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ABSTRACT Automatic meter reading is important for power billing in a smart city. Most SoTA (State-
of-the-Art) vision-based methods can read only cyclometers and fail to handle dial meters due to their
in-between problem and ambiguous patterns to interpret a digit and are not light enough to be run on an
embedded platform. This paper focuses on the design and development of an Internet of Things (IoT)-
assisted real-time Automatic Meter Reading (AMR) system for utility billing in a smart city. To enhance
the accuracy of object detection, most SOTA methods use a very deep CNN-based architecture to create rich
feature maps. However, this backbone also makes small objects in the last layer become one pixel or less. This
paper proposes a novel BI-Fusion Mixed Stage Partial (BIF-MSP) network to hold the spatial information
of a smaller object at the end of network architecture and also increase the efficiency while operating on an
embedded system. It can accurately detect small digits not only from cyclometers but also from dial meters.
It can automatically decide a rule (anticlockwise or clockwise) to accurately read digits on a dial-type meter.
After that, a carry-out re-checking module is proposed to further improve the accuracy of this AMR system.
The experiments show the superiorities of our ARM system in terms of accuracy and efficiency. The dataset
can be publicly accessed from the following URL: http://140.113.110.150:5000/sharing/52HCvjly2

INDEX TERMS Automatic meter reading, bi-fusion, deep learning, power billing, object detection, YOLO.

I. INTRODUCTION

Automatic Meter Reading (AMR) [1], [2] is the remote
collection of consumption, diagnostic, and status data from
water meters or energy meters (gas, electric) and transferring
those data to a central database for billing, troubleshoot-
ing, and analysis. This AMR system is important for utility
billing in a smart city [3] and can save utility providers the
expense of periodic trips to each physical location to read
meter data. Although smart meters have been used in some
countries, there are still many traditional meters working

(b)

together for utility billing. For example, as reported in [4]
and [5], there are still many nonautomatic meters to be found
in the United States, and they are difficult to replace due
to expensive costs and building regulations. Thus, reading
electric meters in these countries is still performed manually
with errors. Such errors can be avoided if smart meter reading
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FIGURE 1. Two types of electricity meters. (a) Dial meter. (b) Cyclometer.

sensors are adopted to check the devices. Then, the meter
data can be securely sent to the service provider through a
privacy-preserving access protocol [6], [7] in an IoT-enabled
smart-grid system to do billings in near real time without
involving man efforts.

Many vision-based reading systems [5], [6], [7], [8],
(91, [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19] have been proposed for utility meter recognition
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FIGURE 2. Diagram of our AMR system for meter digit reading.

based on handcrafted or deep features. For example,
Rodriguez et al. [8] used a color-slicing method to isolate
digital numbers and then recognized them based on their
Hausdorff distances. In [10], Gallo, Zamberletti, and Noce
proposed a segmentation-based method to extract characters
for the reading of meters based on the technique of Max-
imally Stable Extremal Regions (MSER) [11], but failed
with blurred images caused by perspective distortions. In [9],
Tang et al. used a binarization method to threshold an energy
meter and then adopted morphological operations to remove
noise so that its embedded digits were recognized. In recent
years, deep Convolutional Neural Networks (CNN) have
been widely used in different computer vision tasks with
superior performance in object detection [20], [21], [22]. The
features extracted by CNNs are often more general, accurate,
and less affected by different environmental conditions. For
example, in [12], Li et al. used a new lightweight CNN
to recognize the digits of the cyclometer meters. G omez,
Rusi™nol, and Karatzas [13] used a CNN-based method to
detect and recognize digits on utility meters. As shown in
FIGURE 1, there are two types of meters, the cyclometer
meter and dial-type one. Compared with a cyclometer, two
challenges force a dial meter to be more difficult to recog-
nize. The first challenge is caused by the ambiguity of the
interpretation rule for reading a dial. A dial can be interpreted
by an anticlockwise rule or a clockwise rule according to its
positions. The second challenge is the “‘in-between”” problem
of a dial caused by its analog nature; that is, the status of a
dial is continuous rather than discrete. Thus, a dial will not
exactly point to a digit, but often to an “in-between” posi-
tion between two adjacent digits. The ““in-between’ position
often confuses the above hand-crafted or deep approaches and
therefore results in reading errors on the digits. It is noticed
that the “in-between” problem is also seen when recognizing
a cyclometer.

This paper focuses on the design and development of an
Internet-of-Things (IoT) assisted real-time automatic meter
reading (AMR) system for utility billing in a smart city.
It should be a light architecture and can read both cyclome-
ters and dial meters. To enhance object detection accuracy,
most SoTA methods use a much deeper CNN architecture
to create rich feature maps. As claimed in [40], [41], deep-
ening the CNNs not only can solve the vanishing gradient
but also makes small objects in the last layer be one pixel.
The one-pixel feature makes classification and bounding box
regression very hard. Thus, most SOTA CNN-based object
detectors, e.g., RefineDet [34] or Faster R-CNN [20], are
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problematic for small object detection. In addition, the deeper
structure will lose its efficiency due to the design of a much
deeper network architecture and will become unsuitable for
edge computing devices. In real-life testing, the efficiencies
of the above SOTA CNN detectors on embedded systems such
as TX2 are shown to be less than 3 fps for frame dimen-
sion 416 x 416. To address the above challenges, a novel
AMR system is proposed in this paper. FIGURE 2 shows
its diagram. First, a novel BI-Fusion Mixed Stage Partial
(BIF-MSP) network is proposed to detect and recognize both
cyclometers and dial meters. This BIF-MSP network can
hold the spatial information of a smaller object at the end
of the network and also increase efficiency while operating
on an embedded system. Then, to deal with the ambiguity
of reading rule in recognizing a dial-type meter, this paper
proposes a label-sharing technique to make two clockwise
and anticlockwise dials share the same label and then identify
their real values according to their positions. To address the
“in-between” problem, a new rechecking method is pro-
posed to determine the actual values of the digits on a meter
according to their carry-out conditions. Our proposed AMR
system adopts the above two methods to accurately detect and
recognize both small digits and dials even with significant
distortions. Its efficiency on TX2 is up to 30 fps. The main
contributions of this paper are summarized as follows:

1) A novel AMR system is proposed to read information
from both cyclometers and dial meters in real time.

2) Furthermore, a BIF-MSP network is proposed to detect
small digits or dials even with significant distortions
and can achieve 30 fps on TX2.

3) A carry-out rechecking method is proposed to further
improve the accuracy of meter reading.

4) The AMR system can automatically decide on a correct
reading rule (anticlockwise or clockwise) to read each
dial on a dial meter.

5) The AMR system can be run directly on an embedded
device to analyze the acquired image so that only the
recognized data needs to be transferred.

6) Extensive experiments show the superiority of our
AMR system in reading both cyclometers and dial
meters in terms of accuracy and efficiency.

Il. RELATED WORKS

In the literature, different frameworks [14], [15], [16], [17],
[18] have been proposed for AMR based on hand-crafted
features. For example, Shu, Ma, and Jing [14] proposed a
segmentation-based method to extract text candidates and

96711



IEEE Access

J.-Y. Liao et al.: Automatic Meter Reading Based on Bi-Fusion MSP Network and Carry-Out Rechecking

then recognize their digits by OCR. In [15], Oliveira, San-
tos, and Bensebaa used a homomorphic filter to reduce the
effect of illumination and then adopted a K-mean cluster-
ing scheme to recognize all digits on Watt hour meters.
Rodriguez et al. [8] assumed that all digits were not occluded
and then detected and recognized the digits from an electrical
meter based on their Hausdorff distances. In [16], Cai, Wei,
and Yuan used a projection technique to segment digits from
a meter and then recognized them based on Back-Propagation
(BP) networks. Similarly to [16], Zhang et al. [17] used a
thresholding method to segment text regions from a house-
hold meter and then recognized all embedded digits by BP
networks. In [10], a multilayer perceptron was trained to
extract text regions and then an MSER method was adopted
to extract and recognize individual digits according to their
histogram of oriented gradient features. Furthermore, after
intensity normalization, Elrefaei er al. [18] took advantage
of gray and location distributions to detect and read the
digits on a meter through a smartphone. In [19], Anis et al.
used morphological operations to extract text regions from
an electric meter and then adopted horizontal and vertical
projections to segment and recognize all individual digits.
However, compared to deep features, the above handcrafted
features perform worse and more unstable to read information
from meters, especially under poor lighting conditions.
Recently, the accuracy of object detection has been
improved by a large margin with various SoOTA models such
as FPN [20], YOLOv3 [22], and SSD [21]. With these
advances, many frameworks for CNN-based AMR have been
proposed. For example, in [13], G omez, Rusi nol, and
Karatzas proposed a segmentation-free system to detect digits
in a meter based on CNNs. Laroca et al. [23] designed a
two-stage framework for counter detection and recognition
based on a YOLO detector. In [28], Son et al. also used a
YOLO detector to read the digits on a gas meter. Instead
of using YOLO, Tsai et al. [29] trained an SSD (Single
Shot MultiBox) [21]-based detector to detect digits from a
digit meter. YOLO-based and SSD-based detectors are effi-
cient, but perform poorly for small object detection. In [30],
Wagqar et al. proposed a scale-invariant approach based on
Faster R-CNN [20] to detect small digits on a meter under
different lighting conditions. Furthermore, Gao et al. [31]
used CNNs for feature extraction and then adopted a Bidi-
rectional Long Short-Term Memory (BLSTM) scheme for
end-to-end sequence alignment to recognize the digits of
water meters based on mobile devices. Instead of BLSTM,
Yang et al. [32] used a Recurrent Neural Network (RNN) for
sequence modeling and then recognized the digits of water
meters. For mobile applications, Li et al. [33] proposed a
PGC (Pressure Gauge Calibration) sequence network with
three convolutional layers to recognize the digits of pres-
sure gauge meters for fast and accurate gauge calibration.
For performance evaluation, Laroca et al. [23] introduced
a public dataset, called the UFPR-AMR dataset, to evalu-
ate different CNN-based approaches for AMR. CNN-based
approaches above can recognize digits only for digit-type
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meters, but cannot analyze dial-type meters due to their ““in-
between’” positions. This paper proposes a new AMR system
to read data not only from cyclometers but also from dial
meters under different lighting conditions. It can automati-
cally decide on a correct rule (anticlockwise or clockwise)
to interpret dials in a dial-type meter, even on embedded
devices.

lll. METHOD

Most current AMR systems are character-based and only
recognize digits (0-9). However, there are still various dial-
type meters used in household measuring devices. To reduce
human effort and manpower, it is better to design a light CNN
architecture to read both cyclometers and dial meters on an
embedded system. As shown in FIGURE 2, a light BIF-MSP
architecture is proposed to detect counter regions from which
different digits are extracted. With the help of this BIF-MSP
architecture and carry-out rechecking, our proposed AMR
system can effectively deal with the ““in-between” problem
and the interpretation-ambiguity problem, i.e., digits inter-
preted by an anticlockwise rule or a clockwise rule. More
importantly, the proposed AMR system can run on an embed-
ded system to directly recognize a meter instead of on a
server. In what follows, details of the BIF-MSP architecture
are first introduced, and then the details of our AMR system
are discussed.
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FIGURE 3. Feature pyramid in YOLO3.

A. CONCATENATED FEATURE PYRAMID NETWORK

To improve the accuracy of small object detection, a feature
pyramid (FP) structure is commonly adopted in the SoTA
detectors due to its multiscale structure. For example, the
YOLOV3 architecture is created by adding an FPN layer in
the YOLOV2 network and replacing the swallower backbone
(DarkNet19) with a deeper backbone (DarkNet53) for small
object detection. FIGURE 3 shows the detailed diagram of
the YOLOV3 architecture. However, as claimed in [40] and
[41], deepening the CNNs can not only solve the vanishing
gradient, but also make small objects in the last layer become
one pixel due to subsampling layers. The one-pixel feature
makes classification and bounding box regression very hard.
To improve the ability of small object detections due to the
small size of the top feature maps, which are less than 1 pixel,
this papper proposed a BIF-MSP architecture to increase the
accuracy of small object detection. It first creates a Concate-
nated Feature Pyramid (CFP) and a Bi-Fusion module for
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FIGURE 4. Proposed concatenated feature pyramid (CFP).
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FIGURE 5. Proposed Concatenation Block (CB), consisting of two
concatenations, 2 x upscaling operation, and 2-4 convolutional layers.
(Conv. 1-3L) refers to 1-3 convolutional layers.

fusing feature maps with top-down and bottom-up mecha-
nisms to generate flexible FPs for small object detection.

This CFP is shown in FIGURE 4 and has some similarities
to FPN and YOLOvV3, whereby we use feature pyramids
to detect objects on three different scales. The objective of
CFP is to increase and adjust the accuracy and efficiency of
small object detection in embedded devices. To achieve this,
the CFP includes an inter-scale Concatenation Block (CB),
shown in FIGURE 5, consisting of a reduced number of con-
volutional layers and added concatenation operations instead
of addition and convolution operations to concatenate feature
maps from different layers. Instead of an addition operation
as shown in the blue dashed box of FPN (see FIGURE
3), this CFP employs a concatenation (blue dashed box in
FIGURE 4 or CONCAT 1 in FIGURE 5) operation for merg-
ing 2x up-scaled feature channels of the deeper layer and
feature channels of the shallow layer. It is noticed that there
is no concatenation of features from different layers for Scale
1 of this CFP, as shown inside the red dashed line box of FIG-
URE 5. In addition, instead of addition as in the residual block
of ResNet (Residual Network), we concatenate these features
and their convoluted results (see CONCAT 2 in FIGURE 5)
together. This replacement saves significant computational
time since concatenation is not considered an algebraic oper-
ation. Furthermore, instead of 8 convolutional layers (black
dashed box in FIGURE 3) of YOLOv3, we employ at most
4 convolutional layers. The number of convolutional layers
can be adjusted to trade accuracy and efficiency. This CFP
employs 2, 3, and 1 convolutional layers on Scale 1, Scale 2,
and Scale 3, respectively.

B. BI-FUSION CONCATENATED FEATURE PYRAMID
NETWORK

In addition to CFP, our BIF-MSP network also creates a
Bi-Fusion Module (BFM) to fuse feature maps with both
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the top-down and bottom-up mechanisms to generate flexible
FPs for small object detection. The first direction is a fop-
down path, which is achieved by forming an hourglass FP.
The second direction is a bottom-up path that uses BFM to
generate final FP layers by concatenating reshaped features of
the shallower layer of a final FP and features of a current layer
of an hourglass FP. With this bifusion mechanism, an object
with a small size (even if it is down-sampled to 1 pixel) can
reappear at shallower layers. The green dashed box of FIG-
URE 6 shows the basic structure of BEM. Moreover, in case
that a light backbone is adopted, the proposed BFM can
further improve its efficiency for object detection in real time.

C. MIXED STAGE PARTIAL BACKBONE

For edge computing, we adopt our previous framework to
further reduce computational load, i.e., a lightweight Cross
Stage Partial Network (CSPNet) [42]. This CSPNet has
been adopted in YOLO v4. It respects the variability of the
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FIGURE 9. Different reading rules to interpret a dial in a dial-type meter.
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FIGURE 10. Ambiguous cases between (a) and (b).

FIGURE 11. Twenty labels are used to label a dial meter.

gradients by integrating feature maps from the beginning and
the end of a network stage, as shown in FIGURE 7. The
CSPNet separates the feature map of the base layer into two
parts, where one part will go through a dense block and a
transition layer; the other part is then combined with the
transmitted feature map to the next stage. Separation can not
only balance the computation of each layer, but also reduce
memory traffic jam. It is noticed that only one convolu-
tion layer is applied for feature extraction in this CSPNet.
To further enrich the feature maps, this paper proposes a
Mixed Stage Partial (MSP) network to generate more features
from cheap operations. FIGURE 8 shows the architecture
of MSPNet. Compared to the CSP net, only C/2 channels
are generated by 3 x 3 convolution and further processed
by 1 x 1 convolution, and then concatenated to generate
another set of feature maps with C channels. Since only
half channels, i.e., C/2 are generated, more efficiency can
be gained. In addition to efficiency, greater accuracy can be
gained since an additional feature extraction layer is added.
Its conference version [38] is proposed for vehicle detection
rather than ARM.

D. LABELING AND TRAINING

Most of current AMR systems can read 0-9 digits only from
cyclometers. This paper proposes a new AMR system to
read digits not only from cyclometers but also from dial-
type meters. As shown in FIGURE 9, there are two reading
rules to interpret a dial in a dial-type meter, i.e. clockwise

96714

FIGURE 12. Cases for labeling a dial-type digit. (a) ‘5" sector. (b) ‘'5C’
sector.
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FIGURE 13. Labeling for a cyclometer.

- -

FIGURE 14. The case of an “in-between” digit in a cyclometer.

and anticlockwise. The two rules are applied interactively to
interpret dials based on their positions; one is clockwise and
then anticlockwise. In real cases, these two rules will confuse
the trained detector and result in the failure to recognize
dials with similar visual patterns. As shown in the arrows in
FIGURE 10(a) and FIGURE 10(b), they have similar arrow
patterns (pointing to the same direction), but should be inter-
preted differently. When a meter is small, the outer feature
(its surrounding numbers) will become blurred and cannot
provide useful information for the classifier to discriminate
the two cases in FIGURE 10. To tackle this confusion prob-
lem, this paper considers that they are the same and share the
same label. Thus, the cases in FIGURE 10 are labeled as the
same digit ‘1’. They will be further identified according to
their positions (odd or even).

This paper uses twenty labels to label a dial-type meter.
As shown in FIGURE 11, twenty labels are used to label a dial
meter and can be divided into two categories, i.e., “‘digit” and
“carry-out” categories. In FIGURE 11, for all blue intervals
bounded by two digits, they belong to the category “digit”
that includes digits from ‘0’ to ‘9’. When an arrow points to
a digit ‘X’, it will be in the “carry-out” category and labeled
as an ‘XC’. As in the example shown in FIGURE 11, all the
white sectors are in the “‘carry-out” category and labeled as
from ‘0C’ to ‘9C’. FIGURE 12 shows two cases of labeling
a digit ‘5’ on a dial-type meter. In FIGURE 12 (a), the arrow
is in the ““digit” interval and is thus labeled ‘5°. FIGURE 12
(b) is labeled as ‘5C’ since the arrow points to ‘5°. All the
recognized results located within the carry-out interval will
be further identified via a carry-out re-checking process at
the post-processing stage.

As for the digits on a cyclometer, the number of labels
used is also twenty. As shown in FIGURE 13, the labels are
also divided into two categories, i.e. “digit”” and ‘““carry-out”
categories. If a digit ‘X’ is shown, it is in the category ““digit”
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TABLE 1. Categories and labels are used to label a meter.

TABLE 2. Details of our dataset.

3" data

4™ data

5% data 2" data
3C 8C 9 8C 9C
Get 2 after Get 7 after No carry Get 7 after Take
carry-check carry-check check carry-check integer part
2 7 9 7 9

FIGURE 16. Details of carry check to correct the string {"3C;, ‘8C; ‘9’, ‘8C;,
‘9C’} to {2, 7, "9, ‘7, '9'}.

and is labeled as ‘X’. If a digit goes from X to (X+1), itis in
the “carry-out” status and is labeled as ‘XC’. For example,
in FIGURE 14, the rightmost digit is labeled as ‘3C’ since
it is going from 2 to 3. Table 1 lists all categories and labels
used to label a meter. Three categories are used in this paper;
that is, digit category, carry-out category, and meter category.
The meter category includes two elements to define the ROIs
of the dial meters and the cyclometers, respectively. Thus, the
total number of labels is 42, i.e., 20 x 2 + 2.

E. CARRY-OUT RECHECKING METHOD

After detecting the counter region and digits by the BIF-MSP
network, some errors still occur due to the “in-between”
problem caused by digits’ carrying-out statuses. As shown
in FIGURE 15, the third digit should be 2 but its indicator
makes it recognized as ‘3C’ since the second digit is ‘9’. This
section proposes a carry-out rechecking method to correct its
value. Assume there are K digits in a meter. In the detection
stage the K digits are labeled as Dk, ..., D, ..., D1, where
Dy € Dy € {0,1,...,9}. Also, let the corrected digits be
represented as Nk, ..., Nk, ..., Ni. Then, the kth digit will
be corrected as

Dy, if Dy ¢ CarryCategory,

N = Dy, if Dy € CarryCategory and k=1, )
Dy — 1, if Dy € CarryCategory and Ny_1 > 35,
Dy, if Dy € CarryCategory and Ny_; <5.
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Digit Cat. 0 1 2 3 4 5 6 7 8 9 Dial-display  [Cyclometer-display Total
Carry Cat. | 0OC | IC | 2C | 3C | 4C | 5C | 6C | 7C | 8C | 9C Train 245 98 343
Meter Cat. | Dial Digit Validation 254 90 344

Test 427 104 531
total 926 292 1218

Based on Eq.(1), Ny is updated from k = 1 to K. As shown in
FIGURE 15, the first, second, and fourth digits (from right to
left) are updated to 3, 9, and 4, respectively, by dropping ‘C’,
and the third digit is changed to 2 due to the third rule. Finally,
the meter reads “04293”. FIGURE 16 shows the details of
carry re-checking to correct the digits {‘3C’, ‘8C’, 9, ‘8C’,
‘9C’}t0 {2,7,9,7,9}.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our system, an in-house
dataset is collected that includes 1218 images. Table 2 lists
the details of the numbers of different types of meters for
training, validation, and testing, respectively. All data is col-
lected over half a year to record the variations of meters
under different lighting conditions, weather conditions, and
positions. This dataset can be publicly accessed by the URL:
http://140.113.110.150:5000/sharing/52HCvjly2. In addition
to this in-house dataset, two other public datasets [38], [39]
have been adopted for the performance evaluation of the
AMR system. The first one [38] is collected to recognize
cyclometer meters and the second one [39] is for recognizing
dial-type meters. For the first dataset [38], there are different
conditions that affect the accuracy of the reading of meters
including blurring, reflections, low contrast, broken glass,
dirt, etc. It includes 2000 images that are split into three sets;
that is, training (800 images), validation (400 images), and
testing (800 images). For the second dataset [39], there are
2000 dial-type meters, 903 of which are for 4 dials and 1097
for 5 dials. It was divided into three subsets that included
1200 images for training, 400 images for validation, and
the remaining 400 images for testing. It includes various
challenges in meter recognition such as low contrast, low-end
cameras, low lighting conditions, high compression ratios,
skewing, etc. In addition, clockwise and counterclockwise
dials also alter the accuracy of meter reading.

To evaluate performance, the accuracy of recognizing
“individual” digits on meters is defined as the number of
correctly recognized digits divided by the number of digits in
the test set. In addition, the accuracy of meter recognition is
defined as the number of correctly recognized meters divided
by the number of meters in the test set; that is,

M
1
MeterAccucy = i ZMatch(R(i), G(D)),

i=1

where M is the total number of meters in the test set, R(i)
and G(i) are the recognized string and ground truth for the ith
meter, respectively. In addition, Match(X,Y) = 1if X =7,
and 0if X # Y.
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© @
FIGURE 17. Meter reading results. (b) Result of reading a cyclometer from
(a)- (d) Result of reading a dial meter from (c).

(d
FIGURE 18. Meter reading results. (b) Result of reading a dirty dial meter
from (a). (d) Result of reading a dark cyclometer from (a).

FIGURE 17 shows the results of meter reading. (b) is the
result of reading a cyclometer from (a). (d) is the result of
reading a dial meter from (c). It is not necessary to reload
the model used in our AMR system by reading a cyclometer
or a dial meter. Additionally, our proposed AMR system
can read meters, even though they are captured in noisy or
poor lighting environments. FIGURE 18(b) shows the case of
reading a dial meter in noisy conditions from FIGURE 18 (a).
It is more challenging to read meters from dark environments.
FIGURE 18 (d) shows the result of reading a cyclometer from
(c) in a dark environment. Our AMR system can also read
multiple meters from the same image. FIGURE 19 shows two
cases where multiple meters were read from the same image.
All digits are correctly detected and read.

To make fair comparisons, three well-known detectors are
adopted in this paper, namely, Faster-CNN [20], SSD [21],
and YOLO [22]. In the literature, they were adopted in most
SoTA CNN-based methods [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32] to read different meters. In this paper,
they are adopted as baselines to evaluate the performance of
our BIF-MSP model. Furthermore, the RefineDet net [34] is
also compared in this paper. Table 3 shows the accuracy com-
parisons among different methods without using any carry-
out correction. In this table, the “Individual” column means
the average accuracy of each digit to be correctly recognized
and the “Meter” column means the average accuracy of
all digits on a meter that should be correctly recognized.
Faster-RCNN performs the worst in terms of accuracy and
efficiency. YoloV3 performs better than SSD in both the
“Individual” and “Meter”’ categories, even though the input
size is smaller. The accuracy of RefineDet Net is better than
that of YOLO v3 but with lower fps. The accuracy of our
method performs the best among all the compared methods
in both the categories “Individual” and “Meter”. YOLO
v4 performs better than YOLO v3, SSD, RefineDet, and
FasterRCNN. It also performs better than our method with
the backbone ‘“Darknet-53”’. However, when the CSP-Net
backbone was adopted, the efficiency of our method is better
than that of YOLO v4, but with comparable accuracy. Our
method with the MSP-Net backbone performs the best among
all the methods (including YOLO V4). Interestingly, most
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FIGURE 19. Results of reading multiple meters. (a) Cyclometers. (b) Dial
meters.

FIGURE 20. Failure case of meter reading due to the problem of
“carry-out”. The correct result is “7511".

TABLE 3. Accuracy comparisons among different methods without using
a carry-out correction.

Dial-display Cyclometer-display

Methods backbone size - - fps
Individual ~ Meter Individual Meter
FasterRCNN VGG-16 416x416  81.78% 35.83% 89.42%  34.43% 1.98
SSD [21] VGG-16 300x300  83.70% 36.19% 89.75%  35.94% 39.56
SSD [21] ResNet101 321x321  85.82% 37.38% 92.58%  37.12% 44.01

SSD-512 [21] VGGNet-16  512x512  86.65% 38.12% 93.37%  38.46% 19.43
RefineDet-512 [34] VGG-16 512x512 87.53% 39.35% 94.19% 39.87% 34.83
YOLOV3 [22] Darknet-53 416416 86.91% 38.62% 93.42%  39.68% 45.74
YOLOV4 [37] CSP-Net 416x416  90.83% 44.21% 96.72%  42.01% 48.26

Our method Darknet-53 416x416  88.78% 41.84% 95.42%  40.63% 45.97
Our method CSP-Net 416x416  90.25% 43.42% 96.49% 41.76% 48.76
Our method MSP-Net 416x416  91.67% 45.58% 97.58%  42.95% 49.86

TABLE 4. Accuracy comparisons among different methods with using a
carry-out correction.

backbone size Dial Cyclometer

Methods (meter) (meter) fps
FasterRCNN[20] VGG-16 416x416 89.93% 83.65% 1.77
SSD[21] VGG-16 300x300 91.14% 78.08% 39.15
SSD[21] ResNet101 321x321 91.76% 79.96% 43.67
SSD-512[21] VGG-16 512x512 92.06% 80.45% 19.02
RefineDet-512[34] VGG-16 512x512 92.93% 82.39% 34.63
YOLOV3 [22] Darknet-53 416x416 92.27% 81.64% 46.29
YOLOV4 [37] CSP-Net 416x416 97.39% 88.45% 48.31
Our method Darknet-53 416x416 95.78% 85.58% 46.65
Our method CSP-Net 416x416 97.15% 87.63% 48.82
Our method MSP-Net 416x416 98.31% 89.13% 49.02

methods perform better in cyclometers than dial meters due
to the ambiguous cases shown in FIGURE 10. However,
in the “Meter” category, the accuracies of all methods in the
cyclometer meters are lower than those of the dial-type meters
due to the “carry-out” problem. As shown in FIGURE 20,
the recognized result is “7512” but should be “7511”. The
fourth pattern in FIGURE 20 was incorrectly recognized as
2’ since it would soon be ‘2’. It should be recognized as ‘1’
but with visual features similar to ‘2’. The same problem also
occurs in dial-type meters whose main features depend on
their arrows. On the other hand, for the digits in a cyclometer,
the features used are shapes. The in-between problem causes
more distortions in the shape of a digit than in the direction of
an arrow. Therefore, more errors will occur on the cyclome-
ters than on the dials, thus resulting in lower accuracy in the
“meter” category for all methods.

TABLE 4 tabulates the accuracy comparisons among dif-
ferent methods if our proposed carry-out rechecking method
was adopted. Here, only the results of the “meter” category
are listed in Table 4. Compared to TABLE 3, the accuracy
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TABLE 5. Accuracy comparisons among different methods with using
carry-out correction and mirroring.

Outer feature Inner feature with position

Methods Dial Cyclometer  fps Dial  Cyclometer fps

FasterRCNN  86.31% 79.17% 1.85 89.93% 83.65% 1.77
SSD[21] 88.18% 7476%  39.37 91.14% 78.08%  39.15
SSD[21] 89.03% 75.52%  43.82 91.76% 79.96%  43.67

SSD-512[21] 89.62% 76.68%  19.38 92.06% 80.45%  19.02
RefineDet-512[34]  90.05% 79.08% 3491 92.93% 82.39%  34.63
YOLOV3 [22]  89.89% 77.95%  45.53 92.27% 81.64% 45.31
YOLOV4 [37]  91.35% 80.12% 4531 95.69% 86.53%  47.65
92.85%  81.85% 45.94 97.31% 88.13%  48.56

Our method

]?7'093"'

7s_analog

FIGURE 21. Failure case of meter reading due to the ambiguous problem
of digit labeling. The expected result should be “37893".

improvements are significant (almost double) if the recheck-
ing method is adopted. As described above, the in-between
problem creates more distortions in the shape of a digit than in
the direction of an arrow. Thus, for all methods, the accuracies
in digit-type meters are lower than those in dial-type meters.
From this table, our method still performs the best among all
methods (including YOLO v4).

As shown in FIGURE 10(a), there are two rules for inter-
preting a dial in a dial-type meter; that is, clockwise and
anticlockwise. The two rules will confuse the learner and thus
degrade its accuracy. For a dial in a dial-type meter, it can be
identified according to its ““inner” feature, that is, the orien-
tation of the arrow or its ““outer’ feature, that is, the printed
numbers. When the meter is large, the cases in FIGURE 10(a)
and FIGURE 10(b) can be easily identified, since their outer
features are clear enough. However, in case the meter is small
or blurred, the inner feature ‘‘arrow orientation” will domi-
nate the final decision and result in the failure to identify the
two cases (as shown in FIGURE 21). Then, FIGURE 10(b)
will be misclassified as ‘1’. Thus, it is better to let the
two cases share the same label and be further discriminated
according to their positions (odd or even). TABLE 5 tabulates
the comparisons between the “outer” feature and the ““inner”
one with position. FIGURE 21 shows the failure case of
meter reading due to this ambiguous problem. The third digit
should be detected as ‘9’ and then corrected as ‘8’. However,
it was incorrectly detected as ‘1’ and then corrected as ‘0’
due to its ambiguous and unclear “outer’ feature. Therefore,
in Table 5, clearly, the ““outer” feature performs worse than
the ““inner” feature. Both the efficiencies of the ‘“inner”
feature and the ““outer” feature are similar. Compared to other
methods, our method still performs the best when only the
“outer” feature is adopted.

TABLE 6 tabulates the comparisons among different light
backbones. The lightweight backbones adopted here for
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TABLE 6. Accuracy comparisons with a lightweight backbone and
carry-out correction on Jetson TX2.

Methods backbone size Dial Cyclometer fps
SSD[21] MobileNet[35] 416x416 83.54% 78.53% 27.65
YOLO Tiny [22] Tiny-15 416x416 78.92% 72.12% 33.27
Our method PeLee [33] 416x416 92.38% 81.73% 28.35
Our method CSP-Net [42] 416x416 94.03% 83.85% 31.28
Our method MSP-Net 416x416 95.16% 85.05% 31.86

TABLE 7. Average accuracies of our method if the rightmost digit is not
included.

Methods backbone size Dial Cyclometer
Our method PeLee [36] 416x416 95.73% 89.84%
Ourmethod ~ CSP-Net [42] ~ 416x416  97.13% 92.58%
Our method MSP-Net 416x416 98.54% 93.69%

TABLE 8. Accuracy comparisons among different methods based on the
public dataset of cyclometers [38].

No Carry-out-correctior  Carry-out-Correction

Methods

backbone size Individual

Meter FPS Meter FPS
SSD [21],[29] VGG-16 300x300 93.37 91.38 56.72 92.62 56.13
SSD [21],[29] ResNet101 321x321 93.17 91.06 45.77 92.37 45.11
SSD-512 [21], [29] VGG-16 512x512 95.07 92.87 34.52 94.12 33.96
RefineDet [34] VGG-16 512x512 92.55 90.05 18.04 9L.11 17.61
FCN [27]* VGG-16 224x224 - 93.87 46.61
Multitasking [23]* Darknet-19  416x416 95.96 89.12 46.6
CRNet [23]* Darknet-19  416x416 98.30 94.25 329
CDCC-Net [24] CSP-Net 416x416 - 94.75 44.20 - -
YOLOV3 [26] Darknet-53  416x416 94.37 91.87 45.35 93.37 44.82
YOLO v4 [42] CSP-Net 416x416 98.39 96.32 46.61 97.48 45.54
Our method Darknet-53 416x416 96.45 95.06 45.54 96.76 44.61
Our method CSP-Net 416x416 97.68 95.81 46.89 97.27 45.68
Our method MSP-Net 416x416 99.42 97.26 47.54 98.87 46.75

* All the data are cited from [24] and the FPS values are recalculated based on YOLO V4.

comparisons are MobileNet [35], YOLO Tiny [22], PeLee
[36], our CSP [42], and our BIF-MSP. Our CSP backbone
had been adopted in YOLO V4 [37]. The platform for this
performance evaluation is based on Jetson TX2. The best fps
was obtained from YOLO Tiny but with the lowest accuracy.
The worst efficiency was obtained from SSD with Mobile
Net. Our method with the BIF-MSP backbone performs the
best in terms of both accuracy and efficiency. Actually, the
rightmost digit in a meter moves much faster than other
digits and changes per second. Therefore, it often stays in
the carry-out state and leads to errors in meter reading. How-
ever, due to its fast changes, it plays an unimportant role in
billing. TABLE 7 lists the average accuracies of our method
if the rightmost digit is not included. If this rightmost digit
is ignored, the final accuracy of the *dial -type” meter is
up to 98.14%. All of the above experiments have proved the
superiority of our method for both dial-type and digit-type
meters.

TABLE 8 lists the accuracy comparisons between dif-
ferent methods for reading cyclometers based on the open
dataset [38]. Since the minimum size of a digit is 35 x 63, the
accuracies for all compared methods are much higher. In this
paper, seven SoTA methods [21], [23], [24], [26], [27], [31],
[42] were compared. Among them, the four methods [23],
[24], [26], [27] were specially designed to read cyclometers.
Regarding the failure cases, errors occur mainly due to the in-
between problem, i.e., digits to be carried out. The input size
of FCN [27] is the smallest, and thus its accuracy is lower.
As described before, YoloV3 [26] performs better than SSD
even in this open dataset [38]. As for CDC-Net [24], to speed
up the efficiency of its previous framework [23], a light
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TABLE 9. Accuracy comparisons among different methods based on the
public dataset of dial meters [39].

Methods Backbone size Individual ~ No Carry-correction Carry-Correction

Meter FPS Meter FPS
SSD VGG-16  300x300  88.54 425 5644 745  56.02
SSD ResNet101  321x321 87.95 39.5 4471 715 4425
SSD-512 VGG-16  512x512 93,79 485 336 80.5  33.19

RefineDet VGG-16  512x512 2597 - - - -

YOLO V2 darknetl9  416x416  90.14  66.5 79.43  86.5 79.05
YOLO V3Tiny [22]  Tiny-15 416x416  82.14 455 269.62 77.5 265.18
YOLOV3 Darknet-53  416x416  91.69  71.5 4484 855 4432
YOLOv4 CSP-Net ~ 416x416 9468 7921 4649 90.12 45.86

Our method Darknet-53 ~ 416x416 9322 7775 4513 88.54 4496
Our method CSP-Net 416x416 9437  78.83 46.68 89.84 46.21
Our method MSP-Net  416x416 9579  80.86 47.35 91.65 46.93

backbone (modified from YOLO v4) is adopted and thus
cannot extract enough semantic features to read the meters.
Although its efficiency has been significantly improved, the
improvement in accuracy is minor. However, our method is
still the best. This paper proposes a carry-out rechecking
method to further improve the accuracy of meter recognition.
In TABLE 8, the seventh column lists the improved accu-
racies of meter recognition after performing this rechecking
task. The rightmost column shows the FPSs of meter recog-
nition after carry-out rechecking for all methods. The task of
rechecking slightly reduces their FPSs.

TABLE 9 shows the accuracy comparisons among dif-
ferent methods to recognize dial-type meters in the public
dataset [39]. Compared to cyclometers (see Table 8), the
existence of clockwise and counterclockwise interpretation
rules makes the average accuracy of reading dial meters
lower. Since the accuracy of RefineDet to recognize individ-
ual dials is too low, its other performance evaluations are not
performed here. The YOLO V3Tiny got the fastest FPS but
with lower accuracy. The fifth column of TABLE 9 shows the
accuracy comparisons of meter recognition without using our
carry-out rechecking technique. The effect of the in-between
problem will significantly degrade the accuracy of reading
a whole meter. Table 9 shows the accuracy comparisons
of meter recognition without/with the carry-out rechecking
technique. Even with the carry-out rechecking method, the
FPSs for all methods do not change significantly. However,
the accuracy improvements are significant. For example, for
our method, the improvement is about 10.79% from 80.86%
to 91.65%. All of the above experimental results demon-
strate the superiority of our method in terms of accuracy and
efficiency.

V. CONCLUSION AND FUTURE WORK

This paper has proposed an AMR system based on a
lightweight CNN architecture that reads both dial-type and
cyclometers in real time. Most errors in meter reading are
caused by the in-between problem of digits. To deal with this
problem, a carry-out rechecking method has been proposed
to determine the real value of each digit in a meter. Due to
the lightweight architecture, the proposed AMR system can
achieve 30 fps on the NVidia TX2 platform. Our AMR system
can read dial-type meters even if their dials are designed with
an anticlockwise or clockwise rule. Extensive experiments
show that the proposed method achieves SoTA results under
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different datasets in terms of accuracy and efficiency in read-
ing the meters. After analysis, most errors occur in the right-
most digits due to its quick changes. Accuracy can be further
improved if multiple frames are used to vote confidences on
each recognized digit. Additionally, if historical records of
each analyzed meter are provided, better accuracies can be
obtained by setting constraints on the current meter reading;
that is, the value of the current meter reading record should
be larger than its previous record.
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