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ABSTRACT Double parallelogram compliant mechanism (DPCM) is extensively used to obtain precise
straight-line motion. Symmetric DPCMs, used previously, traverse a straight-line path without parasitic error
when gravity vector is perpendicular to the plane of bending of beams. However, when gravity vector is either
in line with beams (orientation B) or in the plane of bending of beams (orientation C), asymmetry in the
loading causes undesired deviation from a straight-line path. This undesired deviation called parasitic error
increases, especially in beams with relatively low flexural rigidity required to obtain larger displacements
with low power actuators. This paper first characterizes parasitic error, in such cases, using large deformation
analysis and further proposes novel ways to minimize it. A recently developed, chained beam constraint
method is used to model, characterize, and optimize DPCMs. Optimized parameters are further validated by
FEA and experiments. In orientation B, after implementing the proposed method, numerical analysis and
experimental results show that the undesired parasitic error of 123 ym is drastically reduced to 2 pm and
6 um, respectively. Moreover, systematic design procedure with corresponding graphs is presented to avoid
modeling and optimization steps for a user-specific case. The proposed methods pave pathways to reducing
the parasitic error during large-range motion using multiple orientations of DPCMs and thus make DPCMs
more employable in several precision motion applications such as 3D optical scanners, 3D micro-printers,
CMM probes, and microscopy stages.

INDEX TERMS Compliant mechanism, optimization, parasitic error, precise straight-line motion.

I. INTRODUCTION

Compliant mechanisms induce entire motion through defor-
mation of flexible members or flexible joints which eliminate
wear, friction, lubrication, and backlash [1]. Thus, compliant
mechanisms provide backlash-free and friction-free smooth
motion with precision, accuracy, repeatability, and reliabil-
ity for many nano and microscale applications [2], [3], [4],
[5], [6], [ 7], [8]. These mechanisms are used in applications
such as microstereolithography [9], spontaneous fabrica-
tion of the 3D multiscale fractal structures [10], and semi-
conductor wafer inspection/production instrumentation [11],
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Micro-Electro-Mechanical Systems (MEMS) [12], Scanning
Probe Microscopy (SPM) [13].

DPCM is one of the most widely used mechanisms in
precision motion applications [14], [15], [16]. Traditionally
DPCMs in a symmetric configuration are operated in orien-
tation A (see Fig. 1(a)) with gravity vector perpendicular to
the axis of the beams [17], [18], [19]. It is easier to accomplish
ultra-precise straight-line motion using DPCMs operating in
orientation A; the effect of gravity is ignorable on the motion
of the mechanism. However, there could be a requirement
either from loading capacity perspective or from a space
availability perspective in applications where DPCM in other
possible orientations B and C (shown in Fig.1(b) and (c))
would need to be used. In orientation B, the axial loading
symmetry between outer and inner beams is broken since
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FIGURE 1. DPCM in (a) orientation A (b) orientation B (c) orientation C.

outer beams see tensile load while inner beams are loaded in
compression. Axial loads (tensile in outer and compressive in
inner) coupled with large bending deformations cause addi-
tional position dependent bending moments which induce
significant nonlinear parasitic errors in the axial direction in
this case. Orientation B eliminates the possibility of warping
of flexible beams during deformation as the axial load due
to gravity acts along the length of the beam. Unlike in ori-
entation A, twisting loads are not induced in orientation B
even after large deformation. In contrast, flexible beams in
orientation A are more prone to warping during deformation
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due to parasitic twisting caused by the vertical load of
stages and their reaction components. Orientation B has
more load-carrying capacity than orientation A for the same
stiffness in the direction of actuation. The orientation C is
beneficial for obtaining motion in the vertical direction (along
the gravity), which is impossible with other orientations B
and C. In orientation C, the gravity vector is in-line with the
bending direction of flexible beams; therefore, gravity load
induces additional pure bending moments (deformation inde-
pendent) in flexural beams without any axial load. Further,
due to different static deflection of inner and outer beams,
the parasitic error is always present in orientation C. The
gravitational load significantly increases the parasitic error of
DPCMs operating in orientation B and C. This study aims at
eliminating or minimizing this parasitic error and obtaining
highly precise straight-line motion over the large range of
stroke with DPCM operating in orientations B and C. Few
works of literature [20], [21], present ideas to to fix the motion
ratio as 2:1 between primary and intermediate mass using
slaving mechanism. The slaving uses an additional linkage
to connect the primary and intermediate stage. Although this
reduces undesired effects of axial forces to some extent, addi-
tional actuator forces are required in the direction of motion.

As the aim of this study is to achieve straight-line motion
over the large range, consideration of the large deformation
of flexible beams in the mathematical model is necessary.
In literature, various models for the analysis of flexible beams
with large deformations have been presented. Elastica the-
ory is the method which delivers an exact solution to large
deflections [22]. However, due to its non-closed-form nature
(solution in terms of elliptic integrals), it is not suitable in the
synthesis of mechanisms. Pseudo-rigid-body model (PRBM)
initiated by Midha and Howell [1] is another technique uti-
lized to evaluate the large deflection of flexible beams. PRBM
is sensitive to loading condition, change in load due to extra
force or moment demands for generating a new pseudo-
rigid-body model via the optimization process. In the cases
under consideration here (orientations B and C has shown
in Fig. 1(b) and (c)), the loading conditions change continu-
ously as a function of deformation. The other disadvantage of
PRBM which arises due to lumped parameter approximation
is an inaccurate slope at the end of the beam and inability
to capture the elastic and elasto-kinematic effects along the
axial direction. The recent advancement in modeling large
deformation of the compliant mechanism includes energy
minimization based solutions. Su and Turkkan [23] presented
a method based on the minimum potential energy principle
and optimization. This method uses any beam model with a
closed-form energy equation in the minimization framework.
The accuracy of this method depends on the accuracy of the
beam model used in the framework. Chen and Ma [23] also
presented an energy-based modeling framework for compli-
ant mechanisms. Their future aim is to include the principle
of minimum potential energy. Few recent works [24], [25]
have presented models for planar compliant mechanisms
applicable for small deformations only. Chained beam
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constraint model (CBCM) is a new technique proposed
recently by Ma and Chen [26], for analyzing large deflec-
tions of planar flexible beams. In CBCM, a flexible beam
is discretized into a few elements, and then beam constraint
model (BCM) is applied to each of these elements. BCM
is based on a polynomial approximation to elastica theory.
The advantages of BCM are that it provides compact, closed-
form relations between end loads and end displacements.
BCM captures the geometric linearities associated with pla-
nar beam flexure, load stiffening effect and elasto-kinematic
effects [27]; consequently, CBCM takes these significant
effects into account. However, BCM does not predict accurate
results when deformation is more than 10% of the length of
the beam. Therefore, CBCM plays a vital role in capturing
large flexure deformations (more than 10%). In contrast to
most other techniques, CBCM considers axial strain resulting
from the axial load, capable of predicting deflection with
the high compressive load. In comparison to FEM, CBCM
requires very few elements to model the large deflection of
flexible beams because of the capability of each element to
capture intermediate deflection accurately and thus reduces
time to reach accurate solution. Hence, CBCM is suitable for
analysis and proposed optimization of parasitic error in the
DPCMs operating in orientation B and C.

This article first analyzes DPCM operating in orienta-
tion B (to predict parasitic error), considering the combined
effect of bending and axial gravitational load, along with
experimental and FEA validation. Subsequently, it investi-
gates DPCM operating in orientation C using CBCM and
FEA, where the effect of additional bending moments due to
gravitational load on the motion of mechanism is significant.
Based on the analysis, we further propose a novel approach to
achieve ultra-precise straight-line motion over a large range
for DPCMs operating in both the orientations (B and C)
by minimizing parasitic error with respect to different flex-
ible beam parameters like width, thickness, and length. The
optimization problem considers the stress constraint during
deformation of flexible beams to avoid beams’ failure due
to fatigue. Finally, this paper proposes design steps to obtain
optimized beam dimensions directly using a few equations
and nondimensional graphs for DPCMs operating in orienta-
tion B. The results presented in this article can be extended to
other configurations or orientations, where the effect of loads
acting on mechanisms is similar to gravity. The proposed
design procedure reduces the effort of the designer to get the
optimized dimensions. The proposed linear motion platforms
are useful as precision motion stages in applications like
micro 3D printing [28], non-contact micro-machining equip-
ments [29], [30], and non-contact metrology, to name a few.
The other applications are precise guidance or measurement
in optical systems [30], non-contact scanning, CMM probes,
and microscopy stages.

Il. MODELING OF DPCM
A nonlinear mathematical model for DPCM operating in
orientations B and C is presented in this section. Primarily
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detailed modeling for orientation B has been explained. Mod-
eling for orientation C remains the same; except a change in
load equilibrium equations. The load equilibrium equations
for orientation C are presented in Appendix C. DPCM under
consideration here, operating in orientation B, consists of
8 flexible beams and two rigid masses. The intermediate
mass (ms1) is connected to ground through four flexible outer
beams forming an outer parallelogram. Similarly, four inner
beams connected to intermediate mass (ms;) and primary
mass (ms;) forms an inner parallelogram. The DPCM is
symmetric about mid-plane (see Fig. 25 in Appendix A).
Theoretically, DPCM has geometrical symmetry, material
symmetry, and symmetric boundary conditions about the
mid-plane. Therefore, only half-portion of the mechanism is
considered for modeling purposes, as shown in Fig. 2. This
assumption simplifies the mathematical model and reduces
the computational cost. It also makes the mathematical model
easier to understand.
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FIGURE 2. Double parallelogram compliant mechanism [31].

A. CHAINED BEAM CONSTRAINT MODEL

A chained BCM method [26], recently developed for mod-
eling compliant mechanisms, is adopted here for modeling
DPCM. A brief outline of modeling procedure is given in
this section for the sake of completeness. CBCM discretizes
flexible beams in compliant mechanisms into a few num-
bers of elements (see Fig. 26 in Appendix A) and each of
these elements is modelled using BCM. BCM developed
by Awtar et al. [32] accurately predicts intermediate deflec-
tion (within 10% of the length of the beam) of a flexible
beam. BCM is capable of capturing geometric nonlinearities
associated with an intermediate transverse deflection. Equa-
tion (1) and (2) represent the relations between end load and
end displacement specified by BCM in the non-dimensional

form [32]:
[f} _ [811 812} [%} » [kn k12} |:8y]
m 821 822 o ko1 ko o

21911 q12 dy
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are the normalized load and deflection parameters of the
beam. The non-dimensional beam characteristic coefficients
g’s, k’s and g’s are given in Table 3 in Appendix A. BCM
considers the effect of geometric nonlinearity due to arc
length conservation and the effect of nonlinearity due to
curvature on the deflection of planar beam flexure undergoing
intermediate deflection. It also takes into account the effect of
axial force on the deflection of a flexible beam.

In CBCM [26] transfer of loads from one element to the
next is carried out using the following equations of load
equilibrium for the j* element

cos¢;j  sinf; 0 fi fi-1
—sinf; cosf; 0 pi| =|p-1]- O
1+ ij —(Syj 1 m; mj_|

The geometric constraints stated by CBCM [26] for the

whole beam are
ZN: costj —sing; Li(1+ 385 || _ [Xo
— sinf;  cosb Ljs,; ERRCIN
J:
Oy +ay = b, 4

where, L; is the length of the j™ element and Li = L/N
for equal discretization. Equation (1) and (2) obtained from
BCM for all elements, along with load equilibrium and the
geometric constraint presented in (3) and (4) respectively,
constitutes the CBCM model for a beam undergoing large
deformation. If three load parameters (P,, F,,, M,)) are known,
then the remaining three deflection parameters (X,, Yo, 6,)
are found out by numerically solving the CBCM equations or
vice versa.

B. STATIC ANALYSIS OF DPCM

DPCM under consideration consists of four flexible beams,
as shown in Fig. 2. Each flexible beam is further divided into
six equal elements using CBCM to make sure that deflection
of every element is within 10% of the length of the element.
Further, 3 equations presented in (1) and (2) of BCM are
applied to each of the six elements would give 18 equations
pertaining to the load displacement relationships. The load
equilibrium equations presented in (3) are applied to these
elements would give additional 15 equations. In addition,
3 geometric constraint equations are given by (4). Besides,
three extra equations are formed, to transform the known load
in the global coordinate frame (F,, P, and M, = 0) to last
elements local coordinate frame. Thus, a flexible beam with
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FIGURE 4. Free body diagram of primary mass [31].

six elements require 39 nonlinear equations to model large
deformation with CBCM. Total, 156 (39 x 4) equations are
formulated for DPCM with four beams by applying CBCM.
Two rigid-body masses attached to flexible beams are also
constituent elements of DPCM. This attachment of masses
to flexible beams impose certain geometric constraints on
the beams and also transfers the load to the beams. Free
body diagrams of intermediate mass and primary mass for
orientation B are shown in Fig. 3 and 4, respectively.

Equation (5) is obtained by applying load equilibrium to
primary mass msy.

Fo — Foy — Fop = 0,
Po — Po; — Poy = 0,

b b
(Fo1 + Foz)a + Pop <§> = Poy <5> + Moy + Mo,. (5)
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The geometric constraints for primary mass ms, are given
by

fo1 = Hoy,
Xo, = Xor — bsin(foy),
Yo, = Yo; + b — bcos(Boy). (6)

Similarly, (7) is obtained by applying load equilibrium to
intermediate mass ms.
Fosz + Foy = FRo1 + FRoj,
PRoi + PRoy = ms1(9.81) — Poy — Poy,

PRo () 4 Pos( L) = PRoo(2) 4 o (&
o1 5 04| 5 o2( 5 03| 5

—(Fo3 + Fo4)c

+(FRo1 + FRoy)c

+MRo1 + MRo;

+Mo3 + Moy. @)

The geometric constraints on intermediate mass ms; are

0oz = Oog,
Xo4 = Xo3z — d sin(603),
Yoz = Yo4 +d — d cos(003). ®)

Finally, 168 nonlinear equations consisting of load equi-
librium conditions (5) and (7), CBCM equations, and geo-
metric constraints (6) and (8) are numerically solved using
“fsolve” (nonlinear system solver) in MATLAB to find
168 unknowns. These unknowns consists of nondimensional
parameters f, p, m, 8y, 6,, a of each element (thus a flex-
ible beam with six elements contain 36 local unknowns),
along with Foy, Poyx, Moy, Xoy, Yo, and fo, as a global
unknowns (x indicates beam number). Therefore, the total
number of unknowns per beam become 42, which leads to
168 unknowns for a DPCM consisting of 4 such beams.
A different set of load equilibrium conditions as in (5) and (7)
would be obtained for DPCM in orientation C. All other equa-
tions would remain the same. The load equilibrium equations
for primary mass and secondary mass of DPCM operating in
orientation C are presented in Appendix C.

After solving the above simultaneous equations for given
loads (F,, P,, M,) and initial dimensions of the inner and
outer beam, we obtain the solution in terms of elemental level
deformations. From these elemental solutions, global solu-
tion for complete deformation profile for each of the beams
is computed. Particularly the tip deformation in the axial
direction for each beam gives its own parasitic error. The total
parasitic error (e) is further obtained by subtracting individual
parasitic errors of inner and outer beams as follows:

e=el—e
(Li — Xo1) — (Lo — Xo3). ©)

This error will be used for further analysis and proposed
optimization in subsequent sections.
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C. MINIMIZATION OF PARASITIC ERROR

This section presents novel ideas for minimization of parasitic
error in the proposed orientations B and C, respectively. Fur-
thermore, it develops physical insights into how the concepts
presented lead to the minimization of the error. Interestingly,
it is found that orientations B and C require a completely
different set of ideas that would work for minimization of
parasitic error.

1) DPCM OPERATING IN ORIENTATION B

For DPCM operating in orientation B, gravity effects play a
dominating role in creating asymmetry in the loading. There-
fore, the motion of the stage will not be in a straight line as
intended because of parasitic error in X-direction. The spe-
cific results of DPCM operating in orientation B are presented
in Fig. 8 in Section IV-A later. We formulate optimization
problem here to address the following question: Are there set
of beam parameters which will induce some asymmetry in
the structure in such a way that the motion of the platform is
still in a straight line eliminating parasitic error? In particular,
for a set of inner beam parameters, we look at the change in
width, thickness or the length of outer beams, one at a time,
keeping other values the same, for minimization of parasitic
error over entire desired stroke.

Hence, we define the optimization objective function f as

N
f@) =) lei— el (10)
i=1
where, i = 1,2, ...., N are the applied load steps and e is

parasitic error at zero transverse force.

The eq indicates the component of parasitic error because
of axial deformation of beams due to gravity even without
applying any transverse force. This component eg can be
considered as a new reference point to achieve straight-line
motion in the xy plane, passing through the point(0, ep) and
having equation as y = eq (y direction is along the direction
of gravity). With this understanding, we formulate objective
function f by subtracting ep in order to minimize further
variations of parasitic error. The optimized trajectory traced
by motion stage, with and without consideration of e in the
objective function is shown in Fig. 27 in the Appendix A.

Considering various parameters to be optimized and con-
straints thereof, we propose the following mathematical for-
mulation of the optimization problem:

Minimize f (x),
X
Subjected 10 Xpin < X < Xpax;
Omax < Se. (11)

Design variable (x) is one of the outer beam parameters like
Ly, t, or W,, and it should be positive and within some bounds
Xmin and X,y . For the optimization problem under consider-
ation, the minimization of objective function f can only be
obtained by reducing the transverse stiffness of outer beams
and making it equal to or close to the transverse stiffness
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of inner beams. Suppose thickness (7,) or width (W,,) is the
design variable (x). The stiffness of outer beams can only be
reduced by reducing the thickness or width value compared
to inner beams. Therefore, the upper bound limit for x is the
corresponding thickness (#;) or width (W;) of the inner beam,
and the lower bound can be any positive value close to zero.
When the length (L,) is the design variable, the stiffness of
outer beams can only be reduced by increasing the length of
outer beams. Therefore, the lower bound for x is the length
(L;) of the inner beam and the upper bound is obtained by
trial and error such that the minimum value of the objective
function falls within two bounds. The constrained optimiza-
tion problem presented in (11) is solved using MATLAB.
The results of DPCM after optimization of parasitic error are
discussed in Section I'V-A3 later.

2) DPCM OPERATING IN ORIENTATION C

In the case of DPCMs operating in orientation C, gravity
loads due to stage masses are in the direction of bending
of beams rather than in axial direction as in orientation B.
Furthermore bending of inner beams (in addition to that
caused by applied force) is caused by gravity load of only the
primary stage however in bending of outer beams, both pri-
mary and intermediate stage masses participate. Thus initial
equilibrium position has some parasitic error contributed by
asymmetric bending of inner and outer beams. Asymmetry
continues further as we apply external force F, leading to
large parasitic errors in following straight line. Changing
beam parameters alone will not change this variation signif-
icantly to reduce parasitic error. Hence a novel approach is
proposed here to resolve this issue. In this approach, we pro-
posed to attach two separate tension springs (always in ten-
sion throughout the desired stroke) at primary and secondary
mass such that these springs will nullify the static deflection
of inner and outer beams (see Fig. 5). This will make sure
that the DPCM will not have any static deflection when the
external force applied is zero. After attaching the external
springs such that kjx; = ms;g and koxy = ms,g and then
optimizing the beams for a new situation gives the desired
precision in traversing straight line. The mathematical for-
mulation of the optimization problem in this orientation is the
same as orientation B (presented in (11)), except for a small
change in the objective function. The objective function f for
orientation C is

N
ey =) el (12)

The component ey of parasitic error is not present in (12)
because there is no axial load on the flexible beams in this
orientation. As well as the parasitic error due to static deflec-
tion has been nullified by attaching the external springs. The
results of DPCM after applying the proposed strategy are
discussed in Section IV-B2. The initial stretch x; and x; from
their respective free lengths (xp) decide the spring stiffness
k1 and ky, respectively. The smaller the initial stretch of the
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FIGURE 5. DPCM operating in orientation C.

spring, the required stiffness of the spring is large and vice
versa. Suppose the stiffness of the springs is more, the overall
motion stiffness increases, leading to more actuator power
for a particular range of motion. Therefore, it is advisable to
use springs with lower stiffness values by keeping the initial
stretch as maximum as possible. The initial stretches have
to be x; > stroke and x; > 9% oke to satisfy the necessary
condition that both the springs must always be in tension.

IIl. FEA AND EXPERIMENTAL DETAILS

The CBCM based simulations predicted that the proposed
strategies substantially reduced the parasitic error over the
entire stroke for both the orientation B and C (Results are
discussed in Section IV later). To cross-verify the CBCM
results, Finite element analysis (FEA) has been carried out
using ANSYS 16.2 workbench. The hexahedron elements
are used along with 1% convergence on the displacement in
the transverse direction. The convergence criteria have been
applied to displacement because deformation of beams is
more significant in this study.

Further, experimental work is carried out on a fabricated
prototype of DPCM operating in orientation B to validate
the effectiveness of the proposed method and optimization.
Schematic, along with actual experimental setup, is shown
in Fig. 6 and 7, respectively. For orientation B, experimental
results are in good agreement with CBCM and FEA results.
Orientations B and C are structurally alike and have simi-
lar loading conditions (transverse load and no twisting load
induced during deformation due to stage masses). Hence, the
proposed methodology for orientation C is validated using
FEA and CBCM results.

Table 1 shows the various parameters of the fabricated
double parallelogram compliant mechanism before and after
optimization. The guidelines provided by Gandhi et al. [33]
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TABLE 1. Parameters of DPCM.

. Material
L(‘;;‘flt)ll Width (mm) Th(llflkn?fss (Beryllium
Copper)
unoptimized optimized
Outer beams 109 28 15.26 0.5 E=130 Gpa
Inner beams 109 28 28 0.5 E=130 Gpa

Mass properties

ms1; = 1.325 (kg)
msy = 2.267 (kg)

Data
Acquisition
System
(dSPACE)

Fiber optics
probe

Encoder

LLS

Fixed frame

Voice coil
actuator

Outer beams

" Inner beams

FIGURE 6. Schematic diagram of experimental setup [31].

are followed to build a warp-free assembly of spatial dou-
ble parallelogram compliant mechanism using the flexible
members and rigid masses. The experimental parasitic error
along X-axis and transverse displacement of motion stage
along Y-axis is measured through fiber optics probe (Philtek
RC 140) and optical encoder (Renishaw V2BBI30D50B),
respectively. Reading of encoder and fiber optics probe, along
with actuation of the voice coil actuator (BEI Kimco LA15-
26-000A) to move the motion platform is performed through
the dSPACE 1103 DAQ system.

IV. RESULTS

Results obtained before and after applying the proposed novel
ideas are presented in this section for both the orientations B
and C. The results are discussed separately for DPCMs oper-
ating in orientation B and C under the Section CASE I and
CASE 11, respectively. The experimental results presented in
this study are an average of 3 groups of sample data.

A. CASE I: DPCM OPERATING IN ORIENTATION B

1) CHARACTERIZATION OF UNOPTIMIZED DPCM

The trajectory of the motion stage of DPCM, before opti-
mization, predicted by model along with experimental and
FEA results, is shown in Fig. 8. As expected, we observe
the gradual nonlinear increase in parasitic error in the
axial X direction as a function of transverse deformation
in Y direction, maximum being 123pum over a range
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FIGURE 7. Experimental setup of double parallelogram compliant
mechanism.

of +/— 10 mm. Further, we observe that parasitic error
is a result of uncompensated axial deformations of inner
and outer beams. Fig. 8 shows that the path of the motion
stage predicted by the mathematical model under the given
loading condition is very close to FEA and experimental
results.

Owing to different axial forces in outer (tension) and inner
(compression) beams, the axial deformations in these beams
at any given transverse force F, are going to be different.
This difference in axial deformations at an applied force is
observed in Fig. 9, which presents individual parasitic errors
of inner and outer beams.
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FIGURE 8. Trajectory of motion stage before optimization.

Parasitic error in X direction

-6 -4 -2 0 2
Applied force (N)

FIGURE 9. Force against parasitic error.

W

Transverse displacement in
Y direction (mm)
3 o

-2 0 2
Applied force (N)

FIGURE 10. Force against transverse displacement.

Thus, these axial deformations would not compensate for
each other (although in the opposite direction) as in the case
of DPCM in orientation A and would result in the parasitic
error we observe in Fig. 8.

Another way to look at these results is from transverse
deformation perspective. Fig. 10 shows transverse deforma-
tions of inner and outer beams, all having identical parame-
ters, as the applied force F, is increased. The difference in
transverse deformation we observe is due to the differential
effect of axial forces in these beams. We can see from BCM
equations that for a constant axial force in this case, axial
static deformations ’§,.’ of both inner and outer beams is iden-
tically, nonlinearly related to transverse deformations ’8y’.
Thus the parasitic error is a natural result of different trans-
verse deformations of these beams as observed in Fig. 10.
The error between experimental and simulation results are
shown in Fig. 28 and 29 in Appendix A for parasitic error
and transverse displacement, respectively.

2) SELECTION OF BEAM PARAMETER FOR OPTIMIZATION
It is clear that when all the beam parameters are identical
for inner and outer beams, motion stage has an undesired
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parasitic error due to axial (gravitational) load experienced by
inner and outer beams. This parasitic error can be minimized
by varying at least one of the flexible beam parameters width,
thickness, or length. The effect of each beam parameter on the
parasitic error of motion stage is different. Fig. 11 shows the
value of objective function given by (10) against variation of
the outer beam parameters while other parameters are kept
constant and equal to inner beam parameters. It is clear from
Fig. 11 that the objective function has a minimum value in
case of width as compared to other beam parameters which
are thickness and length. Therefore, optimization of width is
preferred as compared to optimization of other beam param-
eters. Moreover, experimentally it is also easier to reduce the
width of the flexible beam and practically implement it into
the experimental setup of DPCM. Hence, the width of the
flexible beam selected as a design variable for optimization.

5
X:136.1
‘ Y 1.781c*08__‘/

1%4.5 135 135.5 136 136.5 137 137.5
Length (mm)

400,
X: 0.408
208M Y:3.2516-06

0.38 0.39 0.4 0.41 0.42 0.43
Thickness (mm)

X:15.26
Y:3.121e-09

Objective function value ( 1044)

3 15.4 15.5

—
W

15.1 15.2 15.
width (mm)

FIGURE 11. Objective function value against beam parameters.

3) CHARACTERIZATION OF OPTIMIZED DPCM

The trajectory traced by motion stage, after optimization of
the width of the outer beams is shown in Fig. 12. CBCM and
FEA results show that the parasitic error in X direction has
drastically reduced from 123 um to less than 1 pm and 2 um,
respectively after optimization. However, the experimental
parasitic error is around 6 pm. This deviation between experi-
mental and model predicted parasitic error is due to manufac-
turing and assembly errors associated with the experimental
setup.

After optimizing width of the outer beams, transverse
deformation of inner and outer beams, along Y direction
is almost identical for each and every load step applied
as shown in Fig. 13. The axial load on beams, when ten-
sile, increases transverse stiffness and when compressive,
decreases it because of change in direction of additional bend-
ing moment it contributes during deformation. Optimization
process adjusts the beam stiffnesses for this change. Particu-
larly width of outer beams, which are in tension, is decreased
as compared to inner ones to compensate for the effect so that
the effective stiffness (considering axial force) of both beams
is almost identical. Thus their deformations are identical at
any point during motion. In addition, because of identical
lengths of beams, the axial deformations of inner and outer
beams also become identical (See Fig.14). Hence the total
parasitic error is very close to zero. However, in the case
of unoptimized DPCM the effective transverse stiffnesses
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FIGURE 12. Trajectory of motion stage after optimization.

of inner and outer beams are different (even though beams
are identical). The optimized width of the outer beam has a
lower value than the unoptimized width (see Table 1) which
means the transverse stiffness of outer beams has reduced
compared to unoptimized DPCM. The reduction in the trans-
verse stiffness of outer beams reduces the overall stiffness of
DPCM after optimization, which results in less force/power
requirement for a particular range of motion than unopti-
mized DPCM. Fig. 13 also shows that the maximum applied
transverse force is 5.8 N, which is less compared to 7.1 N
force required in case of unoptimized DPCM, for the same
stroke of 4/—10 mm as shown in Fig. 10. The error between
experimental and simulation transverse displacement, as well
as parasitic error, is shown in Fig. 30 and 31 in Appendix A,
respectively.

6
2E 4
S E
S22
78 0 FEA IB
‘E S or = FEAOB |
25 | —CBCMIB | |
z > ~CBCM OB
55 4 —EXPIB i
= —EXP OB

% —4 -2 0 2 4 6
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FIGURE 13. Force against transverse displacement.
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FIGURE 14. Force against parasitic error.

a: DESIGN STRESS

The CBCM based model of DPCM also predicts the maxi-
mum normal stress produced in the flexible beam under the
applied loading condition. Note that shear stress is negligible
as compared to normal stress. The prediction of maximum
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normal stress helps to design the flexible beams. Maximum
stress generated in the beams should be less than the fatigue
strength of the flexible beam material. The maximum normal
stresses produced in the inner and outer beams of the opti-
mized DPCM under the applied load are shown in Fig.15.
The maximum stress produced in the inner and outer beam
is 79.49 MPa and 89.58 MPa, respectively. In both the beams,
stress is less than the fatigue strength (275 Mpa) of the beam
material. The maximum stresses in inner and outer beams
predicted by CBCM are in good agreement with FEA results.

1001

---CBCM IB
---CBCM OB
= FEA OB
50r |- FEA IB

75¢

Omaz(Mpa)

25¢

0 1 2 3 4 5 5.8
Applied Force (N)

FIGURE 15. Maximum normal stress produced in inner and outer beam.

4) PROPOSED DESIGN STEPS FOR OPTIMIZED DPCM

For DPCMs operating in orientation B, a general design
procedure has been formulated, in this section, to get opti-
mized beam dimensions directly from few non-dimensional
graphs and equations obtained from them. This procedure
will be helpful in obtaining the optimized beam parameters
without the need for writing or rerunning the code again for
given specific case. The procedure to obtain optimized beam

. . . . [t
dimensions for few cases of thickness to length ratio (Z) and

. msyy\ . .
mass ratio (—) is outlined below.
msy

Step 1: Application requirements would define the fol-
lowing inputs required to design an optimized DPCM: the
desired range of stroke (maximum motion on one side from
mean position) and values of primary (msy) and secondary
mass (ms1). Once, these inputs are available; the designer can
choose the length of the beams such that the stroke value is
in between 1 to 40% of the length of the beam. Length of
inner (L;) and outer (L,) beams are same and indicated as L.

Step 2: Find out the maximum allowable beam thickness
value to avoid the fatigue failure of the beams for the selected
length and desired stroke from (13). Equation (13) is derived
from the graph shown in Fig. 16.

Select the appropriate value of thickness such that it is less
than the t,,,,, obtained from (13). Thickness is equal for both
inner and outer beams and indicated as ¢.

Se stroke.tqx

-y 13
E 2L2 (13)

1
Step 3: Based on the thickness to length ratio (Z), stroke

. /stroke . o/msy
to length ratio ( ) and mass ratio (—), get the value

mso
of non-dimensional stiffness difference (NSD) between inner
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FIGURE 16. Strain against non-dimensional deformation.

0.4 T !
t/L =0.005

0.3+ Mass ratio i : 7
—1.2
0.2+ |—0.38 8
—04

NSD

00 005 01 015 02 025 03 035 04
stroke/L

(a) Thickness to length ratio is 0.005

0.4
t/L =0.0075
[ Mass ratio

—1.2

02r |—0.8 1
—0.4

0.1r 1

0.3

NSD

00 0.05 0.1 015 02 025 03 035 04
stroke/L

(b) Thickness to length ratio is 0.0075

0.5 T
t/L=10.01

04r Mass ratio

03 |—1.2
—0.8
02 |—04

NSD

0.1

00 0.05 0.1 0.15 02 025 0.3 0.35 0.4
stroke/L

(c) Thickness to length ratio is 0.01

FIGURE 17. Non-dimensional stiffness difference against stroke to length
ratio for different mass ratios.

and outer beams from the graph shown in Fig. 17. The more
accurate value of NSD can be obtained using equations given
in Table 4 in Appendix A. By substituting the values in (14),
get the difference between the width of the inner and outer
beams W} where the value of primary mass (ms>) is 1 kg.

E(W;}‘)t3 - stroke

NSD =
msygL3

(14)
Step 4: Calculate the actual width difference (W;) for the
desired mass using the graphs shown in Fig.18. The accurate
value of Wy can be obtained using equations given in Table 5
in Appendix A, where Wy = W; — W,

94330
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FIGURE 18. W, /W against primary mass.

Step 5: The inner beams are under compression, which
may lead to buckling failure of inner beams if not designed
for buckling. After the selection of length and thickness, find
out the minimum value for the width of inner beams to avoid
buckling using (15):

3mssz2
Wimin = —3 53~

Select the value of the width of the inner beams such that
it is higher than (W;),,;, to avoid buckling of inner beams.
Finally, we get the value of the width of the outer beams
W, by subtracting the difference between inner and outer
beams (W), which we already got in previous Step 4.

This procedure is designed based on the fundamental
understanding of variations and applicable to large range
of beam dimensions for both small and large deformations.
The illustrative example to carry out the proposed design
procedure with sample case is explained in Appendix B.

15)

B. CASE II: DPCM OPERATING IN ORIENTATION C
1) CHARACTERIZATION OF UNOPTIMIZED DPCM

Various parameters of DPCM operating in orientation C used
for simulation are shown in Table 2. The trajectory of the
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FIGURE 19. Path followed by motion stage before optimization.

motion stage of DPCM operating in orientation C, before
optimization, predicted by the model and FEA, is shown in
Fig. 19. The trajectory of the motion stage predicted by FEA
and CBCM is nearly same up to the transverse displacement
of +/— 4 mm, as the displacement increases further, the error
between trajectory predicted by FEA and CBCM increases.
The maximum difference between FEA and CBCM pre-
dicted parasitic error is around 10 pm at 10 mm transverse
displacement. We observe that the trajectory traced by the
motion stage is inclined and has a gradual increase in par-
asitic error on both sides of mean position (zero transverse
displacement). The parasitic error is positive on one side
of the mean position and negative on another side of mean
position (see Fig. 19). This means the motion stage (primary
mass) moves in outward direction while traversing in the
direction of gravity and vice versa. Parasitic error in axial X
direction increases as a function of transverse deformation
in the Y direction, the error becomes 140 um over a range
of +/— 10 mm. In this case, the parasitic error is a result of
asymmetric bending of inner and outer beams.

This asymmetric bending is due to asymmetric gravity load
acting on the inner and outer beams which cause different
axial deformation in inner and outer beams at every instant
of the load. This causes the parasitic error of both the beams
to be different even though both the beams are of identical
dimensions (see Fig. 20). Due to different bending moments
in outer and inner beams, the axial deformations in these
beams at any applied transverse force F, are going to be
different (except one point where error curves cross each
other) which can be observed in Fig. 20. Thus, these uncom-
pensated axial deformations would result in the parasitic error
we observe in Fig. 19.

Another perspective to understand these results is
from transverse deformation of inner and outer beams.
Fig. 21 shows transverse deformations of inner and outer
beams, all having identical parameters, against the applied
transverse force F,. The asymmetric transverse deformation
is a consequence of asymmetric bending of inner and outer
beams due to gravitational load at any particular applied
transverse force. This asymmetric transverse deformation
leads to different parasitic error in inner and outer beams.
The gravitational load is always acting on both the inner
and outer beams; this can be observed from asymmetric
static deformation of inner and outer beams present at zero
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FIGURE 20. Force against parasitic error.
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FIGURE 21. Force against transverse displacement.

transverse force. This constant gravitational load acting in
the direction of gravity leads to different force requirements
on both sides of zero transverse position. Therefore, the force
required to achieve —10 mm (towards gravity) and +10 mm
(opposite to gravity) stroke from the mean position is 12 N
and 32 N respectively.

2) CHARACTERIZATION OF OPTIMIZED DPCM

The trajectory traced by motion stage, after attaching two sep-
arate springs to intermediate and primary mass with required
stiffness (k1 and kp) and initial stretch (x; and x»), and then
optimizing width of the outer beams is shown in Fig. 22.
The attached springs nullifies the static deflection of both
the beams due to stage masses and brings DPCM to mean
position. CBCM and FEA results show that the parasitic error
in X direction has drastically reduced from 140 pm to less
than 1pm and 6 um, respectively after attaching springs of
required stiffness and further optimizing the width of outer
beams. Optimizing outer beams after attaching the springs is
required because the addition of springs makes the system
configuration such that the transverse force experienced by
inner and outer beams is not equal. The external transverse
force applied to the primary mass act on both inner beams
and spring with stiffness k> attached to mass ms>. As the inner
beams and spring of stiffness k, are in parallel configuration,
the applied force is shared between them in the ratio which
is present between their stiffness. The force experienced by
inner beams gets transferred to intermediate mass. However,
again, it is divided into two parts because intermediate-mass
ms1 and spring of stiffness kj are in parallel configuration.
This indicates that the force experienced by outer beams is
always less than the force experienced by inner beams. Hence
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TABLE 2. Parameters of DPCM operating in orientation C.

. Elastic
Lizlflt)h Width (mm) Th(lgllgll;: 5 modulus
(Gpa)
Unoptimized Optimized
Outer beam 100 20 17.6595 1 E=105
Inner beam 100 20 20 1 E=105
Mass properties Spring properties
ms1 = 1 (kg) k1 =490.5 (N/m) x; = 0.02 (m)
mso = 0.5 (kg) ko =490.5 (N/m) x5 = 0.01 (m)
= 100 200
S —CBCM B} —CBCM IB
g 80 ---FEA £ . ---CBCM OB
S ol i 2 150F ---FEA IB ]
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FIGURE 22. Path followed by motion stage after optimization.
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FIGURE 23. Force against transverse displacement.

stiffness of outer beams must be less than that of inner beams
to obtain equal transverse deformation.

Fig. 21 clearly shows that for unoptimized DPCM, static
deformation of inner and outer beam is 1.25 mm and
3.55 mm, respectively. A difference of 2.3 mm is observed
between the initial static deformations of inner and outer
beams. This difference between the transverse deformations
remains nearly constant for the entire range of motion which
leads to unequal axial deformations (parasitic errors) of inner
and outer beams. However, there is zero static deformation
in inner or outer beams after applying the proposed strategy.
It is observed in Fig. 23 that the transverse deformations of
inner and outer beams after optimization, along Y direction
is almost identical for each and every load step. Therefore,
the parasitic error experienced by the inner and outer beams
gets indistinguishable for every load step (see Fig. 24). Hence,
the total parasitic error reduces close to zero. The maximum
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FIGURE 24. Force against parasitic error.
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force required on both sides of the mean position is 26 N for
the stroke of +/— 10 mm, which is slightly less than the 32 N
force required for unoptimized DPCM for same stroke. This
shows that with the proposed method, it is possible to obtain
ultra-precise straight-line motion for DPCMs operating in
orientation C.

V. CONCLUSION

This work proposed novel methods towards achieving a close
to perfect straight-line motion using DPCM in configurations
or orientations (B and C) amenable to several applications.
The method minimizes parasitic error over the entire stroke
with variation in beam parameters such as width, thickness,
and length. Recently published CBCM was used to model
the beam and optimize parameters on account of its com-
putation effectiveness while capturing the large deforma-
tions. Results were further validated using an extensive set of
experiments for orientation B. Moreover, optimization data
is generalized in non-dimensional form, and a constructive
procedure is outlined to design beams given the applica-
tion requirements. The proposed design steps require neither
modeling nor simulation and hence easily usable for quick
design of optimized mechanisms. This work thus opens up
possibilities in use of compliant motion platforms operating
in different orientations for a much larger range of motion
with an ultra-precise straight-line motion for corresponding
applications. It is evident that by variation of parameters, it is
possible to achieve nanoscale resolution in the straightness of
motion.
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TABLE 3. Beam characteristics coefficients of BCM matrices [32].

g11 12 g12 = 921 -6
922 4 k1o =kor  -1/10
k}u 6/5 qd12 = 421 1/1400
]4}22 2/15 q11 -1/700
gs -11/6300

NOMENCLATURE
E Young’s Modulus, N/mz.
Fo Transverse load applied to primary mass, N.
Fo, Transverse load on beam x, N.
FRoy Reaction force on beam x acting along.

the transverse direction, N.
Acceleration due to gravity, m/s>.

8
1 Area moment of inertia of the flexible link, m*.
L Length of the beam, m.
L; Length of the inner beam, m.
L, Length of the outer beam, m.
ms Intermediate mass, kg.
mso Primary mass, kg.
Mo Moment applied to primary mass, N.
Mo, Moment on beam x, N.
MRo, Reaction moment on beam x, Nm.
Po Constant gravitational load acting on primary.
mass along the axial direction, N.
Po, Axial load on beam x, N.
PRoy Reaction force on beam x acting along the.
axial direction, N.
Se Endurance strength of beam material, N/ m?2.
stroke Maximum transverse displacement on one
side.
from mean position, m.
t; Thickness of the inner beam, m.
tmax Maximum allowable beam thickness, m.
ty Thickness of the outer beam, m.
Wy Difference between width of inner and outer.
beam at desired primary mass.
Wy Difference between width of inner and outer.
beam when primary mass is 1 kg.
W; Width of the inner beam, m.
w, Width of the outer beam, m.
X Suffix x indicates the beam number.
throughout nomenclature.
Xoy Deformed length of beam x along axial.
direction (see Fig. 26 in Appendix A ), m.
Yo, Transverse deformation of beam x, m.
Omax Maximum normal stress, N/ m?.
(e Slope at the end of beam x.
APPENDIX A

SUPPLEMENTARY FIGURES AND TABLES
See Figure 25-31 and Tables 3-5.
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FIGURE 27. Trajectory of motion stage.
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FIGURE 28. Error between experimental and simulation parasitic error for
unoptimized DPCM: er;: FEA and Experiment er,: CBCM and Experiment.

APPENDIX B

ILLUSTRATIVE EXAMPLE FOR THE PROPOSED DESIGN
PROCEDURE

The mass of rigid elements ms; and ms, of DPCM operating
in orientation B is 8 kg and 10 kg respectively. The desired
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TABLE 4. Equations to calculate NSD.

t
— ma Equation
L mso
trokey 3 trokey 2 trok
04 NSD = —0.02308 x (s Tz e) 10.001416 x (s rz e) +0.7292 x (3 TLO e) + 3.986¢06
trokey 3 troken 2 trok
0005 08 NSD=—0.03118 x (s "o e) +0.001459 x (S rz e) +0.8504 x (s TLO 6) + 4.369¢06
trokey 3 troken 2 trok
12 NSD = —0.03847 x (5 Tz 6) +0.001105 x (5 rz e) +0.9717 x (5 TLO e) +2.835¢ 06
trokey 3 troken 2 trok
04 NSD =0.0462 x (s "o e) — 0.01267 x (S "o 6) +0.9786 x (S o e) 4 5.644¢05
trokey3 trokey 2 trok
0.0075 08 NSD = 0.05469 x (s TLO e) ~0.01313 x (s ro 6) +0.8574 x (s ro e) 4 5.798¢05
trok troken 2 trok
12 NSD = 0.0462 x (s "o e) — 0.01267 x (5 ro e) +0.9786 x (s "o 6) + 5.644¢05
3 2
04 NSD =0.3083 x (Stmke) — 0.09904 x (Stmke) +0.7624 x (Stmke) +0.0002904
trokey 3 troke 2 trok
001 08 NSD = 0.3066 x (s "o e) ~0.102 x (S ro e) +0.8839 x (8 TLO e) +0.0003202
trokey 3 troken 2 trok
12 NSD = 0.2963 x (s Tz 6) —0.1004 x (S ro e) +1.005 x (S ro e) +0.0003126
TABLE 5. Equations to calculate W,.
‘ msy FEquation
L mso
0.4 3//1 = —2.026e 7% x (ms2)? +3.917e7% x (ms2)3 —2.758e %3 x (ms3)? +1.002 x (msz) —1.293¢ 15
d
W, ,
0.005 0.8 W(’i" = —2.947e7% x (msy)* +4.614e %% x (ms3)3 —2.801e7%3 x (ms2)? +1.002 x (msz) —1.315e 15
d
1.2 ;/Vi = —8.718¢7%5 x (ms2)* +1.104e™% x (ms2)3 — 4.743e 793 x (ms3)? +1.004 x (msg) — 1.449¢ 15
d
W,
0.4 W‘i = —3.335¢ — 05 x (ms3)*+0.0007134 x (ms2)® —0.005189 x (ms2)? +1.005 x (msz) —1.313e 1P
d
0.0075 08 gﬁ — —3.084e — 05 x (ms2)* +0.000629 x (11:55)% — 0.004541 x (ms)? +1.004 x (mss) — 1.309¢ 15
d
W, 5
1.2 Wfﬁ = —3.317e — 05 x (ms2)* +0.00061 x (ms2)? —0.004209 x (ms2)? +1.004 x (msy) — 1.316e 15
d
0.4 S//d = —0.000112 x (ms2)* + 0.002462 x (ms2)® — 0.01782 x (ms2)? + 1.015 x (msy) — 1.443e~15
d
00l 08 gﬁ — —0.0001479 X (ms2)* + 0.003198 x (1m.52)? — 0.02244 x (m.s2)2 + 1.019 X (mss) — 1.511e~15
d
W,
1.2 Wfi = —8.483¢ — 05 x (msg)* 4+ 0.001862 x (ms2)? — 0.01352 x (ms3)? + 1.012 * (msq) — 1.397e 15
d

out the beam dimensions for which parasitic error of DPCM
will be within 5 micron?

range of motion is 120 mm. The beam material has an elastic
modulus of 100 Gpa and endurance strength is 500 Mpa. Find
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FIGURE 29. Error between experimental and simulation transverse
displacement for unoptimized DPCM: er, : FEA and Experiment er,: CBCM
and Experiment.
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FIGURE 31. Error between experimental and simulation parasitic error for
optimized DPCM: er, : FEA and Experiment er,: CBCM and Experiment.

Step 1: The inputs given in the problem for DPCM are

ms; = 8kg, andmsy = 10Kkg,

stroke = 60 mm
(maximum motionon oneside frommean position).
Now, length of the beam is selected such that the stroke is in

between 1 to 40 % of the length of the beam. Therefore, L =
200 mm.

Step 2: Find maximum thickness (#,,4) of the beam for the
selected length (L = 200 mm) to avoid fatigue failure under
the desired stroke using (13) as below

2L*S, 2 x(0.200)* x 500 x 10°

3Estroke 3 x (100 x 10%) x 0.060 °
tmax = 0.0022 m = 2.2 mm.

max =

We selected t = 1.5 mm such that # < f,,,4.

t trok
Step 3: For - = 0.007, ”Z ¢ — 03and L =

ms
0.8, we get NSD = 0.2576 from Fig. 17 shown ir% the
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Section IV-A4. Thus,

NSD.msygL> 02576 x 1 x 9.81 x (0.200)°

Et3.stroke (100 x 10%) x 0.00153 x 0.06’
W = 0.000998343 m = 0.998343 mm.

Wy =

W,
Step 4: From Fig. 18(b) of Section IV-A4, the value of Zd
W*
is 9.906 at the desired primary mass of 10 kg. Therefore,

Wq = W x 9.906 = 0.998343 x 9.906
Wy = 9.88958 mm.

Step 5: Find out (W), to avoid buckling of inner beams
from (15) as below

W = 3msygL? 3 x 10 x 9.81 x (0.200)
P g 2E3 T T2 x (100 x 10%) x 0.00153°
(Wimin = 0.003534 m = 3.5340 mm.

We selected W; = 50 mm such that W; > (W,),,in. There-
fore Wy = 50 — 9.88958 = 40.1104 mm. The dimensions
of flexible beams obtained from the design steps for the
considered example of DPCM are validated with CBCM.

2.5

2.0p

L.5f

Parasitic error in X direction
(um)

1'00 10 20 30 40 50 60
Transverse displacement in Y direction (mm)

FIGURE 32. Path followed by motion stage.

400.0r

300.0p

—IB
—OB

(Mpa)

200.0p

max

(¢

100.0r

0'00 50 100, 150 200 250
Applied Force (N)

FIGURE 33. Stresses generated in inner and outer flexible beam.

Fig. 32 and 33 show that the parasitic error is within
1 micron over the stroke of 60 mm and maximum stresses
induced during the desired stroke are less than the endurance
strength, respectively.

APPENDIX C

LOAD EQUILLIBRIUM EQUATIONS FOR DPCM
OPERATING IN ORIENTATION C

Load equilibrium equations of primary mass ms; are

Fo — Fo1 — Fop — ms>g = 0,
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Po; + Pop = 0,
b b
(Fo1 + Foz)a + Pop 3 = Poy 3 +Mo+Mo,. (C16)

Similarly, load equilibrium equations of intermediate mass
ms are

Fosz + Fos + ms1g = FRoy + FRoa,
PRo{ + PRoy, = —Po3 — Poy,

PR b + P d PR b + P d
01 > 04 > 07 > 03 >

—(Fo3 + Fo4)c + MRo;
+(FRo1 + FRoy)c + MRo>
+Mos + Moy. (C17)
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