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ABSTRACT The RGB-D-based human action recognition is gaining increasing attention because the
different modalities can provide complementary information. However, the recognition performance is
still not satisfactory due to the limited ability to learn spatial-temporal feature and insufficient inter-
model interaction. In this paper, we propose a novel approach for RGB-D human action recognition by
aggregating spatial-temporal information and implementing cross-modality interactive learning. Firstly,
a spatial-temporal information aggregation module (STIAM) is proposed to utilizes sample convolutional
neural networks (CNNs) to aggregate the spatial-temporal information in entire RGB-D sequence into
lightweight representations efficiently. This allows the model to extract richer spatial-temporal features with
limited extra memory and computational cost. Secondly, a cross-modality interactive module (CMIM) is
proposed to fully fuse the multi-modal complementary information. Moreover, a multi-modal interactive
network (MMINet) is constructed for RGB-D-based action recognition by embeding the above two modules
into the two-stream CNNs. In order to verify the universality of our approach, two backbones are deployed
in the two-stream architecture, successively. Ablation experiments demonstrate that the proposed STIAM
can bring significant improvement in recognizing actions. CMIM can further play the advantages of
complementary features of multiple modalities. Extensive experiments on NTU RGB+D 60, NTU RGB+D
120 and PKU-MMD datasets proved the effectiveness of the proposed approach. The proposed approach
achieves an accuracy of 94.3% and 96.5% for cross-subject and cross-view on NTU RGB+D 60, 91.7%
and 92.6% for cross-subject and cross-setup on NTU RGB+D 120, 93.6% and 94.2% for cross-subject and
cross-view on PKU-MMD datasets, which are the state-of-the-art performance. Further analysis denotes that
our approach has advantages in recognizing subtle actions.

INDEX TERMS Deep learning, action recognition, cross-modality interactive learning, information
aggregation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

I. INTRODUCTION
benefitting from the complementary relationship in multi-
modal data, human action recognition based on RGB-D
sequence has attracted much attention in recent years.
There are two crucial ingredients for RGB-D-based action
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recognition: extracting discriminative spatial-temporal fea-
tures for each modality and fully exploring the comple-
mentary relationship between multi-modal information. For
extracting spatial-temporal features, early approaches mainly
focus on designing handcraft features, such as Histogram
of Optical Flow (HOF) [1], Motion Boundary Histograms
(MBH) [2], etc. Recent years, deep learning-based meth-
ods have shown strong advantages in accuracy and robust-
ness, such as TSN [3], TSM [4], and TEA [5]. In order
to fuse the complementary information in multiple visual
modalities, several multitask networks [6], [7], [8], [9], [10],
[11] for jointly training with multiple modalities have been
proposed. Although deep learning-based approaches have
achieved great success in action recognition, they still have
shortcomings in two aspects: feature extraction of subtle
motion and multi-modal fusion.

1) Early method usually training the deep network on
a single frame or short clip of the entire action, which
leads to insufficient modeling in time dimension. To alle-
viate the problem, Wang et al. proposed a novel Tempo-
ral Segment Networks (TSN) [3] to establish the long-term
aggregation of motion information. Most of the subsequent
methods [4], [5], [12] followed the segmented sampling
strategy in TSN. However, due to the limitation of mem-
ory and computation cost, it is not feasible to use densely
sampled frames for training, which unfortunately led to
insufficient modeling of subtle actions. Alternatively, some
work has designed a series of hand-made motion representa-
tions to centralize more motion information, such as Motion
history image (MHI) [13] and dynamic image based on
rankpooling [14], [15]. But they are not friendly to real-time
scenarios because of the amount of extra computational
cost.

2) The mainstream multi-modal action recognition meth-
ods can be divided into late fusion and intermediate fusion.
Due to the simplicity of operation and the lack of con-
sideration for different spatial dimensions, late fusion once
dominated. Representative methods includeMultimodal Cor-
relative Representation Learning (MCRL) [6], 5-stream
ConvNets [7], and Multimodal Training / Unimodal Test-
ing(MTUT) [8]. However, these methods usually train each
modality individually and fuse their recognition scores,
which does not adequately learn the complementary infor-
mation of different modalities. Research in neuroscience and
machine learning has shown that intermediate feature fusion
can benefit learning. Several works [6], [15], [16], [17] have
constructed cooperative networks to implement intermedi-
ate fusion. However, the information interaction of multiple
modalities in these methods is only performed at a single
feature level, which is not sufficient for integrating the com-
plementary features of multiple modalities to participate in
decision-making.

To overcome the shortcomings above, we propose a novel
multi-modal interaction network (MMINet), which extracts
rich spatial-temporal features in subtle motion and enhances
multi-modal feature interaction to improve the human action

recognition performance. The main contributions of this
paper are as follows:

1) A spatial-temporal information aggregation module
(STIAM) is proposed to aggregate the motion infor-
mation of each moment of the action into lightweight
representations by utilizing sample convolutional neu-
ral networks (CNNs). This enables the model to effi-
ciently leverage densely sampled frames for training
and avoids the missing of crucial motion information.

2) A cross-modality interactive module (CMIM) is
proposed to enhance information exchange between
different modalities, which enables the features from
different layers of multiple modalities to participate in
recalibrating the channel level features at the decision
level of the network. The module facilitates the model
to fully learn the complementary information of dif-
ferent modalities and greatly improves the recognition
performance.

3) We construct an end-to-end trainable multi-modal
interaction network (MMINet), which can effectively
utilize densely sampled RGB-D sequences for action
recognition. Extensive experiments on three datasets
verified the universality and effectiveness of our
approach, and achieved state-of-the-art performance.

II. RELATED WORKS
In the past two decades, many researchers have devoted
themselves to the study of action recognition and made great
contributions. In this section, we briefly review related
work from two aspects: spatio-temporal feature extraction
and multi-modal fusion.

A. SPATIAL-TEMPORAL FEATURE EXTRACTION
Extracting spatial-temporal features from RGB-D sequences
is an important step in action recognition. Early works before
the deep learning era usually establish hand-designed features
to perform action recognition, which include the histogram
of optical flow (HOF) [18], histogram of oriented gradi-
ents (HOG) [19], motion boundary histograms (MBH) [20],
and dense trajectories (DT/iDT) [21], etc. Nowadays, CNN-
based methods have become mainstream and achieved great
success, which can automatically extract features from raw
data and provide high-level semantic information. Since the
2D CNN cannot explicitly learn the temporal information
in the video, some works adopted sparse temporal sampling
strategies [5], [22], [23] or explored temporal dependencies
between video frames at multiple time scales [24], [25], [26].
Compared with 2D CNN, 3DCNN-based methods [27], [28],
[29], [30] are able to directly extract spatial-temporal features
from videos. Although these works have achieved good per-
formance, the use of 3D CNN is limited by its parameters
and computational overhead, prompting the emergence of the
works on 3D convolutional kernel factorization [31], [32],
[33] to balance the accuracy and model cost.
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Another approach to extract spatial-temporal feature is to
construct new representations from input data. Early works
such as MEI and MHI [34] modeled the motion informa-
tion of the entire video into a human action representa-
tion, where the consecutive frame differences and motion
history are encoded in a single static image, respectively.
Considering many actions have temporal ordering charac-
teristics intuitively, Fernando et al. [14] proposed a new
video representation that captures time-varying informa-
tion by training a linear ranking machine in chronological
order of videos. Bilen et al. [35] compute ranking machine
directly at pixel-level of images or features extracted from
CNN, which is called approximate rank pooling (ARP).
The dynamic images constructed by this method encode the
spatial-temporal information and enable the use of existing
ConvNets models directly. Optical flow is a conventional
and effective motion representation to describe movement.
However, its usage is restricted due to expensive computa-
tion costs and huge storage demands [36]. Inspired by the
definition of optical flow, Sun et al. [37] proposed a novel
optical flow guided feature (OFF) representation extracted
fromRGB frames, which can boost the performance of action
recognition with fewer computation costs than optical flow.
Wang et al. [38] proposed to encode the RGB-D sequences
based on scene flow into one motion map, called Scene Flow
to Action Map(SFAM), modeling long term spatio-temporal
feature for action recognition.

B. MULTI-MODAL FUSION
As a paradigm for processing multi-modal data in action
recognition, the two-stream architecture was first proposed
in [39] to process the spatial and temporal information
in the RGB frames and optical flow respectively, and
then combined the results of the two separate recogni-
tion streams by late fusion. Attribute to the great suc-
cess of the two-stream architecture, multi-modal action
recognition has attracted great attention in recent years.
Wang et al. [40] treated the two-stream ConvNets as generic
feature extractors and conduct trajectory-constrained pooling
to aggregate convolutional features into effective descriptors.
Feichtenhofer et al. [41] utilize the two-stream ConvNets to
implement different fusion strategies for multi-modal spatial-
temporal feature fusion and proposed multiplicative gating
functions to build cross-stream residual connections between
the two streams [42]. By inflating filters and pooling kernels
of 2D ConvNets into 3D, Carreira et al. [28] proposed a
Two-Stream Inflated 3DConvNet (I3D) to directly extract the
spatial-temporal information of the action.

Due to the availability of accurate and low-cost sensors,
more and more modalities are used in action recognition
[7], [43], [44], [45] How to combine these complementary
modalities to generate robust and accurate recognition results
has been receiving continuous attention. Zhao et al. [44] pro-
posed a two-stream RNN/CNN structure to extract temporal
features and spatial-temporal features from skeleton data and
RGB frames respectively.Wang et al. [38] proposed to extract

Scene Flow to Action Map (SFAM) representations jointly
from RGB-D data and fed them into different ConvNets to
perform the late fusion. Hu et al. [45] proposed to adopt
bilinear pooling layers to compact RGB-D and skeleton fea-
tures extracted from different networks. Wang et al. [46] and
Ren et al. [16] improved the action recognition performance
of RGB-D videos by training two-stream ConvNets as a sin-
gle network cooperatively. Das et al. [47] used skeleton as an
auxiliary modality to guide the RGB cues to generate spatial
embeddings to better exploit bothmodalities for action recog-
nition. Moreover, audio can also used to assist action recogni-
tion. Gao et al. [48] use audio as an efficient preview to select
useful moments in untrimmed videos. Nagrani et al. [49]
explored the correlation and obtained weak labels for action
recognition between actions and the speech of characters
from movie screenplays.

Recent years, cross-modality feature learning has attracted
much attention due to its capability to mine relations between
different modalities. Song et al. [50] regard skeleton as
an accessorial modality to achieve cross-modality adaptive
representation learning with RGB and optical flow modali-
ties. Cheng et al. [15] proposed a cross-modality compensa-
tion block to learn complementary information between two
modalities and compensate the unimodal features for better
action recognition performance. Some works also perform
cross-modality interactive feature learning at multiple levels
in the network hierarchy for multi-modal fusion applications,
such as Multimodal Transfer Module (MMTM) [51] and
Information Aggregation-Distribution Module (IADM) [52].
Moreover, audio is usually converted to a spectral representa-
tion to assist action recognition [53], [54] and themulti-modal
fusion is performed at the feature level. In addition to action
recognition, sevral cross-modality interaction strategies are
also proposed in some person re-identification (ReID) works.
The two-stream architectures is often adopted to handle
modality-aware collaborative learning through partial param-
eter sharing [55], [56] or eliminate the large modality gap
through well designed loss functions [57].

III. THE PROPOSED APPROACH
A. THE FRAMEWORK OF OUR APPROACH
As shown in Fig. 1, the framework of our approach consists
of two parts: spatial-temporal information aggregation and
multi-modal interaction learning.

The video frames and depth sequence are first divided into
k segments, respectively. Each segment is fed to the STIAM
to encode into an aggregation data with the same size as one
video frame. Then, the k pairs of RGB-D aggregated data
are fed to backbone networks with interactive modules for
deeper feature extraction. The CMIM connects the features
at different levels of the two backbone networks, prompt-
ing the two network branches to jointly optimize and learn
complementary information from each other. Unlike previous
method based on handcrafted action descriptors [13], [14],
we do not need to calculate and store aggregated data in
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FIGURE 1. Overview of the proposed MMINet, which consists of two components: spatial-temporal information aggregation and cross-modality
interaction learning. The RGB-D sequences are first encoded into pairs of aggregated data by STIAM to capture comprehensive motion information, and
CMIM is used to fully exchange the complementary information of different modalities. It is worth mentioning that the entire network is end-to-end
trainable.

FIGURE 2. Spatial-temporal information aggregation module (STIAM).
Shown here is a segment of RGB frames aggregated into one frame size.

advance. The aggregated data is actually the feature map of
a shallow network, STIAM is integrated with the backbone
network behind, and the entire MMINet is end-to-end train-
able. We use TSN [3] and TSM [4] successively as backbone
to verify the universality of the approach. Despite embedding
STIAM and CMIM, the entire network requires less than 1%
extra computation cost based on the backbones, as detailed in
subsection C of section V.

B. SPATIAL-TEMPORAL INFORMATION AGGREGATION
MODULE
The aggregated RGB and depth data are constructed from
segmented RGB-D sequence by STIAM, which aims to
utilize motion information in densely sampled RGB-D
sequences with minimal computational effort.

As shown in Fig. 2, taking video frames as an exam-
ple, t frames sampled in a segment are fed into STIAM.
Since frame difference has shown effectiveness in presenting

temporal information in previous work [3], [7], the absolute
difference of adjacent frames is calculated to assist the pre-
liminary features extraction on the time dimension, which
also makes the model focus on the motion salient regions.
Meanwhile, to retain spatial information, an original frame
is also fed into the subsequent steps. Then, instead of con-
structing hand-crafted spatial-temporal descriptors [7], [14],
two convolution layers are employed to compress tc chan-
nels into c channels. The convolution operation provides the
most effective way to aggregate the information of t adjacent
frames. The key calculation can be described as:

M =
tc∑
i=1

Ci ∗ Fi, (1)

whereM denotes a channel of output features, C is a channel
of input, F is the corresponding channel of the filter, and ∗
indicates convolution. The cumulative operation endows M
with the information of multiple channels in the time dimen-
sion, and the two-layer convolution makesM have sufficient
receptive field for the original input in the spatial dimension.
Most importantly, comparedwith the calculationmethodwith
fixedmanualmotion descriptors, the parameters of the convo-
lution layer are constantly optimized with training, so that the
most appropriate information can be aggregated. The visual-
ization of aggregation data is shown in Fig. 3, we normalized
the aggregated data into RGB image for observation. It can
be seen that the aggregation data highlights the region where
the movement occurs in a smooth way. Even subtle actions
can be accurately captured, such as ‘‘phone call’’.

C. CROSS-MODALITY INTERACTIVE MODULE
To fully exploit the complementary advantages of multi-
modal, a plug-and-play cross-modality interaction module
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FIGURE 3. Visualization of the aggregated data from STIAM.

FIGURE 4. Cross-modality interaction module (CMIM).

is designed in the form of neural network. It can be easily
used in different feature levels, and even allow the CNN
branch of each modality to be initialized with the existing
weight. As shown in Fig. 4, CMIM receives the features of
each layer of the two CNN branches as input, and learns
global multi-modal embedding and uses this embedding to
recalibrate the features of the decision layer. Specifically,
as suggested by SENet [58], the spatial dimension of the fea-
ture maps from each layer are squeezed into 1× 1 to describe
its channel-level features using global average pooling, the
squeeze operation is performed as follows,

X =
1

H ×W

H∑
i=1

W∑
j=1

M (i, j), (2)

where M is a channel of feature map, H and W denote
the height and width of M, respectively, X is the result of
global average pooling forM. The entire feature map is trans-
formed to a one-dimensional vector. Then, the channel-level
representations of different layers are aggregated into a
joint representation by a concatenation operation. Finally,
two fully-connected layers are utilized to generate exci-
tation signals to recalibrate the channel-wise features of
the decision layers of the two modalities, respectively. The
CMIM establishes a global fusion mechanism at a light

computational cost, which fully combines complementary
information from different levels of the two modalities to
participate in decision-making.

D. LOSS FUNCTION
To jointly optimite the MMINet, a dual loss function is estab-
lished based on the standard cross-entropy loss. The LossRGB
and LossDepth are formulated as

LossRGB(Y ,N ) = −
N∑
n=1

Yclog(Y ′RGB), (3)

LossDepth(Y ,N ) = −
N∑
n=1

Yclog(Y ′Depth), (4)

where N is the number of action categories, Yc is the one hot
vector of true label, Y ′RGB and Y ′Depth are the class probability
scores of RGB and Depth streams, respectively. To combine
the LossRGB and LossDepth, the final loss function is denote as

Loss(Y ,N ) = LossRGB + LossDepth. (5)

IV. EXPERIMENTS
A. DATASETS
To verify the effectiveness and universality of our approach,
extensive experiments are conducted using two backbones
(TSN and TSM) on three RGB-D action recognition
datasets: NTU RGB+D 60 [59], NTU RGB+D 120 [60]
and PKU-MMD [61].

The NTU RGB+D 60 dataset consists of 56,880 action
samples covering 60 classes, which are performed by
40 distinct subjects and captured by three Microsoft Kinect
v2 cameras from different views concurrently. Two evalua-
tion protocols are recommended: cross-subject (C-Sub) and
cross-view (C-view) evaluation protocols. For C-sub proto-
col, action samples performed by 20 subjects are picked for
training and the other 20 subjects for testing. For C-view
protocol, samples captured by cameras 2 and 3 are picked for
training, and captured by camera 1 for testing.

NTU RGB+D 120 contains totaling 114,480 action sam-
ples covering 120 classes, which are performed by 106 sub-
jects captured by three Microsoft Kinect v2 cameras from
different views concurrently. There are two protocols for eval-
uating models: cross-subject (C-sub) and cross-setup (C-set).
For C-sub protocol, samples performed by 53 subjects are
picked for training and the rest 53 subjects for testing. For
C-set protocol, the action samples with even setup IDs are
picked for training, and action samples with odd setup IDs
for testing.

PKU-MMD contains totaling 20,734 action samples cov-
ering 51 classes, which are performed by 66 subjects and
captured by three Microsoft Kinect v2 cameras from left,
middle, and right views concurrently. There are two protocols
for evaluating models: cross-subject (C-sub) and cross-view
(C-view). For C-sub protocol, samples performed by 57 sub-
jects are picked for training and the rest 9 subjects for testing.
For C-view protocol, samples captured by middle and right
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TABLE 1. Results of different t on NTU RGB+D 60 dataset. Notation for
the header: D: Depth.

cameras are picked for training, and the samples captured by
left cameras for testing.

B. IMPLEMENTATION DETAILS
The backbone is initialized with ImageNet pre-trained
ResNet-50 [62], and the entire model is fine-tuned using SGD
with Nesterov momentum (0.9) for 60 epochs. We follow the
data augmentation and segment sampling strategy in TSN [3].
The segment k is set to 3. For NTU RGB+D 60 dataset, the
initial learning rate is set to 0.01, batchsize to 32. Besides,
for NTU RGB+D 120 and PKU-MMD datasets, the initial
learning rate is set to 0.001, batchsize to 64. All experi-
ments divide the learning rate by 10 at 25th, 40th and 50th
epochs. A dropout layer with regularization ratio set to 0.5 is
employed to alleviate overfitting.

C. OPTIMAL SAMPLING DENSITY
Themost crucial parameter governing the STIAM is the num-
ber of frames sampled from each segment: t. Increasing t is
expected to improve the recognition performance of the mod-
els. In experiments, we vary the number of t from 2 to 8 and
evaluate the recognition performance on TSM + STIAM
model. The recognition accuracy onNTURGB+D60 dataset
are summarized in Table 1. It can be observed that increasing
the t generally lead to better performance. When t = 6, the
performance saturate. Thus, the t is set to 6 in the following
experiments.

D. ABLATION EXPERIMENTS
To testify the effectiveness of different modules in our
approach, extensive ablation experiments are conduct on
three datasets. Specifically, to validate the contribution of
each module, we show the performance of each individual
module and the combination of all modules (MMINet) in
Table 2. Moreover, to demonstrate the universality of our
approach, we conduct the experiments on two backbones.

For NTU RGB+D 60 dataset, when using TSN as back-
bone, STIAM improve the recognition accuracy of RGB and
depth modalities on C-sub protocol by 17.3% and 11.7%,
and improve the accuracy of RGB and depth modalities on
C-view protocol by 14.9% and 13.7%, respectively. When
using dual modalities, STIAM delivers 12.1% and 11.8%
improvement in accuracy on C-sub and C-view protocols,
CMIM delivers 0.7% and 2.7% improvement over C-sub
and C-view protocols, respectively. Compared with TSN,
MMINet-TSN improves the accuracy on C-sub and C-sub
protocols by 12.3% and 13.1% respectively. When using
TSM as backbone, STIAM improve the recognition accuracy
of RGB and depth modalities on C-sub protocol by 5.6% and
4.4%, and improve the accuracy of RGB and depth modalities
on C-view protocol by 3.9% and 5.9%, respectively. When
utilizing two modalities, STIAM delivers 3.5% and 3.4%
improvement in accuracy on C-sub and C-view protocols,
CMIM delivers 0.6% and 1.0% improvement over C-sub
and C-view protocols, respectively. Compared with TSM,
MMINet-TSM improves the accuracy on C-sub and C-sub
protocols by 4.1% and 4.0% respectively.

For NTU RGB+D 120 dataset, our approach also show
impressive performance on the NTU RGB+D 120 dataset.
Similar to the results on theNTURGB+D60 dataset, STIAM
significantly improves the recognition accuracy on both sin-
gle modality and multi-modal, CMIM further improves the
performance of the model by enhancing the multi-modal
fusion. Compared with TSN, MMINet-TSN improves the
recognition accuracy on C-Sub and C-Set protocols by 12.3%
and 12.2% respectively. Comparedwith TSM,MMINet-TSM

TABLE 2. Result of ablation experiment using TSN [3] and TSM [4] as the backbone, respectively. Notation for the header: D: Depth.
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TABLE 3. Comparison of the proposed approach and previous works on
NTU RGB+D 60 dataset. Notation for the header: D: Depth, S: Skeleton.

TABLE 4. Comparison of the proposed approach and previous works on
NTU RGB+D 120 dataset. Notation for the header: D: Depth, S: Skeleton.

improves the accuracy of C-sub and C-set protocols by 3.3%
and 5.1%, respectively.

For PKU-MMD dataset, STIAM and CMIM consistently
improve the recognition performance on two backbones sig-
nificantly. Compared with TSN, MMINet-TSN improves the
recognition accuracy on C-Sub andC-view protocols by 7.6%
and 6.4% respectively. Compared with TSM, MMINet-TSM
improves the accuracy of C-sub and C-view protocols by
1.9% and 1.6%, respectively.

In summary, STIAM and CMIM modules enhance the
capability of the model in extracting spatial-temporal features
and learningmulti-modal complementary information, which
greatly improve the recognition accuracy on both TSN and
TSM backbones.

E. COMPARISONS WITH THE STATE-OF-THE-ART
APPROACHES
After analyzing the effect of each module in MMINet,
we now compare our approach against the state-of-the-art
works on three datasets. There are some approaches [78] use
the object detection model to crop the person bounding boxes
in advance to eliminate most of the background interference.

TABLE 5. Comparison of the proposed approach and previous works on
PKU-MMD dataset. Notation for the header: D: Depth, S: Skeleton.

This allowed them to achieve higher recognition accuracy.
To be fair, we will only compare with approaches without
object detection in this article. The details are shown in
Table 3, Table 4 and Table 5.
For NTU RGB+D 60 dataset, as shown in Table 3, our

approach achieves 94.3% and 96.5% recognition accuracy,
which outperforms other RGB-D based methods by 4.9%
and 3.3%, and outperform the state-of-the-art by 0.8% and
0.3% on C-sub and C-view evaluation protocols, respectively.
The comparison results on NTU RGB+D 120 dataset are
shown in Table 4 It can be seen that our approach achieves
91.7% and 92.6% recognition accuracy, which outperform
other methods by 3.3% and 4.8% on C-sub and C-set evalua-
tion protocols, respectively. Table 5 presnets the comparison
of out approach with previous works. Our approach consis-
tently show impressive superiority, which achieves 93.6%
and 94.2% recognition accuracy, and outperforms the state-
of-the-art by 1.5% and 1.0% on C-sub and C-view evaluation
protocols, respectively.

V. ANALYSIS AND DISCUSSION
To verify the advantages of our method in recognizing subtle
actions, we list the accuracy gain of each action. Then we
analyze the specific performance of our approach on differ-
ent actions through confusion matrix. Finally, we compare
the computational cost of our approach with state-of-the-art
approaches.

A. ADVANTAGES IN RECOGNIZING SUBTLE ACTIONS
Extensive experimental results on three datasets with dif-
ferent sizes and evaluation protocols have verify the effec-
tiveness of our MMINet. To figure out the strengths of our
approach, we list the gain of our MMINet-TSM with respect
to the TSM on NTU RGB+D 60 dataset C-sub protocol,
NTU RGB+D 120 dataset C-sub protocol and PKU-MMD
dataset C-sub protocol, which are shown in Fig. 5, Fig. 6
and Fig. 7 respectively. As shown in Fig. 5, our approach
outperforms the baseline for most actions. In addition, the
biggest improvement in accuracy are found in several subtle
actions, such as ‘‘drink water’’ (8.8%), ‘‘clapping’’ (9.5%),
‘‘reading’’ (10.6%), ‘‘writing’’ (11.8%), and ‘‘chest pain’’
(9.4%). The same phenomenon can also be seen in the NTU
RGB+D 120 dataset. As shown in Fig. 6, our approach
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FIGURE 5. Gain on recognition accuracy of MMINet-TSM with respect to TSM on NTU RGB+D 60 dataset C-sub protocol.

FIGURE 6. Gain on recognition accuracy of MMINet-TSM with respect to TSM on NTU RGB+D 120 dataset C-sub protocol.

FIGURE 7. Gain on recognition accuracy of MMINet-TSM with respect to TSM on PKU-MMD dataset C-sub protocol.

significantly improves the accuracy of some subtle actions,
such as ‘‘staple book’’ (14.9%), ‘‘counting money’’ (13.5%),
‘‘cutting nails’’ (17.6%), and ‘‘play magic cube’’ (20.5%).
The accuracy gain results on the PKU-MMD dataset are
shown Fig. 7, where the subtle actions also benefit the most,
such as ‘‘cross hands in front (say stop)’’ (14.9%), ‘‘hopping
(one foot jumping)’’ (11.8%), ‘‘rub two hands together’’
(25.5%), and ‘‘touch head (headache)’’ (11.1%). In conclu-
sion, our method does have unique advantages in recognizing
subtle actions. Undesirably, the accuracy of a few actions

is worse, such as ‘‘punch/slap’’ (−2.9%) in NTU RGB+D
60 dataset; ‘‘headache’’ (−3.9%), ‘‘thumb up’’ (−5.4%), and
‘‘make OK sign’’ (−7.1%) in NTU RGB+D 120 dataset;
‘‘brushing teeth’’ (−7.8%), ‘‘hand waving’’ (−5.7%), and
‘‘point finger at the other person’’ (−4.1%) in PKU-MMD
dataset.

B. ACTIONS THAT ARE EASILY CONFUSED
To find out which actions are prone to being misclassified,
we list the confusion matrices under our approach on three
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TABLE 6. Comparisons of computation complexity and recognition accuracy with the state-of-the-art approaches. For Separable STA, P-I3D and VPN,
we only know the computation cost of RGB streams, that is why the number of FLOPs followed by ‘‘+’’.

FIGURE 8. Confusion matrix of MMINet-TSM on C-sub proposal of NTU
RGB+D 60 dataset.

datasets in Fig. 8, Fig. 10, and Fig. 9. As shown in Fig. 8,
most of the actions in the NTU RGB+D 60 dataset with
C-Sub protocol can be accurately recognized, and only a few
actions are prone to be confused. These confusions tend to
occur between actions that have the same body posture with
only slight differences at the extremities, such as ‘‘writing’’
and ‘‘reading’’ are easily misclassified as each other, ‘‘eat
meal’’ is often misclassified as ‘‘phone call’’, ‘‘put on a
shoe’’ and ‘‘take off a shoe’’ are easily misclassified as each
other, ‘‘sneeze/cough’’ is easily be misclassified as ‘‘nau-
sea/vomiting’’. Fig. 9 shows the confusion matrix on NTU
RGB+D 120 dataset C-Sub protocol. It can be seen that our
approach can distinguish most of the actions, but there are
still a few actions that easily be confused. These actions have
slight distinction only on the fingers, such as ‘‘make OK
sign’’ and ‘‘make victory sign’’, or doing the similar operation
on similar items, such as ‘‘counting money’’ and ‘‘cutting
paper’’. Fig. 10 shows the confusion matrix on PKU-MMD
dataset C-Sub protocol. It can be seen that our approach
achieves good recognition performance on most actions. The

FIGURE 9. Confusion matrix of MMINet-TSM on C-sub proposal of NTU
RGB+D 120 dataset.

most confusing actions usually have similar appearance and
magnitude to each other, such as ‘‘clapping’’ and ‘‘rub two
hands together’’ are easily misclassified as each other, ‘‘hand
waving’’ is often misclassified as ‘‘taking a selfie’’, ‘‘tear up
paper’’ is often misclassified as ‘‘typing on a keyboard’’.

C. COMPUTATION COMPLEXITY OF OUR MODEL
As shown in Table 6, we compare the computational com-
plexity and recognition accuracy of MMINet with several
state-of-the-art approaches, including the baselines. Compare
to the baselines, MMINet achieves recognition accuracy
gains of 1.6% to 13.1% with less than 1% extra com-
putation cost across various evaluation protocols of three
datasets. In other words, our approach greatly enhances
the spatial-temporal modeling capability and multi-modal
information fusion capability of the model with slight com-
putational cost. Since most of the previous methods do not
give the computational cost, we can only infer part of the
computation cost from the backbone network they use, but
even so, the computational cost of MMINet is still much
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FIGURE 10. Confusion matrix of MMINet-TSM on C-sub proposal of
PKU-MMD dataset.

less than that of several state-of-the-art approaches [47], [70],
[71], [72], [79], [80].

VI. CONCLUSION
This paper proposes a approach for RGB-D based action
recognition. Our approach firstly uses convolutional net-
work to compress the spatial-temporal features of multi-
ple frames to the size of one frame, which avoids the loss
of subtle motion information and effectively enhances the
recognition for subtle actions. At the same time, we design
a cross-modality interaction module, which integrates the
features of different levels of the two network branches
to recalibrate the channel-wise features, enable the model
make full use of the complementary information of different
modalities and greatly improve the recognition performance.
Extensive experiments on three large multi-modal datasets
verify the effectiveness and superiority of our approach.More
importantly, our approach provides a general architecture for
multi-modal fusion that can be extended to more modalities
in the future, such as fusion of RGB and skeleton, fusion
of depth and skeleton, etc. The key is to embed the STIAM
and CMIM at the appropriate network layers. In addition,
other topics in the field of computer vision, such as per-
son re-identification, temporal action detection, can also use
multi-modal fusion technology to improve the performance.
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