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ABSTRACT Automatic meter reading is important for power billing in a smart city. Most SoTA (State-
of-the-Art) vision-based methods can read only cyclometers and fail to handle dial meters due to their
in-between problem and ambiguous patterns to interpret a digit and are not light enough to be run on an
embedded platform. This paper focuses on the design and development of an Internet of Things (IoT)-
assisted real-time Automatic Meter Reading (AMR) system for utility billing in a smart city. To enhance
the accuracy of object detection, most SoTA methods use a very deep CNN-based architecture to create rich
featuremaps. However, this backbone alsomakes small objects in the last layer become one pixel or less. This
paper proposes a novel BI-Fusion Mixed Stage Partial (BIF-MSP) network to hold the spatial information
of a smaller object at the end of network architecture and also increase the efficiency while operating on an
embedded system. It can accurately detect small digits not only from cyclometers but also from dial meters.
It can automatically decide a rule (anticlockwise or clockwise) to accurately read digits on a dial-type meter.
After that, a carry-out re-checking module is proposed to further improve the accuracy of this AMR system.
The experiments show the superiorities of our ARM system in terms of accuracy and efficiency. The dataset
can be publicly accessed from the following URL: http://140.113.110.150:5000/sharing/52HCvjly2

15 INDEX TERMS Automatic meter reading, bi-fusion, deep learning, power billing, object detection, YOLO.

I. INTRODUCTION16

Automatic Meter Reading (AMR) [1], [2] is the remote17

collection of consumption, diagnostic, and status data from18

water meters or energy meters (gas, electric) and transferring19

those data to a central database for billing, troubleshoot-20

ing, and analysis. This AMR system is important for utility21

billing in a smart city [3] and can save utility providers the22

expense of periodic trips to each physical location to read23

meter data. Although smart meters have been used in some24

countries, there are still many traditional meters working25

together for utility billing. For example, as reported in [4]26

and [5], there are still many nonautomatic meters to be found27

in the United States, and they are difficult to replace due28

to expensive costs and building regulations. Thus, reading29

electric meters in these countries is still performed manually30

with errors. Such errors can be avoided if smart meter reading31

The associate editor coordinating the review of this manuscript and

approving it for publication was Chiu-W. Sham .

FIGURE 1. Two types of electricity meters. (a) Dial meter. (b) Cyclometer.

sensors are adopted to check the devices. Then, the meter 32

data can be securely sent to the service provider through a 33

privacy-preserving access protocol [6], [7] in an IoT-enabled 34

smart-grid system to do billings in near real time without 35

involving man efforts. 36

Many vision-based reading systems [5], [6], [7], [8], 37

[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 38

[19] have been proposed for utility meter recognition 39
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FIGURE 2. Diagram of our AMR system for meter digit reading.

based on handcrafted or deep features. For example,40

Rodriguez et al. [8] used a color-slicing method to isolate41

digital numbers and then recognized them based on their42

Hausdorff distances. In [10], Gallo, Zamberletti, and Noce43

proposed a segmentation-based method to extract characters44

for the reading of meters based on the technique of Max-45

imally Stable Extremal Regions (MSER) [11], but failed46

with blurred images caused by perspective distortions. In [9],47

Tang et al. used a binarization method to threshold an energy48

meter and then adopted morphological operations to remove49

noise so that its embedded digits were recognized. In recent50

years, deep Convolutional Neural Networks (CNN) have51

been widely used in different computer vision tasks with52

superior performance in object detection [20], [21], [22]. The53

features extracted by CNNs are often more general, accurate,54

and less affected by different environmental conditions. For55

example, in [12], Li et al. used a new lightweight CNN56

to recognize the digits of the cyclometer meters. G´omez,57

Rusi˜nol, and Karatzas [13] used a CNN-based method to58

detect and recognize digits on utility meters. As shown in59

FIGURE 1, there are two types of meters, the cyclometer60

meter and dial-type one. Compared with a cyclometer, two61

challenges force a dial meter to be more difficult to recog-62

nize. The first challenge is caused by the ambiguity of the63

interpretation rule for reading a dial. A dial can be interpreted64

by an anticlockwise rule or a clockwise rule according to its65

positions. The second challenge is the ‘‘in-between’’ problem66

of a dial caused by its analog nature; that is, the status of a67

dial is continuous rather than discrete. Thus, a dial will not68

exactly point to a digit, but often to an ‘‘in-between’’ posi-69

tion between two adjacent digits. The ‘‘in-between’’ position70

often confuses the above hand-crafted or deep approaches and71

therefore results in reading errors on the digits. It is noticed72

that the ‘‘in-between’’ problem is also seen when recognizing73

a cyclometer.74

This paper focuses on the design and development of an75

Internet-of-Things (IoT) assisted real-time automatic meter76

reading (AMR) system for utility billing in a smart city.77

It should be a light architecture and can read both cyclome-78

ters and dial meters. To enhance object detection accuracy,79

most SoTA methods use a much deeper CNN architecture80

to create rich feature maps. As claimed in [40], [41], deep-81

ening the CNNs not only can solve the vanishing gradient82

but also makes small objects in the last layer be one pixel.83

The one-pixel feature makes classification and bounding box84

regression very hard. Thus, most SoTA CNN-based object85

detectors, e.g., RefineDet [34] or Faster R-CNN [20], are86

problematic for small object detection. In addition, the deeper 87

structure will lose its efficiency due to the design of a much 88

deeper network architecture and will become unsuitable for 89

edge computing devices. In real-life testing, the efficiencies 90

of the above SoTACNN detectors on embedded systems such 91

as TX2 are shown to be less than 3 fps for frame dimen- 92

sion 416 × 416. To address the above challenges, a novel 93

AMR system is proposed in this paper. FIGURE 2 shows 94

its diagram. First, a novel BI-Fusion Mixed Stage Partial 95

(BIF-MSP) network is proposed to detect and recognize both 96

cyclometers and dial meters. This BIF-MSP network can 97

hold the spatial information of a smaller object at the end 98

of the network and also increase efficiency while operating 99

on an embedded system. Then, to deal with the ambiguity 100

of reading rule in recognizing a dial-type meter, this paper 101

proposes a label-sharing technique to make two clockwise 102

and anticlockwise dials share the same label and then identify 103

their real values according to their positions. To address the 104

‘‘in-between’’ problem, a new rechecking method is pro- 105

posed to determine the actual values of the digits on a meter 106

according to their carry-out conditions. Our proposed AMR 107

system adopts the above twomethods to accurately detect and 108

recognize both small digits and dials even with significant 109

distortions. Its efficiency on TX2 is up to 30 fps. The main 110

contributions of this paper are summarized as follows: 111

1) A novel AMR system is proposed to read information 112

from both cyclometers and dial meters in real time. 113

2) Furthermore, a BIF-MSP network is proposed to detect 114

small digits or dials even with significant distortions 115

and can achieve 30 fps on TX2. 116

3) A carry-out rechecking method is proposed to further 117

improve the accuracy of meter reading. 118

4) The AMR system can automatically decide on a correct 119

reading rule (anticlockwise or clockwise) to read each 120

dial on a dial meter. 121

5) The AMR system can be run directly on an embedded 122

device to analyze the acquired image so that only the 123

recognized data needs to be transferred. 124

6) Extensive experiments show the superiority of our 125

AMR system in reading both cyclometers and dial 126

meters in terms of accuracy and efficiency. 127

II. RELATED WORKS 128

In the literature, different frameworks [14], [15], [16], [17], 129

[18] have been proposed for AMR based on hand-crafted 130

features. For example, Shu, Ma, and Jing [14] proposed a 131

segmentation-based method to extract text candidates and 132
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then recognize their digits by OCR. In [15], Oliveira, San-133

tos, and Bensebaa used a homomorphic filter to reduce the134

effect of illumination and then adopted a K-mean cluster-135

ing scheme to recognize all digits on Watt hour meters.136

Rodriguez et al. [8] assumed that all digits were not occluded137

and then detected and recognized the digits from an electrical138

meter based on their Hausdorff distances. In [16], Cai, Wei,139

and Yuan used a projection technique to segment digits from140

ameter and then recognized them based on Back-Propagation141

(BP) networks. Similarly to [16], Zhang et al. [17] used a142

thresholding method to segment text regions from a house-143

hold meter and then recognized all embedded digits by BP144

networks. In [10], a multilayer perceptron was trained to145

extract text regions and then an MSER method was adopted146

to extract and recognize individual digits according to their147

histogram of oriented gradient features. Furthermore, after148

intensity normalization, Elrefaei et al. [18] took advantage149

of gray and location distributions to detect and read the150

digits on a meter through a smartphone. In [19], Anis et al.151

used morphological operations to extract text regions from152

an electric meter and then adopted horizontal and vertical153

projections to segment and recognize all individual digits.154

However, compared to deep features, the above handcrafted155

features performworse andmore unstable to read information156

from meters, especially under poor lighting conditions.157

Recently, the accuracy of object detection has been158

improved by a large margin with various SoTA models such159

as FPN [20], YOLOv3 [22], and SSD [21]. With these160

advances, many frameworks for CNN-based AMR have been161

proposed. For example, in [13], G omez, Rusi nol, and162

Karatzas proposed a segmentation-free system to detect digits163

in a meter based on CNNs. Laroca et al. [23] designed a164

two-stage framework for counter detection and recognition165

based on a YOLO detector. In [28], Son et al. also used a166

YOLO detector to read the digits on a gas meter. Instead167

of using YOLO, Tsai et al. [29] trained an SSD (Single168

Shot MultiBox) [21]-based detector to detect digits from a169

digit meter. YOLO-based and SSD-based detectors are effi-170

cient, but perform poorly for small object detection. In [30],171

Waqar et al. proposed a scale-invariant approach based on172

Faster R-CNN [20] to detect small digits on a meter under173

different lighting conditions. Furthermore, Gao et al. [31]174

used CNNs for feature extraction and then adopted a Bidi-175

rectional Long Short-Term Memory (BLSTM) scheme for176

end-to-end sequence alignment to recognize the digits of177

water meters based on mobile devices. Instead of BLSTM,178

Yang et al. [32] used a Recurrent Neural Network (RNN) for179

sequence modeling and then recognized the digits of water180

meters. For mobile applications, Li et al. [33] proposed a181

PGC (Pressure Gauge Calibration) sequence network with182

three convolutional layers to recognize the digits of pres-183

sure gauge meters for fast and accurate gauge calibration.184

For performance evaluation, Laroca et al. [23] introduced185

a public dataset, called the UFPR-AMR dataset, to evalu-186

ate different CNN-based approaches for AMR. CNN-based187

approaches above can recognize digits only for digit-type188

meters, but cannot analyze dial-type meters due to their ‘‘in- 189

between’’ positions. This paper proposes a new AMR system 190

to read data not only from cyclometers but also from dial 191

meters under different lighting conditions. It can automati- 192

cally decide on a correct rule (anticlockwise or clockwise) 193

to interpret dials in a dial-type meter, even on embedded 194

devices. 195

III. METHOD 196

Most current AMR systems are character-based and only 197

recognize digits (0-9). However, there are still various dial- 198

type meters used in household measuring devices. To reduce 199

human effort and manpower, it is better to design a light CNN 200

architecture to read both cyclometers and dial meters on an 201

embedded system. As shown in FIGURE 2, a light BIF-MSP 202

architecture is proposed to detect counter regions from which 203

different digits are extracted. With the help of this BIF-MSP 204

architecture and carry-out rechecking, our proposed AMR 205

system can effectively deal with the ‘‘in-between’’ problem 206

and the interpretation-ambiguity problem, i.e., digits inter- 207

preted by an anticlockwise rule or a clockwise rule. More 208

importantly, the proposed AMR system can run on an embed- 209

ded system to directly recognize a meter instead of on a 210

server. In what follows, details of the BIF-MSP architecture 211

are first introduced, and then the details of our AMR system 212

are discussed. 213

FIGURE 3. Feature pyramid in YOLO3.

A. CONCATENATED FEATURE PYRAMID NETWORK 214

To improve the accuracy of small object detection, a feature 215

pyramid (FP) structure is commonly adopted in the SoTA 216

detectors due to its multiscale structure. For example, the 217

YOLOv3 architecture is created by adding an FPN layer in 218

the YOLOv2 network and replacing the swallower backbone 219

(DarkNet19) with a deeper backbone (DarkNet53) for small 220

object detection. FIGURE 3 shows the detailed diagram of 221

the YOLOv3 architecture. However, as claimed in [40] and 222

[41], deepening the CNNs can not only solve the vanishing 223

gradient, but also make small objects in the last layer become 224

one pixel due to subsampling layers. The one-pixel feature 225

makes classification and bounding box regression very hard. 226

To improve the ability of small object detections due to the 227

small size of the top feature maps, which are less than 1 pixel, 228

this papper proposed a BIF-MSP architecture to increase the 229

accuracy of small object detection. It first creates a Concate- 230

nated Feature Pyramid (CFP) and a Bi-Fusion module for 231
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FIGURE 4. Proposed concatenated feature pyramid (CFP).

FIGURE 5. Proposed Concatenation Block (CB), consisting of two
concatenations, 2× upscaling operation, and 2-4 convolutional layers.
(Conv. 1-3L) refers to 1-3 convolutional layers.

fusing feature maps with top-down and bottom-up mecha-232

nisms to generate flexible FPs for small object detection.233

This CFP is shown in FIGURE 4 and has some similarities234

to FPN and YOLOv3, whereby we use feature pyramids235

to detect objects on three different scales. The objective of236

CFP is to increase and adjust the accuracy and efficiency of237

small object detection in embedded devices. To achieve this,238

the CFP includes an inter-scale Concatenation Block (CB),239

shown in FIGURE 5, consisting of a reduced number of con-240

volutional layers and added concatenation operations instead241

of addition and convolution operations to concatenate feature242

maps from different layers. Instead of an addition operation243

as shown in the blue dashed box of FPN (see FIGURE244

3), this CFP employs a concatenation (blue dashed box in245

FIGURE 4 or CONCAT 1 in FIGURE 5) operation for merg-246

ing 2× up-scaled feature channels of the deeper layer and247

feature channels of the shallow layer. It is noticed that there248

is no concatenation of features from different layers for Scale249

1 of this CFP, as shown inside the red dashed line box of FIG-250

URE 5. In addition, instead of addition as in the residual block251

of ResNet (Residual Network), we concatenate these features252

and their convoluted results (see CONCAT 2 in FIGURE 5)253

together. This replacement saves significant computational254

time since concatenation is not considered an algebraic oper-255

ation. Furthermore, instead of 8 convolutional layers (black256

dashed box in FIGURE 3) of YOLOv3, we employ at most257

4 convolutional layers. The number of convolutional layers258

can be adjusted to trade accuracy and efficiency. This CFP259

employs 2, 3, and 1 convolutional layers on Scale 1, Scale 2,260

and Scale 3, respectively.261

B. BI-FUSION CONCATENATED FEATURE PYRAMID262

NETWORK263

In addition to CFP, our BIF-MSP network also creates a264

Bi-Fusion Module (BFM) to fuse feature maps with both265

FIGURE 6. Architecture of the proposed BFM (green-dashed box).

FIGURE 7. (a) Original backbone. (b) CSP architecture.

FIGURE 8. Mixed stage partial network.

the top-down and bottom-up mechanisms to generate flexible 266

FPs for small object detection. The first direction is a top- 267

down path, which is achieved by forming an hourglass FP. 268

The second direction is a bottom-up path that uses BFM to 269

generate final FP layers by concatenating reshaped features of 270

the shallower layer of a final FP and features of a current layer 271

of an hourglass FP. With this bifusion mechanism, an object 272

with a small size (even if it is down-sampled to 1 pixel) can 273

reappear at shallower layers. The green dashed box of FIG- 274

URE 6 shows the basic structure of BFM. Moreover, in case 275

that a light backbone is adopted, the proposed BFM can 276

further improve its efficiency for object detection in real time. 277

C. MIXED STAGE PARTIAL BACKBONE 278

For edge computing, we adopt our previous framework to 279

further reduce computational load, i.e., a lightweight Cross 280

Stage Partial Network (CSPNet) [42]. This CSPNet has 281

been adopted in YOLO v4. It respects the variability of the 282
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FIGURE 9. Different reading rules to interpret a dial in a dial-type meter.

FIGURE 10. Ambiguous cases between (a) and (b).

FIGURE 11. Twenty labels are used to label a dial meter.

gradients by integrating feature maps from the beginning and283

the end of a network stage, as shown in FIGURE 7. The284

CSPNet separates the feature map of the base layer into two285

parts, where one part will go through a dense block and a286

transition layer; the other part is then combined with the287

transmitted feature map to the next stage. Separation can not288

only balance the computation of each layer, but also reduce289

memory traffic jam. It is noticed that only one convolu-290

tion layer is applied for feature extraction in this CSPNet.291

To further enrich the feature maps, this paper proposes a292

Mixed Stage Partial (MSP) network to generate more features293

from cheap operations. FIGURE 8 shows the architecture294

of MSPNet. Compared to the CSP net, only C/2 channels295

are generated by 3 × 3 convolution and further processed296

by 1 × 1 convolution, and then concatenated to generate297

another set of feature maps with C channels. Since only298

half channels, i.e., C/2 are generated, more efficiency can299

be gained. In addition to efficiency, greater accuracy can be300

gained since an additional feature extraction layer is added.301

Its conference version [38] is proposed for vehicle detection302

rather than ARM.303

D. LABELING AND TRAINING304

Most of current AMR systems can read 0-9 digits only from305

cyclometers. This paper proposes a new AMR system to306

read digits not only from cyclometers but also from dial-307

type meters. As shown in FIGURE 9, there are two reading308

rules to interpret a dial in a dial-type meter, i.e. clockwise309

FIGURE 12. Cases for labeling a dial-type digit. (a) ‘5’ sector. (b) ‘5C’
sector.

FIGURE 13. Labeling for a cyclometer.

FIGURE 14. The case of an ‘‘in-between’’ digit in a cyclometer.

and anticlockwise. The two rules are applied interactively to 310

interpret dials based on their positions; one is clockwise and 311

then anticlockwise. In real cases, these two rules will confuse 312

the trained detector and result in the failure to recognize 313

dials with similar visual patterns. As shown in the arrows in 314

FIGURE 10(a) and FIGURE 10(b), they have similar arrow 315

patterns (pointing to the same direction), but should be inter- 316

preted differently. When a meter is small, the outer feature 317

(its surrounding numbers) will become blurred and cannot 318

provide useful information for the classifier to discriminate 319

the two cases in FIGURE 10. To tackle this confusion prob- 320

lem, this paper considers that they are the same and share the 321

same label. Thus, the cases in FIGURE 10 are labeled as the 322

same digit ‘1’. They will be further identified according to 323

their positions (odd or even). 324

This paper uses twenty labels to label a dial-type meter. 325

As shown in FIGURE 11, twenty labels are used to label a dial 326

meter and can be divided into two categories, i.e., ‘‘digit’’ and 327

‘‘carry-out’’ categories. In FIGURE 11, for all blue intervals 328

bounded by two digits, they belong to the category ‘‘digit’’ 329

that includes digits from ‘0’ to ‘9’. When an arrow points to 330

a digit ‘X’, it will be in the ‘‘carry-out’’ category and labeled 331

as an ‘XC’. As in the example shown in FIGURE 11, all the 332

white sectors are in the ‘‘carry-out’’ category and labeled as 333

from ‘0C’ to ‘9C’. FIGURE 12 shows two cases of labeling 334

a digit ‘5’ on a dial-type meter. In FIGURE 12 (a), the arrow 335

is in the ‘‘digit’’ interval and is thus labeled ‘5’. FIGURE 12 336

(b) is labeled as ‘5C’ since the arrow points to ‘5’. All the 337

recognized results located within the carry-out interval will 338

be further identified via a carry-out re-checking process at 339

the post-processing stage. 340

As for the digits on a cyclometer, the number of labels 341

used is also twenty. As shown in FIGURE 13, the labels are 342

also divided into two categories, i.e. ‘‘digit’’ and ‘‘carry-out’’ 343

categories. If a digit ‘X’ is shown, it is in the category ‘‘digit’’ 344
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TABLE 1. Categories and labels are used to label a meter.

FIGURE 15. Errors caused by a carry-out status. ‘3C’ should be ‘2’.

FIGURE 16. Details of carry check to correct the string {‘3C’, ‘8C’, ‘9’, ‘8C’,
‘9C’} to {‘2’, ‘7’, ‘9’, ‘7’, ‘9’}.

and is labeled as ‘X’. If a digit goes from X to (X+1), it is in345

the ‘‘carry-out’’ status and is labeled as ‘XC’. For example,346

in FIGURE 14, the rightmost digit is labeled as ‘3C’ since347

it is going from 2 to 3. Table 1 lists all categories and labels348

used to label a meter. Three categories are used in this paper;349

that is, digit category, carry-out category, and meter category.350

The meter category includes two elements to define the ROIs351

of the dial meters and the cyclometers, respectively. Thus, the352

total number of labels is 42, i.e., 20 × 2 + 2.353

E. CARRY-OUT RECHECKING METHOD354

After detecting the counter region and digits by the BIF-MSP355

network, some errors still occur due to the ‘‘in-between’’356

problem caused by digits’ carrying-out statuses. As shown357

in FIGURE 15, the third digit should be 2 but its indicator358

makes it recognized as ‘3C’ since the second digit is ‘9’. This359

section proposes a carry-out rechecking method to correct its360

value. Assume there are K digits in a meter. In the detection361

stage the K digits are labeled as DK , . . . ,Dk , . . . ,D1, where362

Dk ∈ Dk ∈ {0, 1, . . . , 9}. Also, let the corrected digits be363

represented as NK , . . . ,Nk , . . . ,N1. Then, the kth digit will364

be corrected as365

Nk=


Dk , if Dk /∈ CarryCategory,
Dk , if Dk ∈ CarryCategory and k=1,
Dk − 1, if Dk ∈ CarryCategory and Nk−1>5,
Dk , if Dk ∈ CarryCategory and Nk−1≤5.

(1)366

TABLE 2. Details of our dataset.

Based on Eq.(1), Nk is updated from k = 1 to K . As shown in 367

FIGURE 15, the first, second, and fourth digits (from right to 368

left) are updated to 3, 9, and 4, respectively, by dropping ‘C’, 369

and the third digit is changed to 2 due to the third rule. Finally, 370

the meter reads ‘‘04293’’. FIGURE 16 shows the details of 371

carry re-checking to correct the digits {‘3C’, ‘8C’, 9, ‘8C’, 372

‘9C’} to {2, 7, 9, 7, 9}. 373

IV. EXPERIMENTAL RESULTS 374

To evaluate the performance of our system, an in-house 375

dataset is collected that includes 1218 images. Table 2 lists 376

the details of the numbers of different types of meters for 377

training, validation, and testing, respectively. All data is col- 378

lected over half a year to record the variations of meters 379

under different lighting conditions, weather conditions, and 380

positions. This dataset can be publicly accessed by the URL: 381

http://140.113.110.150:5000/sharing/52HCvjly2. In addition 382

to this in-house dataset, two other public datasets [38], [39] 383

have been adopted for the performance evaluation of the 384

AMR system. The first one [38] is collected to recognize 385

cyclometer meters and the second one [39] is for recognizing 386

dial-type meters. For the first dataset [38], there are different 387

conditions that affect the accuracy of the reading of meters 388

including blurring, reflections, low contrast, broken glass, 389

dirt, etc. It includes 2000 images that are split into three sets; 390

that is, training (800 images), validation (400 images), and 391

testing (800 images). For the second dataset [39], there are 392

2000 dial-type meters, 903 of which are for 4 dials and 1097 393

for 5 dials. It was divided into three subsets that included 394

1200 images for training, 400 images for validation, and 395

the remaining 400 images for testing. It includes various 396

challenges in meter recognition such as low contrast, low-end 397

cameras, low lighting conditions, high compression ratios, 398

skewing, etc. In addition, clockwise and counterclockwise 399

dials also alter the accuracy of meter reading. 400

To evaluate performance, the accuracy of recognizing 401

‘‘individual’’ digits on meters is defined as the number of 402

correctly recognized digits divided by the number of digits in 403

the test set. In addition, the accuracy of meter recognition is 404

defined as the number of correctly recognized meters divided 405

by the number of meters in the test set; that is, 406

MeterAccucy =
1
M

M∑
i=1

Match(R(i),G(i)), 407

where M is the total number of meters in the test set, R(i) 408

andG(i) are the recognized string and ground truth for the ith 409

meter, respectively. In addition, Match(X ,Y ) = 1 if X = Y , 410

and 0 if X 6= Y . 411
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FIGURE 17. Meter reading results. (b) Result of reading a cyclometer from
(a). (d) Result of reading a dial meter from (c).

FIGURE 18. Meter reading results. (b) Result of reading a dirty dial meter
from (a). (d) Result of reading a dark cyclometer from (a).

FIGURE 17 shows the results of meter reading. (b) is the412

result of reading a cyclometer from (a). (d) is the result of413

reading a dial meter from (c). It is not necessary to reload414

the model used in our AMR system by reading a cyclometer415

or a dial meter. Additionally, our proposed AMR system416

can read meters, even though they are captured in noisy or417

poor lighting environments. FIGURE 18(b) shows the case of418

reading a dial meter in noisy conditions from FIGURE 18 (a).419

It is more challenging to readmeters from dark environments.420

FIGURE 18 (d) shows the result of reading a cyclometer from421

(c) in a dark environment. Our AMR system can also read422

multiple meters from the same image. FIGURE 19 shows two423

cases where multiple meters were read from the same image.424

All digits are correctly detected and read.425

To make fair comparisons, three well-known detectors are426

adopted in this paper, namely, Faster-CNN [20], SSD [21],427

and YOLO [22]. In the literature, they were adopted in most428

SoTA CNN-based methods [23], [24], [25], [26], [27], [28],429

[29], [30], [31], [32] to read different meters. In this paper,430

they are adopted as baselines to evaluate the performance of431

our BIF-MSP model. Furthermore, the RefineDet net [34] is432

also compared in this paper. Table 3 shows the accuracy com-433

parisons among different methods without using any carry-434

out correction. In this table, the ‘‘Individual’’ column means435

the average accuracy of each digit to be correctly recognized436

and the ‘‘Meter’’ column means the average accuracy of437

all digits on a meter that should be correctly recognized.438

Faster-RCNN performs the worst in terms of accuracy and439

efficiency. YoloV3 performs better than SSD in both the440

‘‘Individual’’ and ‘‘Meter’’ categories, even though the input441

size is smaller. The accuracy of RefineDet Net is better than442

that of YOLO v3 but with lower fps. The accuracy of our443

method performs the best among all the compared methods444

in both the categories ‘‘Individual’’ and ‘‘Meter’’. YOLO445

v4 performs better than YOLO v3, SSD, RefineDet, and446

FasterRCNN. It also performs better than our method with447

the backbone ‘‘Darknet-53’’. However, when the CSP-Net448

backbone was adopted, the efficiency of our method is better449

than that of YOLO v4, but with comparable accuracy. Our450

methodwith theMSP-Net backbone performs the best among451

all the methods (including YOLO V4). Interestingly, most452

FIGURE 19. Results of reading multiple meters. (a) Cyclometers. (b) Dial
meters.

FIGURE 20. Failure case of meter reading due to the problem of
‘‘carry-out’’. The correct result is ‘‘7511’’.

TABLE 3. Accuracy comparisons among different methods without using
a carry-out correction.

TABLE 4. Accuracy comparisons among different methods with using a
carry-out correction.

methods perform better in cyclometers than dial meters due 453

to the ambiguous cases shown in FIGURE 10. However, 454

in the ‘‘Meter’’ category, the accuracies of all methods in the 455

cyclometermeters are lower than those of the dial-typemeters 456

due to the ‘‘carry-out’’ problem. As shown in FIGURE 20, 457

the recognized result is ‘‘7512’’ but should be ‘‘7511’’. The 458

fourth pattern in FIGURE 20 was incorrectly recognized as 459

‘2’ since it would soon be ‘2’. It should be recognized as ‘1’ 460

but with visual features similar to ‘2’. The same problem also 461

occurs in dial-type meters whose main features depend on 462

their arrows. On the other hand, for the digits in a cyclometer, 463

the features used are shapes. The in-between problem causes 464

more distortions in the shape of a digit than in the direction of 465

an arrow. Therefore, more errors will occur on the cyclome- 466

ters than on the dials, thus resulting in lower accuracy in the 467

‘‘meter’’ category for all methods. 468

TABLE 4 tabulates the accuracy comparisons among dif- 469

ferent methods if our proposed carry-out rechecking method 470

was adopted. Here, only the results of the ‘‘meter’’ category 471

are listed in Table 4. Compared to TABLE 3, the accuracy 472
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TABLE 5. Accuracy comparisons among different methods with using
carry-out correction and mirroring.

FIGURE 21. Failure case of meter reading due to the ambiguous problem
of digit labeling. The expected result should be ‘‘37893’’.

improvements are significant (almost double) if the recheck-473

ing method is adopted. As described above, the in-between474

problem creates more distortions in the shape of a digit than in475

the direction of an arrow. Thus, for all methods, the accuracies476

in digit-type meters are lower than those in dial-type meters.477

From this table, our method still performs the best among all478

methods (including YOLO v4).479

As shown in FIGURE 10(a), there are two rules for inter-480

preting a dial in a dial-type meter; that is, clockwise and481

anticlockwise. The two rules will confuse the learner and thus482

degrade its accuracy. For a dial in a dial-type meter, it can be483

identified according to its ‘‘inner’’ feature, that is, the orien-484

tation of the arrow or its ‘‘outer’’ feature, that is, the printed485

numbers.When themeter is large, the cases in FIGURE 10(a)486

and FIGURE 10(b) can be easily identified, since their outer487

features are clear enough. However, in case the meter is small488

or blurred, the inner feature ‘‘arrow orientation’’ will domi-489

nate the final decision and result in the failure to identify the490

two cases (as shown in FIGURE 21). Then, FIGURE 10(b)491

will be misclassified as ‘1’. Thus, it is better to let the492

two cases share the same label and be further discriminated493

according to their positions (odd or even). TABLE 5 tabulates494

the comparisons between the ‘‘outer’’ feature and the ‘‘inner’’495

one with position. FIGURE 21 shows the failure case of496

meter reading due to this ambiguous problem. The third digit497

should be detected as ‘9’ and then corrected as ‘8’. However,498

it was incorrectly detected as ‘1’ and then corrected as ‘0’499

due to its ambiguous and unclear ‘‘outer’’ feature. Therefore,500

in Table 5, clearly, the ‘‘outer’’ feature performs worse than501

the ‘‘inner’’ feature. Both the efficiencies of the ‘‘inner’’502

feature and the ‘‘outer’’ feature are similar. Compared to other503

methods, our method still performs the best when only the504

‘‘outer’’ feature is adopted.505

TABLE 6 tabulates the comparisons among different light506

backbones. The lightweight backbones adopted here for507

TABLE 6. Accuracy comparisons with a lightweight backbone and
carry-out correction on Jetson TX2.

TABLE 7. Average accuracies of our method if the rightmost digit is not
included.

TABLE 8. Accuracy comparisons among different methods based on the
public dataset of cyclometers [38].

comparisons are MobileNet [35], YOLO Tiny [22], PeLee 508

[36], our CSP [42], and our BIF-MSP. Our CSP backbone 509

had been adopted in YOLO V4 [37]. The platform for this 510

performance evaluation is based on Jetson TX2. The best fps 511

was obtained from YOLO Tiny but with the lowest accuracy. 512

The worst efficiency was obtained from SSD with Mobile 513

Net. Our method with the BIF-MSP backbone performs the 514

best in terms of both accuracy and efficiency. Actually, the 515

rightmost digit in a meter moves much faster than other 516

digits and changes per second. Therefore, it often stays in 517

the carry-out state and leads to errors in meter reading. How- 518

ever, due to its fast changes, it plays an unimportant role in 519

billing. TABLE 7 lists the average accuracies of our method 520

if the rightmost digit is not included. If this rightmost digit 521

is ignored, the final accuracy of the ‘‘dial -type’’ meter is 522

up to 98.14%. All of the above experiments have proved the 523

superiority of our method for both dial-type and digit-type 524

meters. 525

TABLE 8 lists the accuracy comparisons between dif- 526

ferent methods for reading cyclometers based on the open 527

dataset [38]. Since the minimum size of a digit is 35× 63, the 528

accuracies for all compared methods are much higher. In this 529

paper, seven SoTA methods [21], [23], [24], [26], [27], [31], 530

[42] were compared. Among them, the four methods [23], 531

[24], [26], [27] were specially designed to read cyclometers. 532

Regarding the failure cases, errors occur mainly due to the in- 533

between problem, i.e., digits to be carried out. The input size 534

of FCN [27] is the smallest, and thus its accuracy is lower. 535

As described before, YoloV3 [26] performs better than SSD 536

even in this open dataset [38]. As for CDC-Net [24], to speed 537

up the efficiency of its previous framework [23], a light 538
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TABLE 9. Accuracy comparisons among different methods based on the
public dataset of dial meters [39].

backbone (modified from YOLO v4) is adopted and thus539

cannot extract enough semantic features to read the meters.540

Although its efficiency has been significantly improved, the541

improvement in accuracy is minor. However, our method is542

still the best. This paper proposes a carry-out rechecking543

method to further improve the accuracy of meter recognition.544

In TABLE 8, the seventh column lists the improved accu-545

racies of meter recognition after performing this rechecking546

task. The rightmost column shows the FPSs of meter recog-547

nition after carry-out rechecking for all methods. The task of548

rechecking slightly reduces their FPSs.549

TABLE 9 shows the accuracy comparisons among dif-550

ferent methods to recognize dial-type meters in the public551

dataset [39]. Compared to cyclometers (see Table 8), the552

existence of clockwise and counterclockwise interpretation553

rules makes the average accuracy of reading dial meters554

lower. Since the accuracy of RefineDet to recognize individ-555

ual dials is too low, its other performance evaluations are not556

performed here. The YOLO V3Tiny got the fastest FPS but557

with lower accuracy. The fifth column of TABLE 9 shows the558

accuracy comparisons of meter recognition without using our559

carry-out rechecking technique. The effect of the in-between560

problem will significantly degrade the accuracy of reading561

a whole meter. Table 9 shows the accuracy comparisons562

of meter recognition without/with the carry-out rechecking563

technique. Even with the carry-out rechecking method, the564

FPSs for all methods do not change significantly. However,565

the accuracy improvements are significant. For example, for566

our method, the improvement is about 10.79% from 80.86%567

to 91.65%. All of the above experimental results demon-568

strate the superiority of our method in terms of accuracy and569

efficiency.570

V. CONCLUSION AND FUTURE WORK571

This paper has proposed an AMR system based on a572

lightweight CNN architecture that reads both dial-type and573

cyclometers in real time. Most errors in meter reading are574

caused by the in-between problem of digits. To deal with this575

problem, a carry-out rechecking method has been proposed576

to determine the real value of each digit in a meter. Due to577

the lightweight architecture, the proposed AMR system can578

achieve 30 fps on the NVidia TX2 platform. Our AMR system579

can read dial-type meters even if their dials are designed with580

an anticlockwise or clockwise rule. Extensive experiments581

show that the proposed method achieves SoTA results under582

different datasets in terms of accuracy and efficiency in read- 583

ing the meters. After analysis, most errors occur in the right- 584

most digits due to its quick changes. Accuracy can be further 585

improved if multiple frames are used to vote confidences on 586

each recognized digit. Additionally, if historical records of 587

each analyzed meter are provided, better accuracies can be 588

obtained by setting constraints on the current meter reading; 589

that is, the value of the current meter reading record should 590

be larger than its previous record. 591
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