
Received 1 August 2022, accepted 15 August 2022, date of publication 24 August 2022, date of current version 2 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3201332

DVAEGMM: Dual Variational Autoencoder With
Gaussian Mixture Model for Anomaly Detection
on Attributed Networks
WASIM KHAN 1, MOHAMMAD HAROON2, AHMAD NEYAZ KHAN1, (Member, IEEE),
MOHAMMAD KAMRUL HASAN 3, (Senior Member, IEEE), ASIF KHAN 1, (Member, IEEE),
UMI ASMA MOKHTAR 3, AND SHAYLA ISLAM 4, (Senior Member, IEEE)
1Department of Computer Application, Integral University, Lucknow 226026, India
2Department of Computer Science and Engineering, Integral University, Lucknow 226026, India
3Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
4Institute of Computer Science and Digital Innovations, UCSI University, Kuala Lumpur 56000, Malaysia

Corresponding authors: Mohammad Kamrul Hasan (mkhasan@ukm.edu.my), Shayla Islam (shayla@ucsiuniversity.edu.my), and
Mohammad Haroon (haroon@iul.ac.in)

This work was supported by Universiti Kebangsaan Malaysia under Grant GUP-2019-061 and Grant FRGS/1/2020/ICT03/UKM/02/6.

ABSTRACT A significant aspect of today’s digital information is attributed networks, which combine
multiple node attributes with the basic network topology to extract knowledge. Anomaly Detection on
attributed networks has recently drawn significant attention from researchers and is widely used in several
high-impact areas. Most current approaches focus on shallow learning methods such as community analysis,
ego network or selection of subspace method. These approaches have network sparsity and data nonlinearity
problems, and they do not even capture the intricate relationships between various information sources. Deep
learning approaches like graph autoencoders are utilized to perform anomaly detection through obtaining
node embeddings while dealing with the network nonlinearity and sparsity issues. However, they suffer
from the problem of ignoring the latent codes’ embedding distribution, which results in poor representation
in many instances. In this paper, we propose a new framework called DVAEGMM to detect anomalies on
attributed networks. First, our framework utilizes a dual variational autoencoder for capturing the complex
cross-modality relationships between node attributes and network structure, like vanilla autoencoders, but it
also considers the potential data distribution and makes use of a generative adversarial network (GAN) for
an adversarial regularization approach. An adversarial mechanism makes the encoder make more accurate
estimates of how potential features might be distributed. As a result, decoders can make graphs that are
more like the original graph. Each input data point is represented by a low-dimensional representation and a
probability of reconstruction by the algorithm. Lastly, the Gaussian Mixture Model, a distinct estimation
network, is used to approximate the latent vector density, resulting in the detection of anomalies from
measuring sample energy. They are trained jointly as an end-to-end framework. DVAEGMM helps in the
simultaneous optimization of themixturemodel, generative adversarial network, and variational autoencoder
parameters. The joint optimization balances the reconstruction probability, the latent representation density
approximation, and regularization. Extensive experiments on attributed networks prove that DVAEGMM
significantly beats the existing methods, proving the efficiency of the presented approach. The AUC scores
of our proposed framework for the BlogCatalog, Flickr, Enron, and Amazon datasets are 0.89380, 0.87130,
0.72480, and 0.75102, respectively.

INDEX TERMS Anomaly detection, attributed networks, deep learning, dual variational autoencoder,
Gaussian mixture model, graph convolution network, unsupervised learning, generative adversarial network.
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I. INTRODUCTION
Today, social networks are becoming an integral part of peo-
ple’s lives, allowing them to communicate and interact on
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a global level with those who share common values, views,
and perspectives. People use social networking websites such
as Twitter, Facebook, Myspace, Flickr, etc. to build profes-
sional and personal networks, gather valuable information,
and exchange factual personal information with those around
them [1], [2]. Anomalies on social networking sites pertain
to odd and frequently illegal user behavior. All mainstream
methods for anomaly detection assume that the samples are
distributed uniformly and independently. However, in several
real situations, cases are frequently linked to one another,
forming a complicated network [3]. In the past few years,
the topic of attributed anomaly detection in complicated net-
works has grown in popularity as a research topic. Compared
to normal networks, which only use topology information to
identify anomalies, attributed networks encode a wide variety
of attribute characteristics for each node.

In the current world, attributed networks seem to be every-
where. Instead of observing interactions among nodes only,
attributed networks contain a large set of characteristics or
features for each node [4], [5]. Attributed networks are widely
utilized to describe many complex systems because of the
affinity between nodal properties and network architecture.
There has been a significant increase in ongoing research
to detect anomalies in attributed networks, which is a very
critical problem due to its profound impacts in a wide range
of real-world applications, including cyber-attack tracking
in communications systems, social media spam detection,
and fraud prevention, to name a few [6], [7], [8]. Attributed
network anomaly detection is incredibly hard due to the con-
sideration of attributes and structure both. Several methods
for detecting anomalies in attributed networks have been
presented recently. Many methods attempt to find abnormal-
ities unsupervised since obtaining ground-truth anomalies is
outrageously costly [9].

Some of them use only community-level structural infor-
mation to conduct anomaly detection or by monitoring the
adequacy of linked subgraphs [10], [11], [12]. A few of these
investigate how to find feature-level anomalies in a subspace
by selecting node features [13], [14]. Graph autoencoder
based methods [4], [15], [16] and residual analysis-based
methods [17], [18], use network reconstruction or residual
assessment to detect node irregularities because they assume
that anomalies will not be estimated by other reference
nodes. Despite the fact that these innovative methods have
had a lot of success, they still have some flaws. In high-
dimensional, complex datasets, some of them rely on shallow
practices that can’t keep up with the numerous interactions
between structure and attributes. A complicated issue in
anomaly detection is combining the network’s topology with
nodes attributes. Established approaches to detect anoma-
lies have relied heavily on structure-based (or community-
based) methodologies [19], [20], [21]. As a result, it cannot
be utilized for attributed network anomaly detection. Aside
from this, the attribute-based model implies that highly com-
plicated anomalies are present in the subgroup depending
on user attributes. However, the traditional attribute-based

approaches take into account the structure and attributes of
the network only [22], [23], which leads to a lower detection
rate. Furthermore, the description of anomalies varies across
fields, indicating that there is no generally agreed anomaly
definition. Furthermore, the description of anomalies varies
across fields, indicating that there is no universally accepted
definition of an anomaly [24], [25]. So, it’s important to deal
with the following challenges:
1) Data nonlinearity and network sparsity. The links and

nodes’ characteristics are extremely nonlinear, and the net-
work’s topology is extremely sparse in the current world [26].

2) Unlabeled anomalies in the datasets. The ineffective-
ness of detecting anomalies through classification is exacer-
bated by the misclassification of abnormal and normal data.
So, the methods to detect abnormalities are needed to find
anomalies in attributed networks in an unsupervised way that
is quick and easy [27].

3) Homophily-based network smoothing. It is possible
to detect network anomalies by smoothing networks based
on the homophily assumption. Unfortunately, these methods
aren’t very good at detecting anomalies because the results
could be too smooth, making it hard to tell the difference
between the majority of normal nodes and the abnormal ones.

4) The deterministic nature of autoencoders. Even though
the autoencoder represents the latent variables as determinis-
tic mappings, it is insufficient to deal with variation.

5) Heterogeneous input and problems in setting an appro-
priate and precise reconstruction error threshold. When the
input variables are heterogeneous, it is challenging to com-
pute anomaly scores using autoencoder-based anomaly detec-
tion. It is necessary to use aweighted sum. The problem is that
there is no universally objective approach for determining the
proper weight because the weights will differ based upon the
data. Furthermore, once the weights have been determined,
setting the reconstruction error threshold is time-consuming.

To address these challenges, we present the Dual Vari-
ational Autoencoder with Gaussian Mixture, DVAEGMM,
a new framework to detect anomalies on attributed networks.
The primary objective of our framework is to enforce the
learnt latent embedding to match a prior distribution while
simultaneously minimizing the reconstruction errors of the
topological structure and node attributes. The following are
the key aspects of this paper:
• Using a dual variational autoencoder to capture net-
work sparsity and nonlinearity, DVAEGMM solves two
problems at once: it captures cross-modality interactions
between topological structure and node features, and it
solves the problem of unlabeled anomalies.

• Our approach accomplishes joint learning on node fea-
tures and network structure while adhering to anomaly
detection requirements and eliminating homophily and
over-smoothing issues.

• A Dual Variational Autoencoder based embedding
framework is proposed that is based on probabili-
ties instead of reconstruction errors, and the probabil-
ities seem to be more systematic and objective than
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reconstruction errors and therefore do not need model-
dependent thresholds. As a stochastic generative model,
VAE is also able to provide calibrated probabilities for
dealing with the variability that is found in autoencoder
based models.

• We include an adversarial component in the dual varia-
tional graph autoencoder to ensure that encoded data is
distributed uniformly. This component would identify if
the data comes from a low-dimensional representation
of the graph network or from the genuine distribution of
samples. Using a discriminator, the encoder can learn
a better representation of the graph by creating low-
dimensional variables with distributions that are closer
to the distribution.

• We leveraged the Gaussian Mixture Model (GMM)
across the learned low-dimensional space to tackle the
density analysis problem for inputs having complicated
structures. Ourmodel combines the power of dimension-
ality reduction with density analysis. End-to-end opti-
mization of both the deep autoencoder and the mixture
model parameters has been achieved.

• In a unified framework, the dual variational autoencoder
learning, adversarial regularization learning, and gaus-
sian mixture models are jointly optimized such that each
can complement the other and ultimately result in better
anomaly detection.

The rest of this work is structured in the following manner.
An analysis of the relevant literature on attributed network
anomaly detection is provided in Section 2. The prob-
lem of anomaly detection on attributed networks is clearly
stated in Section 3. Section 4 describes the preliminaries.
Section 5 presents the proposed DVAEGMM anomaly detec-
tion framework in detail. Section 6 presents empirical proof of
DVAEGMM’s effectiveness for detecting anomalies in real-
world networks using several assessment measures. Finally,
in Section 7, we come to a logical conclusion.

II. RELATED WORK
Traditional anomaly detection and attributed anomaly detec-
tion are discussed in relation to each other in this section.

A. TRADITIONAL ANOMALY DETECTION
It has recently been found that most of the classic meth-
ods of anomaly detection use unsupervised approaches to
discover anomalies in cases where there is just a limited
number of labelled anomalous data and plenty of unlabeled
data [28]. Conventional approaches to identifying anomalies
are generally divided into clustering-based, reconstruction-
based, and one-class classification-based methods. Data
density is estimated using methods based on clustering
[29], [30], [31]. Normal data is clustered to discover anoma-
lies using a two-step process, starting with dimensionality
reduction. Approaches based on reconstruction assume that
anomalies cannot be adequately recreated from the latent
representations, such as PCA-based algorithms [32], [33] and

autoencoder-based methods [4], [15], [34], [35] that employ
anomaly scores to detect them. For anomaly detection, one-
class classification-based approaches [36], [37], [38], [39]
differ from the previously described two categories in that
they try to identify the line between normal and abnormal
samples. In spite of their effectiveness in the typical anomaly
detection area, these algorithms fail to scale effectively to
graph data, because topological correlations between sample
points are crucial. As a result, the detection of anomalies in
graph data remains an open-ended issue.

B. ADVERSARIAL MODELS
Our method’s adversarial approach relies on GAN [40],
in which a generator and a discriminator compete in a min-
imax game to optimize each other. It was GraphGAN [41]
that used the adversarial approach for graph learning for
the first time. By imposing the distribution of the real data
as a prior distribution on existing network embedding algo-
rithms, ANE [42] views embedding vectors as the generated
result and employs GAN as an additional regularization term.
By incorporating the adversarial process into the autoencoder,
Makhzani et al. presented an adversarial autoencoder to learn
the latent embedding [43]. But this approach is intended for
basic data, not graph data. Many adversarial models have
been successful in computer vision, but the graph-structured
data cannot be handled by them directly.

C. ANOMALY DETECTION ON ATTRIBUTEDNETWORKS
Auxiliary attribute data is common in real-world networks,
hence attempts to identify anomalies in attributed networks
have increased in recent years. For anomaly identification
on attributed networks, four main categories may very well
be outlined: community assessment, subspace identifica-
tion, residual analysis, and deep learning techniques [44].
Community or ego-network anomaly detection approaches
fall into the category of community analysis-based anomaly
detection. CODA [10], for example, uses a cohesive pre-
dictive model to simultaneously detect communities and
identify community abnormalities. AMEN [11] analyses
each node’s ego-network information and finds abnormal
areas in attributed networks. In addition, there is a family
of approaches that aim to identify anomalous nodes in a
subspace of node characteristics [45], [46]. For example,
GOutRank [45] uses subspace cluster analysis to identify
anomalies in attributed networks. Prior to anomaly detection,
ConSub [46] employs the selection method to choose sub-
spaces. Residual analysis has also been a popular method
for determining the abnormality of nodes in attributed net-
works, in addition to those already discussed. An anomaly
is detected by RADAR [17] when residual feature data and
its compatibility with the network show behavior that dif-
fers significantly from the normal. ANOMALOUS [18] is a
combined anomaly detection system that uses matrices CUR
reduction with residual extrapolation to maximize attribute
selection and anomaly detection. Besides development, these
approaches are constrained by inherent shallow modes and
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therefore unable to handle crucial attributed network chal-
lenges like network sparseness, data nonlinearity, and com-
plicated modality connections among different data sources.

A lot of work has gone into building deep neural net-
works to detect anomalies on an attributed network due
to the growing interest in deep learning research. Network
embedding methods that assign nodes in a network to low-
dimensional representations, are also getting a lot of atten-
tion since low dimensional representations can efficiently
retain the topological structure [47], [48], [49]. Anomaly
aware embedding on attributed networks is now the sub-
ject of several studies that take into account both network
embedding and deep learning [4], [15], [16], [19], [38], [50],
[51], [52], [53], [54]. Complex connections between a net-
work’s topology and node features are observed in Anoma-
lyDAE [4], and both structural and attribute data are used to
assess anomalies. A unique graph convolution encoder and
decoder in SpecAE [16] to learn each node’s local repre-
sentations. The energy of each node’s latent representation
in the Gaussian mixture model determines its suspicious-
ness rating. DeepAD [19], an innovative hybrid embedding
method, takes advantage of the strong non-linearity in both
attributes and network structure to detect anomalies using
reconstruction errors. A DUAL-SVDAE [38] is composed
of a structure autoencoder and an attribute autoencoder to
learn the embedding representation of the node, followed
by a dual-hypersphere training algorithm for learning two
normal node hyperspheres. Using GCN, the input network
is reduced into low-dimensional embedding representations
by DOMINANT [15], which it then uses to reconstitute the
topological structure and nodal characteristics. Rather than
reconstruction error, ResGCN [50] uses residual information
from the input network to rank anomalies. GCN captures net-
work sparsity and nonlinearity. Deep neural networks capture
residual information, and residual-based attention lowers the
impact of anomalous nodes.

III. NOTATIONS AND PROBLEM STATEMENT
In this section, we describe the common notations and con-
cepts used in this paper. Table 1. summarizes the most
significant notations.
Definition: An attributed network G = (V, ε,X) contains:

(1) Node Set V = {v1, v2, . . .vN}, where |V| = N; (2) Edge
set E, where |ε| = E, and (3) Attribute Set X ∈ RNxM , where
the rth row of X(r = 1,2,. . .M) represents the information
for the attributes of the rth node in M dimension size. The
Graph links are illustrated by an adjacencymatrix A ∈ RNxN ,
that stores only binary values (i.e., 0 or 1) where Aij = 1
denoting a link between the node i and node j. Attributes
latent embedding of nodes is represented as ZA

∈ RNxL

and ZS
∈ RNxL respectively, where the embedding space

dimension size is L.
Problem Statement: For a given attributed network G with

X and A as the node attributed matrix and adjacency matrix
respectively, anomaly detection for an attributed network is to
find and rank all the rare nodes according to how they differ

markedly from most of the other reference nodes from the
perspective of both the attribute information and topological
structure.

TABLE 1. Notations.

IV. PRELIMINARIES
A. GRAPH CONVOLUTIONAL NETWORKS (GCN)
GCNs are convolutional neural networks that intend to per-
form directly on graphs. The GCN, in particular, illustrates
the topology and the interconnections among features and
nodes through the node adjacent matrix A and the feature
matrix X. It uses spectral convolution to apply the convolu-
tional operation on graph data to generate the transformation:

Z(l+1) = f
(
Z(l),A |W(l)

)
(1)

where Z(l) and Z(l+1) are the convolutional input and output
respectively in layer l. W(l) is the layer-specific trainable
weight matrix. The spectral convolution function is used to
express each layer as follows:

f
(
Z(l),A |W(l)

)
= ∅

(
D̂−

1
2 ÂD̂−

1
2Z(l)W(l)

)
(2)

where Â = A+ I, D and I are diagonal degree and an identity
matrix, respectively. ∅ is an activation function and, based
on previous research, we chose ReLU (·) = max(0, ·) as the
activation function [55]. Z(0) is set as X ∈ RNxM for the first
layer. Therefore,

Z(1)= ∅
(
ÂXW(0)

)
(3)

B. AUTOENCODERS (AE)
Autoencoder based Anomaly detection approaches have
recently gained a lot of attention due to their ability to extract
extremely non-linear connections. An autoencoder is a type
of deep neural network that uses unsupervised learning to
learn low-dimensional embedding representations of data.
It has demonstrated convincing learning results in different
areas. An encoder and a decoder are the main components
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FIGURE 1. Proposed Framework DVAEGMM.

of an autoencoder. The node embeddings are obtained by
the encoder using the attribute data and network structure as
input. The decoder then uses these node embeddings as input
to reconstruct the attribute data and also the network struc-
ture. Anomalies are then termed as inconsistencies between
input and the reconstructed network [56], [57].

Generally, two parts make up the neural network. One is
the encoder function encw (.), and the other is the decoder
function decu (.). It tries to learn a code from the input by
going through a pair of encoding and decoding processes.

X̂ = decu (encw (X)) (4)

where X is the input data and X̂ is the reconstructed input.
The main concept is to find encw (.) and decu (.) so that the
difference between X and X̂ is as small as possible [58].

min
u,w
||X−decu (encw (X)) || (5)

C. VARIATIONAL AUTOENCODERS (VAE)
Approaches that use autoencoders to extract highly non-linear
connections for anomaly detection have recently attracted
a lot of attention. In general, AE encoders provide discrete
outcomes, and train a function to explicitly map the input
results in coping with high-dimensional data is challeng-
ing. However, generating an embedding by integrating node

semantics data and network topology is difficult, because
the combined data has a significantly larger dimension than
network topology alone [59]. To overcome this limitation,
the Variational Auto-Encoder (VAE) was developed by incor-
porating a priori constraints into the embedding learning
process. Rather than learning the discrete latent variables
explicitly as seen in AE, the VAE encoder implies a pos-
terior distribution of continuous latent variables based on a
given input. So, it is preferable to handle complex and high-
dimensional data, such as social networks [49], [60], [70].
The variational autoencoder (VAE) and its variants have

seen a huge success, particularly in the creation of real-
istic data. Its structure is quite similar to that of a stan-
dard autoencoder. VAE models work as generative models,
too, because they can produce new data from existing data.
Initially, VAEswere intended for image analysis methods like
denoising [61], but research on these models has expanded
to various other areas, including anomaly detection. VAEs
use in anomaly detection problems is anticipated since the
primary concept of this approach is associated with a lower-
dimensional representation, which has already been used in
many anomaly detection methods [15], [16].
When utilizing variational autoencoders, the main advan-

tage is that they are probabilistic. By combining the gener-
ative model P(X|z) with an inference model Q (z |X), the
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learning representation issue can be solved as a variational
inference problem and comprehending latent representation
of the data [62]. Each input data point is postulated to have
a Gaussian distribution. It is possible to encode a Gaussian
multivariate latent variable or hidden variable from the input
x using the encoder qθ (z | x). The decoder p∅ (x | z) takes
samples for each data input and reconstructs the input x in x′.
The basic concept is to determine the likelihood that x’ was
obtained through z. Variational lower bound optimization is
done as follows in the variational graph encoder:

L = Eq(z | x)
[
log p (x | z)

]
−KL[q [z|x] ||p (z)] (6)

In the equation, KL stands for the Kullback-Leibler differ-
ence. KL[q [z|x] ||p (z)] is the regularization term.

D. GENERATIVE ADVERSARIAL NETWORKS (GAN)
A generative adversarial network (GAN) is a commonly
employed deep generative model. The fundamental principle
of GAN is to train a generator G and a discriminator D so
that the generator learns to confuse the discriminator and the
discriminator learns to differentiate between real and fake
samples. Training improves both the discriminator’s ability
to discriminate between real and fake data and the generator’s
ability to produce realistic data, eventually to the point where
the discriminator is no longer able to do so. This happens as
a result of the generator’s improved ability to produce data
that resemble the genuine data seen in the training dataset.
As a result, a GAN has been effectively trained and can now
produce data that resembles those in the training set. The
following minmax game is the objective function of GAN.

min
G

max
D

Ex∼pdata
[
logD (x)

]
+ Ez∼pz

[
log (1− D(G (z))

]
(7)

E. GAUSSIAN MIXTURE MODELS (GMM)
In this model, we suppose that there exist a definite number
of Gaussian distributions, each of which corresponds to a
cluster. Consequently, a Gaussian Mixture Model is used to
group together data points from a given distribution. In fact,
these are probability models that spread out data points
into different clusters using a soft clustering strategy. The
main parameters that make up a Gaussian function are its
mean, covariance, and mixing probability. The mean µ, and
covariance 6, are used to represent the center and width of
the component, respectively, while the mixing probability π
specifies the size of the Gaussian function. In general, the
Gaussian density function can be expressed in the form of:

N (x |µ,6) =
1

2π (D/2) |6|1/2
exp

(
−
1
2
(x−µ)T 6−1 (x−µ)

)
(8)

where x specifies the data points and D represents the number
of dimensions of each data point.

V. PROPOSED FRAMEWORK
The DVAEGMManomaly detection framework for attributed
networks is described in this section, which combines a
dual variational autoencoder with a Gaussian mixture model.
Figure 1 is an illustration of the DVAEGMM pipeline.
This framework is divided into four significant compo-
nents: a structure reconstruction variational autoencoder,
an attribute reconstruction variational autoencoder, adversar-
ial model, and a Gaussian Mixture model.

A. STRUCTURE RECONSTRUCTION MODEL
To obtain a significant number of prominent high-level node
features, the structure variational autoencoder first converts
the apparent node attribute X into a low-dimensional latent
representation ZS. The structure variational autoencoder uses
a GCN encoder to learn the nodes’ embedding and, subse-
quently, a GCN decoder is used to reconstruct the structure.
For the encoding process, we use two-layer GCN to produce
the parameters µ and σ :

µ = GCNµ (X,A) , (9)

log σ = GCNσ (X,A) (10)

where µ and log σ are the matrices corresponding to µn
and σn respectively. µn and σn are the mean and standard
deviation vector of node vj′s embedding zj. Following that,
sampling is used to determine the latent variables N (µ, σ ).
As a result, the inference model is:

(ZS
|X,A) =

∏n

i=1
(zi|X,A), (11)

(zi|X,A) = N(zi|µi, diag
(
σ 2
i

)
) (12)

here, µ = Z(2) represents the mean vector zi matrix. When
reconstructing the network’s structure, two graph convolu-
tional layers are utilized. Embedding output from the encoder
will be fed to the decoder as input, and the GCN decoder is
defined as:

ZD
= flinearZS,A|W(1)

s ) (13)

Â = flinearZD,A|W(2)
s ) (14)

where ZS is the encoder’s learned embedding while ZD and
Â are the decoder outputs for the first and second layer,
respectively. The number of dimensions in D is equal to the
number of nodes.

B. ATTRIBUTE RECONSTRUCTION MODEL
Normal nodes’ latent embeddings are learned by only using
the attributematrix as input. Two non-linear feature transform
layers are employed in the encoder of the attribute variational
autoencoder to learn a non-linear feature mapping of the node
attributes, rather than relying on the structure information,
as is the case with the structure autoencoder. In this example,
the observed attribute data is mapped to the latent embedding
ZA, using two non-linear feature transform layers.

ZA(1)
= f

(
XTW(1)

A + b(1)
)

(15)

ZA
= [µA, σA] = ZA(1)W(2)

A +b
(2)) (16)
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where [µA, σA] are the posterior approximation distribution
parameters while W(1)

A , W(2)
A are trainable weights and b(1),

b(2) are the biases in two layers.
Finally, node structure embeddings ZS and node attribute

embeddings ZA are fed as input to a simply inner product
decoder, which reconstructs the X̂ as follows:

X̂ = Sigmoid
(
ZS
(
ZA
)T)

(17)

Following the attribute encoder, a feature fusion module is
also built to fuse the learnt node embeddings ZS from struc-
ture space and ZA from attribute space into a fused embedding
ZF, which is accepted as input by the GMM to capture the
relationship between structure and attribute. Here’s how the
fusion procedure works:

ZF
= Fusion

(
ZS,ZA

)
= ZS

• ZA (18)

The element-wise plus operator of two matrices, which
adds the corresponding elements in the same position of the
two matrices, is represented by the • operator.

C. ADVERSARIAL MODEL
The core concept of our approach is to use an adversarial
training model to induce latent representation ZF to match
a prior distribution. There are two major components to our
adversarial model: The dual variational autoencoders serve
as the generator of the adversarial network. The generator
tries to fool the discriminator by producing fake data (latent
variables generated by the input data from the dual variational
autoencoders). The discriminator’s goal is to determine if the
samples come from real data or are artificially generated.
Data from the prior distribution pz output is considered posi-
tive by the discriminator, while data from the latent variable z
output is considered negative, and its cost function is defined
as follows:

−
1
2
Ez∼pz log(D

(
ZF
)
−

1
2
Ex log(1− D (G (X ,A))) (19)

D. ANOMALY DETECTION WITH GAUSSIAN
MIXTURE MODEL
The estimate network uses GMM to do density estima-
tion based on low-dimensional representations of input data.
In the training phase, GMM parameters are calculated using
an unspecified distribution ϕ, mean µ, and covariance

∑
of

mixture components. The estimation network evaluates the
likelihood/energy for samples without alternate techniques
like EM. The estimate network estimates mixture member-
ship for each instance using a multi-layered model. An esti-
mation network predicts mixture component membership
using low-dimensional representations z and the number of
mixture components N as follows:

NO = MLN
(
ZF
;αm

)
(20)

β̂ = softmax (NO) (21)

where O is the network output parameterized by αm, and β̂
represents a P-dimensional vector to predict the membership
of a soft mixture component. GMM model parameters can
be further estimated using sample set of N size with their
membership prediction, ∀1 ≤ p≤P.

ϕ̂p =

N∑
i=1

β̂ip

N
(22)

µ̂p =

∑N
i=1 β̂ipzi∑N
i=1 β̂ip

(23)

∑̂
p
=

∑N
i=1 β̂ip(zi − µ̂p)

(
zi − µ̂p

)T∑N
i=1 β̂ip

(24)

where β̂i is the membership prediction for zi and ϕ̂p, µ̂p
and

∑̂
p are mixture probability, mean and covariance for

component p, respectively. Sample energy can be calculated
using the estimated parameters by

E (z)= − log

 P∑
p=1

ϕ̂p

exp
(
−

1
2

(
z−µ̂p

)T ∑̂−1
p
(
z−µ̂p

))
√∣∣∣2π∑̂k

∣∣∣

(25)

where |. | is matrix determinant.

E. OBJECTIVE FUNCTION
The DVAEGMM objective function O(W) is generated as
follows for a dataset of N samples:

O (W)

= [ (1− θ) [Eq(ZS|X,A)(log p(A|Z
S)]

+θ [Eq(ZA|X)

×

(
log p(X|ZS,ZA)]]− KL[(qZS

|X,A)||p(ZS
)
]

−KL[q(ZA
|X)||p

(
ZA
)
]+ [Ex∼pdata

[
logD (x)

]
+Ez∼pz

[
log (1− D(G (z))

]
]

+
γ1

N

∑N

i=1
EN(ZF

i )+γ2
∑P

p=1

∑d

r=1

1
(
∑

pr )
(26)

This objective function includes the following components:
• The first one is the loss function, which describes the
dual variational autoencoder reconstruction error from
both structure and attribute perspectives and θ is the
parameter that regulates the balance between structure
and attribute reconstruction.

• Second and third are KL divergence for structure and
attribute variational autoencoders, respectively.

• The Forth component is used to jointly train the encoders
of both variational autoencoders, and the discriminator
via a minimax game such that they optimize each other.

• The fifth component EN (Zi), represents the GMM esti-
mation’s sample energy of the latent representation Zi,
and models the probability that we could observe with
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Algorithm 1 DVAEGMM Framework for Attributed
Network Anomaly Detection
Input: An attributed network G, an attribute set X ∈

RNxM and topology set A ∈ RNxN , with hyper-parameters
θ, γ1 and γ2
Output: An L-node list with nodes ordered by normalcy.

1. Initialize O, θ, γ1 and γ2
2. k samples with normal behavior from n instances

are chosen at random and used as training samples.
3. for each epoch = 1 to E do
4. Produce the structural space node

embedding ZS via Eq. (12);
5. Reconstruct A from the ZS via Eq. (14);
6. Produce the attribute space node

embedding ZA via Eq. (16);
7. Reconstruct X from the ZS and ZA via Eq.

(17);
8. ZS and ZA are fused into embedding ZF

via Eq. (18);
9. Update the adversarial model via Eq.

(19);
10. Apply GMMon ZF to get

{
ϕ,µ,

∑}
via

Eq. (22), (23) and (24);
11. Calculate the Objective function O

according to (26);
12. Update the parameters

{
ϕ,µ,

∑}
with

backpropagation;
13. end for
14. As the normality score, estimate the sample energy

of all n samples via Eq. (25);
15. Return the list of nodes L, sorted by normalcy

score in decreasing order;

the input samples. We increase the likelihood of non-
anomalous samples by reducing sample energy, and we
identify samples with top-K high energy as anomalous.

• Sixth is covariance penalization, which penalizes the
small values in the diagonal elements of the covariance
matrix to solve the singularity problem in GMM.

Our proposed approach may be used to detect abnormal-
ities in attributed networks after optimization of the objec-
tive function. The estimation energy in Eq. (25). is then
used to evaluate the anomalous level of each node in our
testing data. Nodes with higher rankings are more likely to
be rated as anomalies. Our proposed approach is described
in Algorithm 1.

VI. EXPERIMENTS
The performance of the DVAEGMM on various datasets is
discussed in this part. Two of the most important evaluation
tasks are anomaly detection performance analysis and model
parameter sensitivity analysis. The four datasets are initially
described in detail in this section. After that, the DVAEGMM
is compared to the other baseline techniques, and the anomaly

detection accuracy is given, as well as a comparison of
the experimental data and analysis. Finally, we examine the
experimental parameters’ sensitivity.

A. DATASETS
In this paper, we perform experimentation on the following
real-world attributed datasets: data with and without ground-
truth anomalous labeling, in order to test the performance of
our suggested approach. All networks have been extensively
utilized in earlier research. Table 2. summarizes the detailed
statistics of each dataset.

1) DATASETS WITHOUT GROUND-TRUTH
ANOMALOUS LABELS
A BlogCatalog [15] is a website where bloggers can follow
one another to create a social network. The blogger’s features
have been used to define the user and the blog, and the node
attributes are composed of attribute information.

Flickr, like Instagram [63], is a photo-sharing website.
People form social platform similar to BlogCatalog by con-
necting with each other. Tags, which reflect a user’s interests,
define their node attributes.

2) DATASET WITH GROUND-TRUTH ANOMALOUS LABELS
Enron [64] is an electronic mail communication system
where edges denote the transfer of e-mails among individuals.
Every node has 20 attributes that specify email content, such
as the average content length and the number of people who
receive mail. Spammers are considered anomalies, and this
dataset is already widely used to detect anomalies.

Amazon is a copurchase network [45]. Each node has
28 attributes that describe various aspects of online commodi-
ties, such as price and rating. The term ‘‘anomalous nodes’’
refers to nodes that have the label ‘‘amazonfail.’’

We explicitly use the given labels to evaluate our approach
for the networks that have ground truth anomaly labels. For
unlabeled datasets, we must manually infuse anomalies into
attributed networks for the evaluation task. To ensure a proper
a common aberrant substructure in many specific circum-
stances in which a limited selection of nodes is significantly
more clearly tied to each other than normal. As a result, after
specifying the clique size as c, a total of r nodes is randomly
picked from the network and connected all together, and then
all the r nodes forming the clique are considered anomalies.
This procedure is repeated indefinitely until the total number
of c cliques has been generated. So, rxc are the total number
of structural anomalies. An attribute perturbationmethod pro-
posed by [66] is then used to find abnormalities viewed from
the standpoint of an attribute. To verify that the attributed
network contains an equivalent number of anomalies from
structural and attribute perspectives, rxc nodes are chosen
at random as attribute disruption targets. Then, additional t
nodes are picked randomly from the network for each des-
ignated node ni and the Euclidean distance between ni and
all the t nodes is computed. The node with the maximum
distance is then elected as nj, and the attribute Xj of the node
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TABLE 2. Statistics of datasets.

nj is changed to Xi of node ni. Node nj is regarded as the
attribute anomaly. In our experiments, we also set r= 15 and
c to 10 and 15 for BlogCatalog and Flickr, respectively, which
are the same as [15] and [50].

B. EVALUATION INDICATORS
This paper evaluates the contribution of different anomaly
detection methods using three commonly used evaluation
indicators that have been extensively used in earlier anomaly
detection methods [17], [18], [49], [67], [68], [69].

1) ROC-AUC
The ROC curve plots the true positive rate (an anomaly
is identified as an anomaly) versus the false positive rate
(normal is identified as anomalous) based on the ground truth
and outcomes of detection. The AUC value represents the
likelihood that a randomly picked anomalous node would be
scored higher than a normal node. The approach is of high
quality if the AUC value is close to one.

2) PRECISION@K
In order to quantify the percentage of true anomalies discov-
ered by a specific detection scheme in its highest K ranked
nodes, we use Precision@K,which ranks the nodes according
to their anomalous scores.

Precision@K =
|TRAnobyMethod | ∩ |RankAno|

|RankAno|
(27)

where TRAnobyMethod denotes the true anomaly detected,
while RankAno denotes anomalies in the Top-K ranking
node.

3) RECALL@K
This evaluation indicator measures the percentage of true
anomalies explored by a particular detection approach out of
the total ground truth anomalies.

Recall@K =
|TRAnobyMethod | ∩ |RankAno|

|AllTrueAnomalies|
(28)

where AllTrueAnomalies refers to the entire dataset’s true
anomalies.

C. BASELINES
DVAEGMM is compared to the following techniques to
demonstrate its ability to detect anomalies:

• LOF [23] defines how separated an object is in relation
to its environment and locates anomalies on a contextual
level. This method only considers nodal attributes.

• RADAR [17] is an unsupervised approach for find-
ing anomalies in attributed networks. The residuals of
attribute values and their similarity to network data are
used to characterize anomalies whose behavior is very
different from the majority’s [70], [71]. This helps to
identify anomalous behavior.

• DOMINANT [15] is a cutting-edge unsupervised
approach based on deep learning to detect anomalies.
Reconstructing the adjacency as well as the attribute
matrix jointly is accomplished using a graph convolution
autoencoder. It quantifies the weighted sum of recon-
struction error terms to assess the irregularity of each
node.

• DUAL-SVDAE [38] is composed of a structure autoen-
coder and an attribute autoencoder, which acquire
the node’s embedding in structure as well as in fea-
ture space, respectively. Then, from the structure and
attribute viewpoints, a dual-hypersphere learning is
imposed to learn two hyperspheres of normal nodes.

• ResGCN [50] In place of reconstruction errors, the resid-
ual information used to rank anomalies is generated
from the input network. ResGCN uses GCN to cap-
ture network sparsity and nonlinearity, a deep neural
network to collect residual information, and a residual-
based attention mechanism to limit the negative impact
of anomalous nodes.

TABLE 3. Parameters for experiment.

D. EXPERIMENTAL DESIGN
In the experiment, we implemented DVAEGMM on Python
language, and trained it with 100 training epochs for all the
datasets. For optimization, the Adam algorithm with a learn-
ing rate of 0.002 is being used. Since, TensorFlow, Pytorch
and others recommend a learning rate equal to 0.001, but
we found the best result at 0.002. The embedding dimension
has been fixed at 64 for all the datasets. Moreover, in all the
DAGMM instances, we set parameters (θ , γ1, γ2) as (0.6, 0.1,
0.005) respectively, where θ is used to control the tradeoff
between structure and attribute reconstruction, and γ1 and γ2
are meta parameters. We use the publicly accessible imple-
mentations from the source publications for the baseline tech-
niques, and we fix the hyper-parameters to the recommended
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FIGURE 2. ROC Curve comparison on BlogCatalog.

TABLE 4. AUC results.

values in the papers that presented the methods. Table 3.
summarizes the values of different parameters.

E. EXPERIMENTAL RESULTS
A number of benchmarks are compared to the DVAEGMM’s
performance with respect to ROC-AUC. For each dataset, the
AUC results of the methods are given in Table 4. In addi-
tion, the ROC curves of all the methods for the BlogCata-
log, Flickr, Enron, and Amazon datasets are demonstrated
in Figure 2, Figure 4, Figure 5, and Figure 6, respectively.
The ROC curve demonstrates that our proposed framework
outscored the other baseline anomaly detection methods.
Compared to the second-best model, ResGCN, DVAEGMM

increases AUC by at least 3.182%, and to the worst model,
LOF, it increases AUC by 40.23% on the BlogCatalog
dataset. Figure. 3 demonstrates the AUC performance com-
parison. The AUC results and the interpretation of ROC
curves are explained as follows:
• A comparison of all datasets shows that the DVAEGMM
outperforms all other baseline techniques. DVAEGMM’s
ability to combine the power of variational autoen-
coder and GMM for anomaly detection has been
proven.

• In all three datasets, the AUC values of LOF are lower
than the other four approaches that consider structural
and attribute information to detect anomalies because
LOF only evaluates attribute data.

• The residual analysis-based method, RADAR, outper-
forms the traditional method, LOF, However, because
of their shallow mechanisms for dealing with network
sparseness, data nonlinearity, and complicated modality
connections, these approaches are still constrained.

• Dominant combines structural and attribute information
for node embedding, but autoencoder based methods
that use reconstruction errors cannot adequatelymeasure
the abnormality.

• Dual-SVDAE outperforms LOF, RADAR, and Dom-
inant due to the use of a dual hypersphere learning
mechanism.

• ResGCN outperforms all the other baseline methods
except our DVAEGMM due to the attention based deep
residual modeling approach.
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FIGURE 3. AUC performance comparison.

FIGURE 4. ROC Curve comparison on Flickr.

• The performance of our model is slightly worse in the
datasets Enron and Amazon than in the other datasets.
We speculate that this is most likely caused by the low
dimensionality of the dataset.

As a result, we are certain that our model can detect more
true anomalies in a ranking list with a limited length. Tables
5 and 6 provide the experimental findings for Precision@K
and Recall@K, respectively. Figure. 7 and Figure. 8 demon-
strate the Precision@100 and Recal@100 performance com-
parisons, respectively. Compared to the second-best model,
ResGCN, DVAEGMM increases precision@100 by at least
6.7%, and to the worst model, LOF, it increases preci-
sion@100 by 70.7% on the BlogCatalog dataset. Similarly,
it increases the recall@100 by 1.6% as compared to the
ResGCN and 24.2% as compared to the LOF, on the

BlogCatalog dataset. From this evaluation data, we derive the
following conclusive results:
• With the exception of Precision@200 on BlogCatalog
and Recall@200 on Flickr, the suggested DVAEGMM
framework surpasses existing baseline approaches on all
three attributed networks. It indicates the efficacy of our
approach.

• Due to DVAEGMM’s superiority in Precision@K and
Recall@K compared to other methods, we believe our
model can achieve higher accuracy and locate more real
anomalies within a ranking list with a limited length.

F. PARAMETER SENSITIVITY
An anomaly detected is examined in this section accord-
ing to the parameter sensitivity of different embedding
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FIGURE 5. ROC Curve comparison on Enron.

FIGURE 6. ROC Curve comparison on Amazo.

dimensions D and the balance parameter θ . The studies were
performed on the BlogCatalog dataset. Figure 9 shows the
trend of AUC under different dimensions of the embedding
layer. We can observe that a higher dimensional embedding,
such as 64 or 128 dimensions, provides good performance

since higher dimensional embeddings can encode additional
data. However, due to poor modelling capacity or over-
fitting, the dimension with too low or too high a value
would degrade the performance. For anomaly detection, it is
clear that the interactions between the network structure
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TABLE 5. Precision@K performance of different anomaly detection approaches.

TABLE 6. Recall@K performance of different anomaly detection approaches.

FIGURE 7. Precison@100 performance comparison.

and node attributes on the attributed network are critical, as
only considering attribute reconstruction (θ = 0) or struc-
ture reconstruction (θ = 1) would result in low efficiency.
Figure 10 shows the trend of AUC under different values
of θ , indicating that a suitable balance factor can effectively
improve performance.

FIGURE 8. Recall@100 performance comparison.

G. ABLATIONS STUDY
In this section, using DVAEGMM for anomaly detection,
we explore the effects of node attributes, network struc-
ture, adversarial training, and estimation density. Specific to
DVAEGMM, each module’s contribution is examined sepa-
rately. The following are the specifics of the ablation settings:
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FIGURE 9. Embedding Dimension impact w.r.t. AUC values.

FIGURE 10. Balance parameter impact w.r.t. AUC values.

TABLE 7. Ablation study.

• Without-GMM(WOGMM): To supervise model train-
ing, we drop the GMM module from DVAEGMM and
substitute it with two reconstruction losses, one for
network structure and the other for node attributes.

Ultimately, reconstruction error is used as an anomaly
score to detect anomalies.

• Without-StructuralVAE (WOSVAE): For training pur-
poses, only attributed VAE is used, as the structural VAE
module is eliminated, and finally detects anomalies by
approximating the density using the GMM module.

• Without-AttributedVAE (WOAVAE): For training pur-
pose, only structural VAE is used, as attribute VAE
module is eliminated, and finally, anomalies are detected
by approximating the density using the GMM module.

• Without GAN (WOGAN): Adversarial training compo-
nent is removed, and dual variational autoencoders are
used for the training, and anomalies are detected using
the GMM module.

• Anomaly Detection with GAN (ADGAN) instead of
GMM:We drop the GMMmodule and, by following the
AnoGAN approach [68], the anomaly score is calculated
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as the linear combination of reconstruction error and
discriminator error.

Table 7 shows the results of the ablation study on all
the datasets. We find that DVAEGMM achieves the best
results. The efficiency of the DVAEGMM is demonstrated
by the poor results of the WOGMM, WOSVAE, WOAVAE,
and ADGAN. In addition, the model’s performance degrades
when we rely solely on the structure or attribute features. One
potential reason for this is that considering only the attribute
or structure information compromises the attributed network
data integrity. Therefore, anomaly detection on an attributed
network necessitates both structure information and attribute
information.

VII. CONCLUSION
This research proposes a Dual variational Autoencoder with
Gaussian Mixture Model (DVAEGMM) framework to solve
the issue of anomaly detection in attributed networks. In con-
trast to prior techniques, DVAEGMM effectively addresses
the shortcomings of previously proposed methods. Dual vari-
ational autoencoders address the complicated cross-modality
connections between network structure and node attributes
while incorporating the prospective distribution of data, thus
reflecting the sparsity and nonlinearity of networks. GAN
provides the adversarial power to the dual variational autoen-
coders. The Gaussian Mixture Model (GMM) is then applied
to density estimation problems for input data with complex
structures over the learned low-dimensional space. The sam-
ple energy is used to identify anomalies. Two datasets without
ground truth anomalies, BlogCatalog and Flickr, and two
datasets with ground truth anomalies, Enron and Amazon,
were evaluated for the comparison. The results of the exper-
iments show that DVAEGMM is a viable alternative to the
approaches that had previously been offered. The perfor-
mance of our proposed method is higher than baselines, i.e.,
it outperforms LOF by 40.23%, Radar by 14.83%, Domi-
nant by 11.25%, Dual-SVDAE by 8.97%, and ResGCN by
2.68%, respectively on AUC for the BlogCatalog dataset.
Each DVAEGMM component’s efficiency is demonstrated
via ablation analysis. Our suggested model, however, needs
to be tested in real-world large-scale operational network
scenarios before it can be used in the real world. The perfor-
mance of our model is slightly worse in the datasets Enron
and Amazon than in the other datasets. We speculate that
this is most likely caused by the low dimensionality of the
dataset. In the future, we will try to incorporate changes in our
proposed framework to perform efficiently on datasets with
low dimension. We also plan to explore DVAEGMM exten-
sions for dynamic or time-series networks. The detection of
anomalies in more complicated networks and graphs, such as
heterogeneous graphs, spatial-temporal graphs, and dynamic
graphs, will be one of our research priorities.
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