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ABSTRACT Recently, thememory-based approach, which performs non-local matching between previously
segmented frames and a query frame, has led to significant improvement in video object segmentation.
However, the positional proximity of the target objects between the query and the local memory (previous
frame), i.e. temporal smoothness, is often neglected. There are some attempts to solve the problem, but
they are vulnerable and sensitive to large movements of target objects. In this paper, we propose local
memory read-and-compare operations to address the problem. First, we propose local memory read and
sequential localmemory readmodules to explore temporal smoothness between neighboring frames. Second,
we propose the memory comparator to read the global memory and local memory adaptively by comparing
the affinities of the global and local memories. Experimental results demonstrate that the proposed algorithm
yields more strict segmentation results than the recent state-of-the-art algorithms. For example, the proposed
algorithm improves the video object segmentation performance by 0.4% and 0.5% in terms of J&F on the
most commonly used datasets, DAVIS2016 and DAVIS2017, respectively.

INDEX TERMS Memory network, semi-supervised video object segmentation, video object segmentation.

I. INTRODUCTION
Video object segmentation (VOS) aims at cutting out objects
of interest from the background in a video. It is a funda-
mental task to perform many computer vision techniques,
including video editing and video summarization. It also
takes an essential role in facilitating real-world applications
such as automatic driving or augmented reality [1]. Object
deformation, occlusion, and appearance change are challeng-
ing problems [2]. To overcome these issues, semi-supervised
VOS, which uses a complete annotated mask at the first frame
of a video to segment out the target object, has been widely
researched. Recently, many semi-supervised VOS researches
have been carried out with the development of deep neural
networks.

Representatively, space-time memory network [3] and its
following works [4], [5], [6], [7] proposed memory-based
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VOS algorithms and achieved outstanding performance and
efficiency. By assigning a number of previously predicted
frames as memory, they predict segmentation results of the
query frame using the memory through the readout pro-
cess, as shown in Figure 1(a). First, they construct affinities
between the memory and the query frame to conduct the
readout process. Affinities then transfer the encoded feature
of the memory to the query frame for reliable prediction.

However, since many memory-read processes are per-
formed in the non-local manner [8], they overlook the prop-
erty of target objects that have spatiotemporal smoothness
across the video. In general, there is a constraint that object
movements between neighboring frames are confined. In this
regard, recent studies [9], [10] attempted to deal with this
continuity by performing local matching within a specific
search range, but they are vulnerable to fast or large move-
ments beyond the corresponding search range. In contrast,
the proposed method adaptively readout the global and local
memory to address the problem as illustrated in Figure 1(b).
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FIGURE 1. (a) Existing memory-based algorithms [4], [5], [6], [7] and (b) proposed algorithm. The proposed method adaptively reads the local information
to consider the contiguity of target objects across adjacent frames.

In this paper, we propose a robust approach to achieve
VOS based on the local memory read-and-comparator. First,
we propose a local memory read (LMR) and sequential local
memory read (SLMR) to transfer the segmentation informa-
tion to neighboring frames in a hierarchical manner. Next,
we design a memory comparator to read the global memory
and the local memory adaptively according to the affinity
between the memory frames and the query frame. Experi-
mental results demonstrate that the proposed local memory
read-and-comparator is effective and outperforms the state-
of-the-arts VOS algorithms.

This paper has three main contributions:

• Effective local memory read operators to deal with spa-
tial contiguity between adjacent frames.

• Memory comparator to selectively use the local memory
and global memory.

The rest of this paper is organized as follows. Section II
reviews related work on the three main approaches of video
object segmentation which are unsupervised, interactive, and
semi-supervised settings. Section III describes the proposed
algorithm. Section IV compares the proposed algorithm with
the state-of-the-art VOS algorithm and analyzes the proposed
operators quantitatively and qualitatively. Finally, Section V
concludes the paper.

II. RELATED WORK
A. UNSUPERVISED VOS
The objective of unsupervised VOS is to segment out pri-
mary objects in a video without any annotations or clues.
Object proposals, saliency, or motion have been used before
the advance of the neural networks [31], [32], [33], [34].
Recently, many deep learning-based unsupervised VOS
methods [35], [36], [37], [38], [39], [40] have been introduced
using the large VOS dataset [41], [42] with the improvement
of parallel computing.

B. INTERACTIVE VOS
Interactive VOS aims to refine segmentation results with
repeated user inputs, such as points, scribbles, or bounding
boxes. A round-based interactive VOS process [43], which
iterates each round of the interaction until the user is satisfied,
is adopted in many recent interactive VOS algorithms [7],
[44], [45], [46], [47], [48]. Cheng et al. [48] proposed the
difference-aware fusion to fuse results of the previous round
and the current round by learnable parameters. Heo et al. [47]
introduces a guided interactive VOS system based on the
reliability attention module for the annotated frame.

C. SEMI-SUPERVISED VOS
Semi-supervised VOS is a task to predict target objects in
a video using an accurately and densely annotated mask at
the first frame. Superpixels [49] or random walkers [50]
are used for the early works. With the development of deep
convolutional neural networks, VOS methods have focused
on online and offline learning. Table 1 lists a summary of
CNN-based semi-supervised VOS algorithms. Online learn-
ing VOS methods [11], [12], [13], [14], [15] finetune pre-
trained networks with the first frame annotation of the video.
Therefore, they inevitably consume additional time to train
the network in inference for each video.

On the other hand, in order to eliminate the time-consuming
process in online learning, offline learning algorithms have
been studied based on propagation, detection, and matching.
Specifically, propagation-based algorithms [16], [17], [18],
[19], [20] propagate predicted masks in the previous frame to
the query frame to carry out VOS. For example, AGSS [18]
generated attention with the previous frame and its prediction
to guide the query frame.

Matching-based algorithms [21], [22], [23], [24], [25],
[26] perform the pixel-wise feature matching between query
frame and other frames. For example, PML et al. [21]
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TABLE 1. Summary table for the CNN-based semi-supervised VOS algorithms.

classified an encoded feature of each pixel at the query frame
into foreground or background based on the feature distance
between the annotated frame and the query frame. Also, [23],
[24], [26] measured the pixel-wise feature distance at the
query frame with the previous frame as well as the annotated

frame. LLGC [25] used more unlabeled frames for match-
ing to improve the robustness with the graph-based learning
algorithm.

Recently, Oh et al. [3] introduced the space-time memory
network (STM), which transfers the feature from the memory
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FIGURE 2. Overview of the proposed VOS network.

to the query frame. STM encodes several past predictions into
the memory and employs non-local matching [8] to transfer
target object features in the memory to the query frame.
As variants of STM, many memory-based algorithms [5],
[6], [7], [9], [10], [27], [28], [30] have achieved impressive
performance on the semi-supervised VOS. DMN [6] gener-
ated object templates and employed a dynamic memory net-
work to align positional changes of target objects. STCN [7]
replaced the operation of matching from the dot product to
Euclidean distance. In addition, some memory-based meth-
ods [5], [9], [10], [30] considered temporal smoothness
between the previous frame and query frame. RMNet [30]
used motion between neighboring frames to limit matching
regions at the query frame. LCM [5] and AOT [10] adopted
the relative positional encoding [51] with sine and cosine
functions. HMMN [9] and AOT [10] transferred temporally
adjacent object features by computing similarities between
the query and previous frames within the local region for each
pixel.

III. PROPOSED ALGORITHM
We segment out objects of interest in a video from the com-
plete annotation at the first frame consecutively. To this end,
we develop the local memory read-and-compare algorithm.

Figure 2 illustrates the overview of the proposed VOS
algorithm. To predict the segmentation result at the query
frame, we transfer values of the previously segmented mem-
ory frames. Given T memory frames (global memory) and
the previous frame (local memory), we first apply the global
memory read (GMR) operation to transfer the globalmemory.

Then, the proposed network propagates value features of the
target objects at the previous frame using the proposed LMR
and SLMR operations in various resolutions. We also design
the memory comparator to employ the propagated features
adaptively according to the reliability of LMR and SLMR
operations.

A. FEATURE EXTRACTION
1) QUERY FEATURE
We extract a key feature from the query Q using the key
encoder in [7]. The key encoder takes an image as input and
yields a key feature through ResNet50 [52] and a 3× 3 con-
volution layer. Specifically, from res2’’, res3’’, or res4’’ in
ResNet50, multi-scale frame features FQr ∈ RHrWr×C

f
r are

obtained, where r ∈ {2, 3, 4} and C f
r denote the feature stage

with 1/2r resolution of the input image and the number of
channels at r , respectively. Then, for each feature stage r , FQr
is fed into the 3× 3 convolution layer to obtain a key feature
KQr ∈ RHrWr×Ckr . To this end, multi-scale query key features
{KQr }4r=2 are extracted from the query.

2) MEMORY FEATURE
Given the global memory G and the local memory L,
we extract value features as well as key features. The key fea-
tures for the local memory are extracted in the same manner
as the extraction of query key features. For the local mem-
ory L, multi-scale frame features {FLr }4r=2 and key features
{KLr }4r=2 are obtained from the key encoder. Also, for value
features, we encode an image and object mask jointly using
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FIGURE 3. Feature reorganization in sequential local memory read (SLMR) for (a) key and (b) value at the r th feature
stage (d = 1).

ResNet18, and the encoded feature is concatenated with FLr
for each feature stage r . Finally, through a 3× 3 convolution
layer, a value feature VLr ∈ RHrWr×Cvr for the local memory
is obtained for each r . On the other hand, we extract only
single-scale key and value features for the global memory
at the feature stage 4. Every frame in the global memory
is independently embedded into key and value features, and
then they are stacked along the temporal dimension to obtain a
global memory key KG4 ∈ RTH4W4×Ck4 and a global memory
value VG4 ∈ RTH4W4×Cv4 as in [7].

B. MEMORY READ OPERATOR
We employ three memory read operators, GMR, LMR, and
SLMR, to predict the segmentation at the query frame from
the global and local memories.

1) GLOBAL MEMORY READ (GMR)
GMR performs the equivalent role with the space-time mem-
ory read operation [3]. Given T memory frames, we obtain
the value feature VG4 ∈ RTH4W4×Cv4 and the key feature
KG4 ∈ RTH4W4×Ck4 for the global memory. GMR is designed
to transfer the value featureVG4 based on the affinity between
the global key KG4 and the query key KQ4 ∈ RH4W4×Ck4 .
To this end, we first compute the global similarity matrix
SG4 by computing negative-converted L2-distance which is
employed in [7] as

SG4
ij = −‖k

Q4
i − kG4

j ‖
2
2, (1)

where kQ4
i and kG4

j are feature vectors for the ith position
in KQ4 and jth position in KG4 , respectively. Then, SG4 is
normalized to obtain a global affinity matrix WG4 , which is
defined as

WG4
ij =

expSG4
ij∑THW

k=1 expSG4
ik

. (2)

We compute a global readout feature RG4 for the query via
the matrix multiplication

RG4 =WG4 × VG4 , (3)

which can be considered as value estimation at the query
frame transferred from the global memory.

2) LOCAL MEMORY READ (LMR)
We design the LMR operation to convey the segmentation
information of the local memory to the query frame. Since
the previous frame has more common features than any other
frames to guide the query frame, especially on appearance
information such as edges and boundaries, we perform LMR
not only in coarse-scale key features but also in fine-scale
features. For each r th feature stage, we transfer the local value
feature VLr ∈ RHrWr×Cvr using the affinity between the local
key KLr ∈ RHrWr×Ckr and the query key KQr . Unlike GMR,
LMR computes the local similarity SLr within a local region
Ni for each pixel i in the query to exploit spatiotemporal
smoothness between neighboring frames. Specifically, SLr is
defined as

SLrij =

{
−‖kQri − kLrj ‖

2
2, j ∈ Ni,

−∞ otherwise,
(4)

where kQri and kLrj are feature vectors for the ith pixel in the
query and jth pixel in the local memory, respectively. Also,
the local region Ni is the set of pixels, which are sampled
from (2d+1)× (2d+1) pixels around ith pixel with stride 1.
The similarity is computed for those pixels in the local region
only and set to infinity for the others. Then, SLr is normalized
via the softmax operation to obtain the local affinity matrix
WLr , which has zeros values between distant pixels. Similar
to GMR, a local readout feature RLr is obtained by

RLr =WLr × VLr . (5)

In the LMR operation, WLr deals with smooth movements
between adjacent frames, since it transfers the value features
within Ni for each pixel i. Therefore, RLr is able to consider
the space-time continuity of objects in video frames.

3) SEQUENTIAL LOCAL MEMORY READ (SLMR)
We find out that affinities between the query and local mem-
ory vary according to the level of the feature stage, even at
the same position. In other words, the affinity of a pixel at
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FIGURE 4. Diagrams of (a) the memory comparator and (b) the similarity comparison block (SCB).

level r is different from the affinity of the corresponding
pixel at higher level r + 1, since the key features repre-
sent different object properties according to the depth of the
encoder.

Based on this observation, we propose SLMR to diver-
sify the propagation process of the local values with higher
level features. For this purpose, we reorganize the local
key feature KLr and the local value feature VLr with the
affinityWLr+1 at the higher level (coarser scale). Let W̃Lr+1 ∈

RHr+1×Wr+1×Hr+1×Wr+1 denote the 4D affinity tensor, which
is reshaped from WLr+1 . Here, W̃Lr+1 (x, y, p, q) denotes the
affinity between a pixel (x, y) in the query and a pixel (p, q)
in the local memory at r + 1th feature stage. Also, let
K̃Lr ∈ RHr×Wr×Ck and ṼLr ∈ RHr×Wr×Cv be the 3D tensors
reshaped from KLr and VLr , respectively. For each feature
stage r , we obtain a sequential local key KSr ∈ RHr×Wr×Ck

and a sequential local value VSr ∈ RHr×Wr×Cv using those
tensors:

KSr (x, y, c) =
d∑

u=−d

d∑
v=−d

W̃Lr+1(x̄, ȳ, x̄ + u, ȳ+ v)

× K̃Lr (x + 2u, y+ 2v, c) (6)

VSr (x, y, c) =
d∑

u=−d

d∑
v=−d

W̃Lr+1(x̄, ȳ, x̄ + u, ȳ+ v)

× ṼLr (x + 2u, y+ 2v, c) (7)

where x̄ = dx/2e. This is repeated for all pixels (x, y) and
channels c. As in (6) and (7), we obtain the sequential local
key and value via the weighted sum with the affinity at the
higher level. Figure 3 illustrates the reorganization process
for KSr and VSr .

KSr and VSr are reshaped to matrices. Then, the similarity
matrix SSr and the affinity WSr between KQr and KSr are
sequentially computed as in LMR to acquire a sequential
local readout feature

RSr =WSr × VSr . (8)

C. MEMORY COMPARATOR
We propose the memory comparator to use readout fea-
tures, which are obtained from GMR, LMR, and SLMR,
adaptively. Figure 4(a) illustrates the diagram of the mem-
ory comparator. The proposed memory comparator estimates
pixel-wiseweights for the local readout features {RLr }4r=2 and
the sequential local readout features {RSr }3r=2 by comparing
the similarity matrix SG4 in GMR with {SLr }4r=2 in LMR and
{SSr }3r=2 in SLMR.

1) TOP-K SELECTION
We select top-k on each row in the similarity matrices and
remove the other ones, and thus we obtain SG

k
4 ∈ RH4W4×k ,

{SL
k
r ∈ RHrWr×k}4r=2, and {S

Skr ∈ RHrWr×k}3r=2. Through the
top-k operation, the memory comparator considers k primary
similarities between the query and the memory. Since there
is only one scale (H4 ×W4) for the global similarity matrix,
we sequentially upsample SG

k
4 using bilinear interpolation to

obtain {SG
k
r ∈ RHrWr×k}3r=2.

2) SIMILARITY COMPARISON BLOCK
Similarity Comparison Block (SCB) takes a pair of the global
similarity SG

k
r and the local similarity SL

k
r (or sequential

local similarity SS
k
r ) for each feature stage r . When SG

k
r and

SL
k
r are given, SCB produces reliability weights that indicate

which pixels in the local readout feature are more reliable
than those in the global readout feature. When a pixel i has
a larger local similarity than global similarity, SCB assigns
high weight to the local readout feature for pixel i. As in
Figure 4(b), SCB compares SL

k
r and SG

k
r via element-wise

subtraction with the softmax operation. Thus, a difference
map DLr ∈ RHrWr×k is obtained by

DLr
ij =

α

2
·
expSL

k
r
ij − expSG

k
r

ij

expSL
k
r
ij + expSG

k
r

ij

(9)

where α is a scale factor. DLr is fed into a 1 × 1
convolution with a single output channel and the sigmoid

VOLUME 10, 2022 90009



Y. Heo et al.: Local Memory Read-and-Comparator for Video Object Segmentation

FIGURE 5. A diagram of the decoder.

operation sequentially, resulting in the reliability weight
HLr ∈ RHrWr×1. Thus,HLr is designed for limiting the usage
of RLr if only RGr is unreliable to estimate segmentation
results by comparing the similarities. Then, a weighed local
readout feature R̃Lr is given by

R̃Lr = HLr � RLr (10)

where � denotes that each coefficient in HLr is multiplied
to all Cv

r coefficients in RLr at the same spatial positions.
As in Figure 4(a), SCB is applied to both local and sequential
local readout features for all feature stages. To this end, the
weighed readout features {R̃Lr }4r=2 and {R̃

Sr }3r=2 are obtained
and fed into the decoder.

D. DECODER
Figure 5 shows the architecture of the decoder. In the decoder,
features are gradually upsampled by a factor of two with the
readout features, i.e. RG, {R̃Lr }4r=2, and {R̃

Sr }3r=2, and frame
features {FQr }4r=2 using skip-connections. As in Figure 5,
multi-scale readout features are processed according to fea-
ture scales. Finally, the output of the final layer is upsampled
by a factor of four to be of the same size as the input frame
using bilinear interpolation.

E. IMPLEMENTATION DETAILS
1) LOSS
The proposed network is trained to minimize the loss

L = Lpce + βLscale (11)

where Lpce is pixel-wise cross entropy in [53] between
the segmentation prediction and the ground-truth. Also, the
scale loss Lscale is designed to minimize query key features
between different scales

Lscale =
1

H4W4

H4W4∑
i

(
‖kQ4

i ‖
2
2 − ‖k

Q3
i′ ‖

2
2
)2

+
(
‖kQ4

i ‖
2
2 − ‖k

Q2
i′′ ‖

2
2
)2 (12)

where i, i′, and i′′ denote the equivalent position in query key
features. Lscale is used until 1K iterations. We propose Lscale
to boost the training of the memory comparator in the early
training stage.

2) TRAINING AND INFERENCE
For training, we use training videos in DAVIS2017 [41] and
YouTube-VOS [42] to train the proposed model. We ran-
domly select three different frames within 10 frames: one for
the global memory, another for the local memory, and the
other for the query frame. We set the mini-batch size to 8.
We use the Adam optimizer [54]. The training is repeated
200K iterations with an RTX 3090 GPU.We initialize the key
encoder and the value encoder with the pre-trained weights in
STCN [7]. In inference, every 5th frame except the previous
frame is picked for the global memory, and the previous frame
is used for the local memory.

3) PARAMETERS
The channel dimensions C f

2 , C
f
3 , and C

f
4 are set to 256, 512,

and 1024, respectively. The dimension of key features Ck
2 ,

Ck
3 , and Ck

4 are equally set to 64. For value features, the
number of channels Cv

2 C
v
3 , and C

v
4 are set to 64, 128, and

256, respectively. Also, we experimentally decide the offset
of the local region d = 2, top-5 in the memory comparator,
α = 3 in (9), and β = 10−4 in (11).

4) MEMORY MANAGEMENT IN LMR AND SLMR
Since LMR and SLMR are performed in fine scales as well
as coarse scales, constructing similarities and affinities for
each feature stage may lead to memory overflow. In order
to prevent this issue, we construct the local similarities and
affinities to store valid values. Since the number of the vali-
date values for the similarities and affinities in each pixel is
(2d+1)2, memory complexity requires onlyO(HrWr · (2d+
1)2) instead of O(HrWr · HrWr ) at feature stage r .

IV. EXPERIMENTAL RESULTS
In this section, we first compare the proposed algorithm
with the state-of-the-art VOS algorithms on various datasets.
Second, we analyze the proposed local read operations and
memory comparator through various ablation studies.

A. DATASETS
1) DAVIS
DAVIS [2], [41] is a densely annotated VOS dataset, which
is the most commonly used to evaluate VOS algorithms.
It provides 480p videos in two separate datasets: DAVIS2016
and DAVIS2017. DAVIS2016 provides single-object anno-
tated 50 videos, which are divided into 30 for training
and 20 for validation. DAVIS2017 provides 60/30/30 videos
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TABLE 2. Comparison of the proposed algorithm with the state-of-the-art VOS algorithms on the DAVIS2016 and DAVIS2017 validation sets. The best
results are boldfaced. †: selection of ResNet50 backbone for the fair comparison.

TABLE 3. Comparison of the proposed algorithm with the state-of-the-art VOS algorithms on the YouTube2018 and YouTube2019 validation sets. †:
selection of ResNet50 backbone for the fair comparison.

for training/validation/test-dev sets with multi-object anno-
tations. Region similarity J , contour accuracy F , and their
mean J&F are used as metrics in experiments.

2) YouTube-VOS
YouTube-VOS [42] is the large-scale VOS dataset. It pro-
vides 3471 training videos and 474/507 validation videos
for YouTube2018/YouTube2019 datasets with multi-object
annotations in various resolutions. In our evaluation,
we resize the input frames to have a resolution of 480p. It has
65 seen and 26 unseen object categories. We measure JS and
FS for the seen categories and JU and FU for the unseen
categories. We also use the overall score G, which is the mean
of the four metrics.

B. COMPARATIVE ASSESSMENT
1) DAVIS
Table 2 compares the proposed algorithm with the existing
semi-supervised VOS algorithms on the validation sets in

DAVIS2016 and DAVIS2017. Scores in Table 2 are from the
respective papers. For DAVIS2016, the proposed algorithm
improves the segmentation performance by 0.4%, 0.4%, and
0.3% in terms of J&F , J , and F , respectively. Also, For
DAVIS2017, in spite of its difficulty, the proposed algo-
rithm achieves performance improvements of 0.5%, 0.6%,
and 0.5% in terms of J&F , J , and F . This indicates that
the proposed local read-and-comparator model is effective for
both single object and multiple object cases.

2) YouTube-VOS
Table 3 shows the comparison of the proposed algorithm
with the existing VOS algorithms on the YouTube2018 and
YouTube2019 validation sets. In terms of G, the proposed
algorithm achieves the best performance on YouTube2018
and the same performance as the state-of-the-art [7] on
YouTube2019. Specifically, for the seen categories, the
proposed algorithm stands second and third place on
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FIGURE 6. Qualitative comparison on DAVIS2017 and YouTube2019 validation sets. We compare the proposed algorithm (LMRC) with STM [3]
and STCN [7]. Failed predictions are marked in yellow boxes with the dotted line.
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TABLE 4. Ablation study results on DAVIS2017 and YouTube2018 validation sets. The best results are boldfaced, and the second-best ones are underlined.

TABLE 5. Ablation studies of the hyper-parameters.

YouTube2018 and YouTube2019, respectively. On the other
hand, we observe that the proposed method shows the
best segmentation results for the unseen categories on both
YouTube2018 and YouTube2019. This indicates that the pro-
posed method has superior generalization performance as
compared with the state-of-the-arts. The proposed local read
operations and memory comparator are robust to unseen
categories by exploiting spatiotemporal smoothness between
neighboring frames.

3) QUALITATIVE COMPARISON
Figure 6 shows qualitative comparison with STM [3] and
STCN [7] on DAVIS2017 and YouTube2019 validation sets.
Both STM and STCN fail to accurately segment out detailed
regions such as bike wheels on ‘bike-packing’ and ‘mbike-
trick’ sequences. Also, they are vulnerable to overlapped
objects of the same category as in the YouTube-VOS exam-
ples. In ‘56e991f4a6’ sequence, they failed to recognize the
boundaries of the two overlapping cheetahs. In ‘a9cee00b66’
sequence, STM even merged them into one object in the end.
On the other hand, the proposed algorithm (LMRC) provides
accurate results by exploiting the local memory effectively.

C. ANALYSIS
1) ABLATION STUDY
We first analyze the effectiveness of the proposed com-
ponents: LMR, SLMR, and memory comparator (MC).
In table 4, we report J&F , J , Fscores, and frame per
second (fps) for various settings on the DAVIS2017 valida-
tion set. We also measure G, J S , FS , J U , and FU on the
YouTube2018 validation set.We trained each case in the same
manner in III-E.

Setting A is the baseline, which uses GMR only. In set-
ting B, LMR is employed for only a single scale at
4th feature stage, which is denoted as LMR-S. Settings B

and C show that LMR improves performance. Also, the
performance gap between B and C indicates that multi-scale
readout features are effective in transferring the information
of the local memory to the query. In addition, we see that
LMR dramatically increases the performance of the unseen
categories on YouTube2018. It is because LMR effectively
transfers features within the local region and the local read-
out feature is trained to emphasize more on the pixel-level
than category-level. We also observe that SLMR effectively
increases the accuracy of segmentation results from setting
D and F. Note that SLMR lowers the overall performance
without the memory comparator, but improves the perfor-
mance for both seen and unseen categories with the mem-
ory comparator on YouTube2018. Finally, settings E and
F outperform setting C and D, respectively, by employing
the proposed memory comparator commonly. Thus, these
results demonstrate that the memory comparator significantly
improves the performance, which requires little time.

2) LOCAL REGION AND TOP-K SELECTION
We analyze the local region of LMR and SLMR, and the
top-k selection in the memory comparator on YouTube2018
and DAVIS2017 validation sets. Table 5(a) shows that
d = 2 provides the best performance. Also, we observe that
there are no significant changes according to the size of the
local region. This is because LMR and SLMR are adaptively
used based on the reliability weights. Table 5(b) shows how
the performance is varying as k changes. k = 5 yields the
best performance on both datasets.

3) RELIABILITY WEIGHT
Figure 7 shows the reliability weightsHL3 andHL4 , provided
by the memory comparator, for three scene cases: static,
dynamic, and fast movement. We observe three properties of
the reliability weight. First, HL3 has high-reliability weights
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FIGURE 7. Visualization of the reliability weights HL3 and HL4 for three scene cases.

near object edges, which indicates that local readout features
are intensely used on object edges to deal with spatiotem-
poral smoothness motions of target objects between adjacent
frames. Second,HL4 maps in the dynamic scene are generally
higher than the static scene. In a static scene, the global
readout features are sufficiently reliable since frames in the
global memory have similar features to each other. On the
other hand, the global readout features in dynamic scenes
are generally unreliable, and thus the local readout features
should be usedwith highweights. FromHL4 maps in dynamic
and static scenes, we can observe that the proposed memory
comparator provides effective reliability maps for accurate
segmentation. Third, the memory comparator effectively fil-
ters out the local readout features at fast-moving regions
of the object (right leg within the yellow box) with low-
reliability weight. Thus, the memory comparator deals with
the problem of large movements out of the local region N .

V. CONCLUSION
We proposed a novel VOS algorithm that propagates the
fused readout features of the local and global memories.
First, we developed LMR and SLMR to convey the seg-
mentation data hierarchically to deal with spatial proximity
between adjacent frames. Second, we designed the memory
comparator to adaptively read the local memory by compar-
ing similarities of the local memory and the global mem-
ory. Experimental results demonstrated that the proposed
algorithm outperforms the recent state-of-the-art algorithms
and overcomes the limitation of the existing memory-based
approaches. Although the proposed method is capable of
using the adjacent frames, the frames of two or more frames

behind should also be taken into account together as local
frames with global memory, discriminatively. In the future,
we will design to fuse the multiple local frames with global
memory to deal with spatial contiguity.
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