frequency (f ),

2H
f
df
dt
= 1P+1PGov +1PD (1)

1PGov = Gov×
1f
f

(2)

1PD = D×
1f
f

(3)

where 1f is the frequency deviation and H is the effective
inertia constant of the system. Gov and D represent the coef-
ficients of post-event responses of the generators’ primary
controls and frequency-dependent load, respectively. The H
and Gov depend on the inertia of online generators and their
specified control schemes.

Decline of system inertia is causing serious operational
concerns with integration of renewables into the main grid.
Utilities are making greater efforts to reduce extended fre-
quency excursions. Fig. 1 shows the distributions of fre-
quency observed in Taiwan power system in November of
2003 and March 2022. The statistical grid frequency oscil-
lations around the nominal value may not always follow the
expected Gaussian distribution. Several factors contribute to
frequency deviations. Measurements showed larger fluctua-
tions every 15 minutes which is the time frame of power
dispatch in electricity markets. These can be reduced by
adopting shorter dispatch intervals. Abrupt weather condi-
tion, out-of-service, and disconnection of local power grid
with high renewable energy and the mains would cause high
frequency fluctuation risks on the operation day. Sufficient
frequency response reserve allocation is necessary to contain
the frequency deviation during such contingencies. Net-load
forecast error could lead to extended frequency excursions if
the system lacks flexibility.

Economic dispatch formulations that maximize flexibil-
ity reserve to respond to the uncertainty of forecasted RES
generation variations are presented in [22], [23], [24], and
[26]. However, these studies do not provide a direct control
mechanism to optimize the desired operational performance.

Previous approaches set minimum required flexibility
reserve levels (or flexibility margins) to cover an accepted
portion of the historical net-load forecast error distribution
or to support a set of forecast error scenarios generated using
historical net-load forecast error distribution.

Some UC/ED formulations set the minimum flexibility
reserve margins (Flex_up, Flex_down in Fig. 2) higher than
predefined forecast error confidence to reduce the variance

FIGURE 1. Distribution of frequency deviations observed in Taiwan power
system in November of 2003 and March of 2022.

of the power mismatch distribution. This approach would
lead to increased operational costs due to conservative esti-
mates of the largest acceptable power mismatch. Relaxing
the flexibility constraints in the UC formulation to allow
some power mismatch events, as long as the frequency
deviation is contained within the acceptable limits (1fmin,
1fmax ) could lower ancillary service costs in renewables
integrations.

A flexibility metric suited for operational studies to reflect
the effects of flexibility reserve shortage on frequency devi-
ations is yet to be specified. It should provide an avenue
for the operators to improve their unit commitment/dispatch
decisions to achieve acceptable performance and costs. In this
paper, the relationship between under/over frequency prob-
ability and normalized additional flexibility via F2P-maps
is determined and a statistical analyses based two-stage UC
method is proposed to determine adequate minimum cost
flexibility reserves needed to improve the frequency control
performance when excessive frequency violation is foreseen.
The first UC stage is solved with relaxed flexibility con-
straints to determine the next-day nominal schedule. A statis-
tical analysis based on next-day unit schedule and historical
net-load variations is used to predict if the second stage
corrective UC is required. If needed, the statistical analyses
results are extrapolated to determine the additional flexibility
required, and the corrective UC stage is solved with tighter
flexibility constraints to improve flexibility provision. The
contributions of this paper are:

i. Devising a corrective flexibility constrained unit com-
mitment (FCUC) formulation to improve the next-day
generation schedule when predicted frequency viola-
tion probability exceeds the acceptable limit.

ii. Introducing a stochastic approach to establish the
connection between flexibility reserve shortage and
under/over frequency probability.

iii. Proposing a method to quantify additional flexibility
resources needed to achieve an acceptable frequency
regulation performance with lower costs.
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FIGURE 2. Typical Probability distributions of forecast error, power mismatch and frequency deviation obtained by an hour’s historical data of a power
system.

The rest of this paper is organized as follows. Section II
gives a concise account of flexibility evaluation. Section III
presents the proposed FCUC formulation and its constituents.
Numerical results are given in Section IV, and Section V has
the concluding remarks.

II. FLEXIBILITY RESOURCE SCHEDULING
Operational flexibility represents the system’s ability to
deploy its resources to balance the changes in the net-load.
It depends on several factors, such as the ramping, quick-
start, and cycling capability of the available resources, control
margin available to adjust the power outputs, operational
practices (e.g., look ahead unit commitment and economic
dispatch can be more effective at responding to net-load
variations compared to their conventional variants), and emis-
sion and cost considerations [23]. In this work, flexibility
limitations due to emission and cost considerations, and the
effects of operational practices on flexibility are not explicitly
considered.

We utilize the system flexibility deployments and the
frequency responses obtained for past operation scenarios
to model the nominal relationship between flexibility and
frequency deviations. If likelihood of large frequency devia-
tions is low, the operators could reduce the flexibility reserve
deployment to save operation costs.

The magnitude of power mismatch, available frequency
response reserves, and system inertia in different periods of
a day and different seasons would determine severity of the
frequency deviations. The operation flexibility contributed by
online energy resources is evaluated first by quantifying the
range of power adjustment (up and down) available from each
energy resource i (i.e., C = [f− (i, t, d), f+ (i, t, d)]) over
a given time horizon 1t(in hours), and then by aggregating
them (also referred to as ‘‘available flexibility’’ or ‘‘flexibility
envelop’’) [2], [25], [27]. The up and down adjustment ranges
of a generator can be found using (4) and (5).

f+ (i, t, d)=OL (i, t, d)×min {(RRmax (i)×1t),

((Pmax (i)− PLFC (i))− P (i, t, d))} (4)

f− (i, t, d)=OL (i, t, d)×min {(RRmin (i)×1t),

(P (i, t, d)− (Pmin (i)+ PLFC (i)))} (5)

For a system with q number of generators, its total1t-hour
flexibility at time t of day d is defined by,

F+ (t, d) =
∑i=q

i=1
f+ (i, t, d) (6)

F− (t, d) =
∑i=q

i=1
f− (i, t, d) (7)

System operators perform the next-day unit commitment
based on the forecasted net-load profile. If the forecast is
accurate, the operators could precisely determine the flexi-
bility required to cope with the forecasted net-load variations.
However, due to possible rough weather conditions in a high
renewable energy power system, the net-load forecast error
could be significant. This uncertainty may require the oper-
ators to schedule additional flexibility reserves to manage
possible net-load deviations away from the forecasted values.

The forecasted upward and downward 1t hour net-load
ramps at hour t are,

NLR+ (t, d) = max {NL (t +1t, d)− NL (t, d), 0}

(8)

NLR− (t, d) = max {NL (t, d)− NL (t +1t, d), 0}

(9)

where, NL (t, d) = Load(t, d)−RES (t, d) is the forecasted
net-load for hour t of day d .

Let NL′ (t, d) = Load′(t, d) − RES′ (t, d) represent the
actual net-load during operation day d at hour t , then the
actual effective net-load ramps different from the forecasted
net-load ramps can be expressed as:

NLR′+ (t, d) = max {NL′ (t +1t, d)− NL (t, d), 0}

(10)

NLR′− (t, d) = max
{
NL (t, d)− NL′ (t +1t, d), 0

}
(11)

When the uncertain upward or downward net-load ramp
deviations (1NLR± (t, d)) defined as

1NLR+ (t, d) = NLR′+ (t, d)− NLR+ (t, d) (12)

1NLR− (t, d) = NLR′− (t, d)− NLR− (t, d) (13)

exceed a certain threshold, the frequency control performance
may degrade, and additional flexibility is required. Past
observations of under and over frequency events associated
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with flexibility shortage can be analyzed to assist informed
decision-making on flexibility resource re-scheduling if
desirable.

III. OPERATIONAL PERFORMANCE BASED FLEXIBILITY
RESERVE EVALUATION AND CORRECTIVE SCHEDULING
In this paper, a two-stage unit commitment procedure is
proposed to optimize flexibility reserve scheduling. The first
UC stage is solved with relaxed flexibility constraints to
determine the next-day nominal schedule. A statistical analy-
sis based on the obtained nominal next-day unit commitment
schedule and historical net-load variations is used to predict
if the second stage corrective UC is required. If needed, the
statistical analysis results are extrapolated to determine the
additional flexibility required, and the corrective UC stage is
solved with tighter flexibility constraints to enhance flexibil-
ity provision.

A. FLEXIBILITY CONSTRAINED UNIT
COMMITMENT (FCUC)
The proposed formulation incorporates additional linear flex-
ibility constraints (14)-(19) in the original UC formulation
(given in Appendix A) [28], [29] to deploy a predetermined
amount of flexibility reserve.∑i=q

i=1
f̌+ (i, t, d) ≥ NLR+ (t, d)+ Fad+,req(t, d) (14)∑i=q

i=1
f̌− (i, t, d) ≥ NLR− (t, d)+ Fad−,req (t, d) (15)

f̌+ (i, t, d) ≤ OL (i, t, d) (RRmax (i)×1t),

∀i (16)

f̌+ (i, t, d) ≤ OL (i, t, d) (Pmax (i)− PLFC (i)

−P (i, t, d)), ∀i (17)

f̌− (i, t, d) ≤ OL (i, t, d) (RRmin (i)×1t),

∀i (18)

f̌− (i, t, d) ≤ OL (i, t, d) (P (i, t, d)− Pmin (i)

−PLFC (i)), ∀i (19)

where, f̌+ (i, t, d), f̌− (i, t, d) ≥ 0 are auxiliary variables
representing the upward and downward flexibility required
from each resource i at hour t ∈ [1, 24]. The constraints
(14), and (15) enforce the system flexibility requirements
by limiting sum of f̌±(i, t, d) to be larger than the fore-
casted net-load ramps plus the required additional flexibility
(Fad±,req(t, d)). Constraints (16)-(19) enforce upper bounds
on f̌+(i, t, d) and f̌−(i, t, d) based on the individual resource
capability.

The flexibility constraints are relaxed in the first UC stage
by setting the Fad±,req (t, d) = 0∀t ∈ [1, 24] in (14) and
(15). Statistical analysis described in the next subsection
is used to predict the next-day frequency control perfor-
mance. If the predicted frequency control performance is not
acceptable, the FCUC is executed with appropriate values
for Fad±,req (t, d)∀t ∈ [1, 24]. The procedure is described in
Section III(C).

B. ESTMATION OF FREQUENCY VIOLATION PROBABILITY
In fig. 3, a Monte-Carlo simulation procedure based on his-
torical operation data showcases the major steps involved in
estimating probability of large frequency deviation during an
operation day d . To simplify the presentation, we will assume
1t = 1 hour .
Step 1: Solve the FCUC program with relaxed flexibility

constraints (i.e., Fad±,req (t, d) = 0∀t ∈ [1, 24] in (14) and
(15)) to determine the units’ nominal power output schedule.
Step 2: Calculate the available additional flexibility,

Fad± (t, d), at each hour t ∈ [1, 24] (20).

Fad± (t, d) = F± (t, d)− NLR± (t, d) (20)

To maintain proper operations the available additional flex-
ibility at hour t should be sufficient to meet the unforeseen
net-load deviations caused by RES forecast errors. For the
subsequent analysis the normalized additional flexibility is
computed as in (21),

F̂
ad
± (t, d) =

(
Fad± (t, d)

RES (t + 1, d)+ 1

)
(21)

(In the denominator, 1 MW is added to the RES forecast to
avoid it becoming zero).
Step 3: Perform Monte-Carlo simulations considering N

number of possible realizations of the actual net-load (gen-
erated by sampling the forecast error distribution. Refer to
Appendix B for information on the forecast error distri-
butions) and determine if there is any time instance with
flexibility shortage; if there are flexibility shortages, then
compute the resulting maximum system frequency deviations
due to that shortage. The maximum frequency deviation is
computed using the following simplified frequency response
(SFR) model [30].

1f(s)=
1
2π

(
n1P0 (s)(1+Trs)

(2Hs+ D) (1+Trs)+
km
R (1+FrTrs)

)
(22)

n1f (t, d, τ )= n1P0(t, d)
1
2π

(
A1
p1

(
1− ep1τ

)
u (τ )

+
A2
p2

(
1− ep2τ

)
u(τ )

)
(23)

where, n1P0 (t, d) is the power mismatch (due to flexibility
shortage) at the end of hour t in the nth random net-load
realization. It is calculated by the following:

n1P0(t, d) =



n1NLR+ (t, d)− Fad+ (t, d) ;
n1NLR+ (t, d) > Fad+ (t, d)

Fad− (t, d)− n1NLR− (t, d);
n1NLR− (t, d) > Fad− (t, d)

0; Otherwise

(24)

The maximum frequency deviation (n1fnadir(t, d)) is com-
puted by setting the gradient d(

n1f(t,d,n,τ ))
dτ to zero and finding

the corresponding frequency value.
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The stochastically generated N number of net-load real-
izations for each hour model uncertainties in the net-load.
At each hour, every net-load realization’s power mismatch
and possible frequency deviation estimated by SFR model
are calculated. With this scheme, the nature of short-term
stochastic frequency response and the near-term operation
behavior of the system could be considered in the day-ahead
UC program. Different frequency quality requirement level
could be specified in the day-ahead UC program. To be con-
servative, the largest power imbalance caused by flexibility
shortage during an hour could be considered to estimate the
largest frequency deviation caused by the shortage. In this
formulation we consider the 1-hour net-load ramp and flex-
ibility; the method can be extended to include shorter time
horizons too.
Step 4: For each hour t , count the total number of net-load

realizations resulting in over-frequency or under-frequency
situations (based on predefined acceptable frequency limits).
Then the over/under frequency probability (OFP/UFP) for
each hour is computed by (25) and (26). The UFP and OFP
are graphically illustrated on a PDF plot in Fig. 4.

OFP (t, d) =
1
N

∑N

n=1

(n1fnadir(t, d) > 1fmax
)

× 100% (25)

UFP(t, d) =
1
N

N∑
n=1

(n1fnadir(t, d) < 1fmin
)

× 100% (26)

C. DEVELOPMENT OF THE F2P-MAP AND ITS
APPLICATION IN THE PROPOSED METHOD
Deficiency in upward/downward flexibility would increase
the likelihood of under/over frequency situations. Here ‘like-
lihood’ refers to the probability of the system frequency
exceeding an acceptable preset limit. Based on past opera-
tional practices and recorded data, the flow chart shown in
fig. 5 determines the mapping between downward (upward)
normalized additionalFlexibility and over (under)Frequency
violation probability (F2P-map – read as ‘‘F to P map’’)
that indicates the relationship between under/over frequency
probability and flexibility. Fig. 6 describes the parameters
involved in this process. The major steps to develop the
F2P-maps are described below.
Step 1: Select a suitable set of historical days (�) that

has similar characteristics to the next day’s operations (e.g.,
if the next day is a regular sunny weekday in July, then we
may select the operational data corresponding to the similar
days of July in previous years). Recorded historical load
and renewable generation data corresponding to the selected
days (dh ∈ �) are linearly scaled to match with the current
system peak load demand and RES penetration and used in
the subsequent steps.
Step 2: Apply the procedure given in Fig. 3 for each day;

determine the nominal day-ahead unit schedules and dispatch
for each of the selected days using the FCUC formulation

presented previously, with the additional flexibility require-
ment set to zero (Fad±,req (t) =0). Calculate under/over fre-
quency probability and normalized additional flexibilities for
each hour.
Step 3: Determine the relationship between the over/under

frequency probability and normalized additional flexibility.
Two scatter graphs Gt+and Gt− for each hour t ∈ [1, 24]
by grouping the output obtained in step 3 corresponding to
hour t of all days in � can be obtained. Each scatter graph
corresponding to hour t would contain all the following data
points:

Gt+ H⇒
(
F̂
ad
+

(
t, dh

)
,UFP

(
t, dh

))
∀dh ∈ �

Gt− H⇒
(
F̂
ad
−

(
t, dh

)
,OFP

(
t, dh

))
∀dh ∈ �

By applying piecewise nonlinear regression to each scatter
graph, the F2P-maps are found for each hour t (i.e., gt+ :

F̂
ad
+ (t) → UFP(t) and gt− : F̂

ad
− (t) → OFP(t) ). Different

F2P-maps can be drawn to incorporate operation schemes
and weather conditions in different seasons using appropriate
historical operational data.

Fig. 7 shows an application example of an upward F2P-map
(i.e., gt+); the blue line is the piecewise nonlinear regression
function obtained in Step 3. The arrows (i) & (ii) show the
steps to find the normalized additional flexibility required
(F̂
ad
+,req (t, d)) to reduce under-frequency probability to an

acceptable level UFPmax(t) set by the regulator.
After UFP and OFP for each hour are estimated for

the next day, if they are larger than acceptable probability
value for some t ∈ [1, 24], then by using F2P-map, the
amount of normalized additional hourly flexibility require-
ment (F̂

ad
+,req(t, d)) to reduce the probability to an acceptable

level (e.g., 1%) can be obtained. Fad±,req (t, d) for each hour is
then computed using the inverse of the definition in (21),

Fad±,req (t, d)= F̂
ad
±,req (t)×(RES (t+1, d)+1) (27)

D. APPLICATION OF THE PROPOSED UC METHOD IN
POWER SYSTEM OPERATIONS
The application of the proposed UC method in power system
operation framework has mainly three steps: 1) generate
F2P-maps using past net-load data, 2) use the first-stageUC to
identify excessive frequency excursions caused by flexibility
shortage, and 3) if needed, revise the resource schedule using
the second-stage UC.

The 1st step involves selecting a suitable set of historical
operation data and performing the Monte-Carlo simulations
as described in Section III(C). This step can be performed
before solving next day UC schedule. The 2nd step is solving
the FCUC for the forecasted next day net-load with relaxed
flexibility constraints. The nominal UC schedules obtained
in this stage are analyzed to determine the likelihood of
frequency violations during next day operation (using the
method described in Section III(B)). Depending on the num-
ber of scenarios considered in the Monte-Carlo simulations,
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FIGURE 3. Flow diagram of the proposed method to determine under/over frequency probability and normalized additional flexibility of next day.

FIGURE 4. Graphical illustration of UFP and OFP.

size of the system, and renewable energy penetration level,
the execution time needed for developing the F2P-maps may
vary. A system with high-RES content and low net-load
would require a higher execution time compared to the same
system with low- RES content and high net-load. In our
tests, it took about 4 hours and 10 hours to compute the
F2P-maps in case 1 and case 2, respectively, using a computer
equipped with Intel R©CoreTMi5-4200U processor and 4 GB
RAM. These computations can be performed independently
and stored for later use in Step 3.

If the predicted frequency violation probability is higher
than the acceptable level, the 3rd step is executed to reduce
frequency violation probability by enforcing the flexibility
constraints in FCUC formulation presented in Section III(A).
The minimum flexibility needed to achieve the desired
frequency response performance is identified using the
F2P-maps (as described Section III(C)).

IV. SIMULATION RESULTS
The power system model of the Kanto area of Japan is used
in this study [28]. The maximum demand in this test system
is approximately 60 GW. The system consists of 168 dis-
patchable thermal generators and un-dispatchable nuclear,
hydropower sources, and Solar PV. The parameters used in
the tests are given below [28], [31].

The test system operates at a nominal frequency of 50 Hz.
Acceptable frequency range in these simulations is ±0.3Hz.
The frequency response characteristic parameters in (22) are
chosen as follows: time constant Tr = 8s, system com-
plement fraction Fr = 0.3, load damping D = 1, system
regulation R = 0.05, effective gain constant km = 0.95. Unit
commitment interval1t = 1 hour , unit commitment duration
T = 24 hours. Parameters of the energy resources are given
in Table 1.

Operation data from May of 2016 and 2017 (representing
different load and renewable energy profiles and variations)
are considered in the base case [32]. The net-load forecast
errors at each hour are modeled as normal distributions;
their mean and standard deviations are given in Table 2 and
(Refer to Appendix B for more details). Proper � and N are
determined based on historical net-load ramp statistics. The
historical operation data recorded duringMay of previous two
years (|�| = 62) alongwith 10000 random net-load deviation
profiles (N = 10000) are used to develop the F2P-maps.
Two different renewable penetration cases are analyzed:
Case 1: 10 GW (original system) and Case 2: 20 GW (the
test system is modified by replacing nuclear and hydropower
sources with oil-based thermal generators, representing a
future scenario).

A. COMPARISON OF TWO_STAGE UC AND
CONVENTIONAL UC METHODS
The power system operation on a day in May of 2018 is
considered for this demonstration. Fig. 8 shows the next-day
RES forecast for the system with 10 GW RES. The load
forecast error is neglected in these tests. Fig. 9 shows the
proportion of the forecasted next-day net-load that should be
balanced by dispatchable resources (in green). The next-day
nominal unit schedule is computed based on the forecasted
net-load (by solving the first stage of UC with relaxed
flexibility constraints). The F2P-maps are obtained for each
hour using operation data of the same months in the past
two years. The F2P-maps shown in fig. 10(a) indicates that

VOLUME 10, 2022 90569



A. Herath et al.: Frequency Excursion Likelihood Constrained Resource Scheduling

FIGURE 5. Flow diagram to determine the relationship between normalized additional flexibility and frequency violation probability of each hour
(F2P-maps).

FIGURE 6. Graphical explanation of the parameters involved in F2P-maps.

FIGURE 7. Application of F2P-map to determine the additional flexibility
requirement.

between 9.00 am and 1.00 pm, without additional flexibility
provision the under-frequency probability could be 17% to
21%. Fig. 10(b) shows that the under frequency probability
would further increase in Case 2 due to heightened net-load
uncertainty and reduced number of committed thermal units
and system flexibility. Over frequency probability of this
system is zero for both the test cases and it suggests that the
system operates with enough downward flexibility.

To reduce the under frequency probability, the FCUC is
applied. The next-day UC of dispatchable thermal generators
is determined and compared using 4UCmethods: (i) Conven-
tional UC and FCUC constrained for (ii) 5%, (iii) 1%, (iv) 0%
frequency limits violation probability.

The normalized upward additional flexibility during each
hour of the day in case 1 dispatched by each of the above four
methods are shown in fig. 11. When using the conventional

TABLE 1. Parameters of the energy resources.

UC method, the additional upward flexibility is low during
high-RES generation hours due to fewer dispatchable gen-
erators committed. If flexibility reserves are not sufficient
the system may be unable to balance the net-load variations.
Fig. 12 shows that the predicted next-day under frequency
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FIGURE 8. Forecasted Renewable generation of 10GW RES system.

FIGURE 9. Day-ahead forecasts of load and the dispatch proportions of
the highest RES generation day in May of the current year.

TABLE 2. Means and standard deviations of normalized RES forecast
errors at each hour in may.

probability can reach ∼9% during hour 11 and 13 (due
to increased likelihood of power imbalance). The situation
is alleviated when using the corrective FCUC; it commits
more flexibility reserves compared to conventional UC in
hours with high RES forecast uncertainty, which helps to
maintain power balance and reduce the predicted next-day
under frequency probability. The largest under frequency
probability is reduced to 5.3%, 1.3%, and 0%, respectively in
each FCUC.

FIGURE 10. F2P-maps obtained for each hour between 6.00 am and
6.00 pm (given in t : hour number) considering the historical data during
the month of May in the previous two years (2016 and 2017).

FIGURE 11. Normalized upward additional flexibility during each hour of
the day of (case 1).

FIGURE 12. Predicted under frequency probability during each hour of
the day in (case 1).

To demonstrate the effectiveness of FCUC with maximum
frequency violation probability constraints, its application for
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FIGURE 13. Normalized upward additional flexibility during each hour of
the day (case 2).

FIGURE 14. Predicted under frequency probability during each hour of
the day (case 2).

the same day’s operations with case 2 (which has twice the
RES capacity) is discussed below. In this case, when using
conventional UC, the total number of committed dispatchable
generators reduces even further compared to case 1. Normal-
ized additional upward flexibility and the under-frequency
probability during the day are shown in fig. 13 and fig. 14,
respectively. Compared to case 1, the maximum predicted
UFP with conventional UC increases to ∼38%. The UFP is
reduced by executing the corrective FCUC.

It should be noted that the proposed F2P-maps are derived
from historical average relationship between additional flex-
ibility and frequency violation probability. The predicted
UFP for a future operational day is expected to follow this
average trend; nevertheless, some deviations can be expected.
Fig. 15 and Fig. 16 show the predicted frequency violation
probability for each operational day in May of 2018 when
using each UC method in case 1 and case 2 respectively.
When using the conventional UC, the highest predicted UFP
of ∼18% and 43% is observed during hour 13 in case 1 and
case 2. And it is brought under 6% using FCUC with 5%
UFP limit. Overall mean and standard deviation of predicted
UFP in May of 2018 in case 1 and case 2 are summarized
in Table 3 and Table 4, respectively. They show that the
algorithm brings the average UFP below the required limits in
both cases.

During operations the frequency is expected to remain
within the acceptable limits (i.e., ±0.3Hz) with increas-
ing likelihood as we decrease the allowable UFP and OFP.
On rare occasions, the frequency may exceed the limits.

FIGURE 15. Under frequency probability during each hour of all operation
day in May of 2018 (case 1).

FIGURE 16. Under frequency probability during each hour of all operation
day in May of 2018 (case 2).

TABLE 3. Summary of the predicted UFP for all 31 operation days in May
of 2018 (case 1).

B. COMPARISON OF CORRECTIVE FCUC WITH
FLEXIBILITY MARGIN CONSTRAINED UC
Operation schedules for case 1 and case 2 for the 31 oper-
ations days in May of 2018 are obtained with flexibility
margin basedUCprocedure used in previous studies. Here the
probability of power mismatch event (instead of frequency
violation) is considered as the limiting parameter. The UC
is executed with maximum of 5% and 1% power mismatch
probabilities. The required additional flexibility to limit the
probability of power mismatches to the desired values at
each hour is determined using the net-load forecast error
distributions. For an example, to limit maximum upward
power mismatch probability to 5%, the required additional
upward flexibility (Fad+,req) is equal to the positive net-load
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TABLE 4. Summary of the predicted UFP for all 31 operation days in May
of 2018 (case 2).

TABLE 5. Comparison of FCUC and other UC results for all 31 operation
days in May of 2018.

FIGURE 17. Average number of dispatchable units committed in
case 1 from 6.00 am to 6.00 pm for all the UC schemes considered.

forecast error margin that covers 95% of the net-load forecast
error distribution.

Table 5 shows the average number of thermal generators
committed, average UFP, and the average daily operational
cost under each unit commitment schedule 1 and case 2.
The flexibility margin based UC requires more thermal units
and incurs a higher operation cost. It shows good frequency
regulationwith 0%UFP throughout the day. Nevertheless, the

FIGURE 18. Average number of dispatchable units committed in case
2 from 6.00 am to 6.00 pm for all the 6 UC schemes considered.

proposed corrective FCUC with 0% maximum UFP achieves
a similar frequency regulation performance at a lower cost.
Fig. 17 and Fig. 18 present the average number of dispatch-
able units committed during each hour between 6.00 am and
6.00 pm in case 1 and case 2 respectively. During certain
hours the proposed corrective FCUC method reduces the
average number of dispatchable units by more than 10 units
while achieving similar frequency regulation performance as
the flexibility margin based UC algorithm.

V. CONCLUSION
This paper presents a new flexibility constrained UC formu-
lation; the first UC stage is solved with relaxed flexibility
constraints to determine the next-day nominal schedule, and
then a corrective UC stage is solved with tighter flexibility
constraints if needed. A Monte-Carlo simulation according
to next-day unit schedule and historical net-load variations is
used to predict if the second stage corrective UC is required.
If needed, the F2P-maps are used to determine the normalized
additional flexibility. The corrective UC stage is solved with
tighter constraints to improve flexibility provision. The pro-
posedmethod provides a tool for system operators to optimize
the unit commitment schedule while limiting the likelihood
of frequency limit violations. F2P-maps representing the
relationship between the available flexibility and under/over
frequency probabilities based on past system operation expe-
riences could be applied in a high renewable energy provision
environment to perform cost analysis on additional flexibility
needed to limit the under and over frequency probability
to an acceptable level. The cost saving benefits of the pro-
posed method are compared to the flexibility margin based
UC methods. In seasons with higher uncertainty of hourly
net-loads, the corrective FCUC scheme could assist system
operator to make informed decision on flexibility resource
dispatch with lower operation cost.

Flexibility resources requirements of a system must be
identified ahead of time and appropriate strategic decisions
must be taken at the long-term planning stage. Existing
power plants can be retrofitted to increase their ramping
capability and quick-start generators could be built to cater
the power system flexibility requirements. These issues
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have been extensively discussed in the literature and we
do not address this issue in this paper. If a system with
high renewable energy resources lacks the required flex-
ibility resources, its operations will become increasingly
challenging.

This paper proposes a method to optimally schedule the
flexibility resources in a power system while achieving an
acceptable frequency response performance. If the system
does not have enough flexible resources as required by the
flexibility constraints, the FCUC program may not find a
feasible solution. This can be avoided by converting these
constraints into soft constraints by using penalty functions
to find the best solution. Appropriate modifications of the
proposed method to suite a system lacking flexible resources
will be further studied in the future.

APPENDIX A
CONVENTIONAL UC FORMULATION
The formulation presented here is an adaptation of conven-
tional UC found in [29] for the operation procedures of the
system discussed in [28].

min
P(i,t,d)∈R,OL(i,t,d)∈{0,1}∑t=T

t=1

∑i=q

i=1

{
FC (P (i, t, d))OL (i, t, d)
+SC (i)OL (i, t, d) (1−OL (i, t−1, d))

}
(A-1)

where A (i),B (i),C (i) ∈ R are constants, SC (i) is
the startup cost of unit i. FC (P (i, t, d)) = A (i) +
B (i)P (i, t, d)+ C (i) (P (i, t, d))2.
Subject to:

NL (t, d) =
∑i=q

i=1
P (i, t, d)+ Phydro (t, d)

+Pnuclear (t, d) (A-2)

P (i, t, d) = P (i, t − 1, d)+ RR (i, t, d)1t (A-3)

(Pmin (i)+ PLFC (i))OL (i, t, d) ≤ P (i, t, d)

≤ (Pmax (i)−PLFC (i))OL(i, t, d) (A-4)∑i=q

i=1
PLFC (i)OL (i, t, d) ≥ Load(t, d)RLoad (A-5)

RRmin (i) ≤ RR (i, t, d) ≤ RRmax (i) (A-6)∑t=k+UTi−1

t=k
OL (i, k, d)

≥ UTi [OL (i, k, d)− OL (i, k − 1, d)],

∀k = 1 : (T − UTi + 1) (A-7)∑t=T

t=k
{OL (i, t, d)− [OL (i, k, d)− OL (i, k − 1, d)]}

≥ 0, ∀k = (T − UTi + 2) : T (A-8)∑t=k+DTi−1

t=k
(1− OL(i, k, d))

≥ DTi [OL (i, k − 1, d)− OL (i, k, d)],

∀k = 1 : (T − DTi + 1) (A-9)∑t=T

t=k
{1− OL (i, t, d)− [OL (i, k − 1, d)− OL (i, k, d)]}

≥ 0, ∀k = (T − DTi + 2) : T (A-10)

APPENDIX B
FORECAST ERROR DISTRIBUTION
By using the historical RES forecasts and actual RES gener-
ation data, the RES forecast error (eRES(t, dh)) for each hour
are calculated by applying the following equation.

eRES

(
t, dh

)
=

(
RES′(t, dh)− RES(t, dh)

RES(t, dh)

)
(B-1)

The forecast error corresponding to each hour is stochasti-
cally modeled as normally distributed random variable mean
µ(t) and standard deviation σ (t).
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