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ABSTRACT Double parallelogram compliant mechanism (DPCM) is extensively used to obtain precise
straight-line motion. Symmetric DPCMs, used previously, traverse a straight-line path without parasitic error
when gravity vector is perpendicular to the plane of bending of beams. However, when gravity vector is either
in line with beams (orientation B) or in the plane of bending of beams (orientation C), asymmetry in the
loading causes undesired deviation from a straight-line path. This undesired deviation called parasitic error
increases, especially in beams with relatively low flexural rigidity required to obtain larger displacements
with low power actuators. This paper first characterizes parasitic error, in such cases, using large deformation
analysis and further proposes novel ways to minimize it. A recently developed, chained beam constraint
method is used to model, characterize, and optimize DPCMs. Optimized parameters are further validated by
FEA and experiments. In orientation B, after implementing the proposed method, numerical analysis and
experimental results show that the undesired parasitic error of 123µm is drastically reduced to 2µm and
6 µm, respectively. Moreover, systematic design procedure with corresponding graphs is presented to avoid
modeling and optimization steps for a user-specific case. The proposed methods pave pathways to reducing
the parasitic error during large-range motion using multiple orientations of DPCMs and thus make DPCMs
more employable in several precision motion applications such as 3D optical scanners, 3D micro-printers,
CMM probes, and microscopy stages.

17 INDEX TERMS Compliant mechanism, optimization, parasitic error, precise straight-line motion.

I. INTRODUCTION18

Compliant mechanisms induce entire motion through defor-19

mation of flexible members or flexible joints which eliminate20

wear, friction, lubrication, and backlash [1]. Thus, compliant21

mechanisms provide backlash-free and friction-free smooth22

motion with precision, accuracy, repeatability, and reliabil-23

ity for many nano and microscale applications [2], [3], [4],24

[5], [6], [7], [8]. These mechanisms are used in applications25

such as microstereolithography [9], spontaneous fabrica-26

tion of the 3D multiscale fractal structures [10], and semi-27

conductor wafer inspection/production instrumentation [11],28
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Micro-Electro-Mechanical Systems (MEMS) [12], Scanning 29

Probe Microscopy (SPM) [13]. 30

DPCM is one of the most widely used mechanisms in 31

precision motion applications [14], [15], [16]. Traditionally 32

DPCMs in a symmetric configuration are operated in orien- 33

tation A (see Fig. 1(a)) with gravity vector perpendicular to 34

the axis of the beams [17], [18], [19]. It is easier to accomplish 35

ultra-precise straight-line motion using DPCMs operating in 36

orientation A; the effect of gravity is ignorable on the motion 37

of the mechanism. However, there could be a requirement 38

either from loading capacity perspective or from a space 39

availability perspective in applications where DPCM in other 40

possible orientations B and C (shown in Fig.1(b) and (c)) 41

would need to be used. In orientation B, the axial loading 42

symmetry between outer and inner beams is broken since 43
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FIGURE 1. DPCM in (a) orientation A (b) orientation B (c) orientation C.

outer beams see tensile load while inner beams are loaded in44

compression. Axial loads (tensile in outer and compressive in45

inner) coupled with large bending deformations cause addi-46

tional position dependent bending moments which induce47

significant nonlinear parasitic errors in the axial direction in48

this case. Orientation B eliminates the possibility of warping49

of flexible beams during deformation as the axial load due50

to gravity acts along the length of the beam. Unlike in ori-51

entation A, twisting loads are not induced in orientation B52

even after large deformation. In contrast, flexible beams in53

orientation A are more prone to warping during deformation54

due to parasitic twisting caused by the vertical load of 55

stages and their reaction components. Orientation B has 56

more load-carrying capacity than orientation A for the same 57

stiffness in the direction of actuation. The orientation C is 58

beneficial for obtainingmotion in the vertical direction (along 59

the gravity), which is impossible with other orientations B 60

and C. In orientation C, the gravity vector is in-line with the 61

bending direction of flexible beams; therefore, gravity load 62

induces additional pure bending moments (deformation inde- 63

pendent) in flexural beams without any axial load. Further, 64

due to different static deflection of inner and outer beams, 65

the parasitic error is always present in orientation C. The 66

gravitational load significantly increases the parasitic error of 67

DPCMs operating in orientation B and C. This study aims at 68

eliminating or minimizing this parasitic error and obtaining 69

highly precise straight-line motion over the large range of 70

stroke with DPCM operating in orientations B and C. Few 71

works of literature [20], [21], present ideas to to fix themotion 72

ratio as 2:1 between primary and intermediate mass using 73

slaving mechanism. The slaving uses an additional linkage 74

to connect the primary and intermediate stage. Although this 75

reduces undesired effects of axial forces to some extent, addi- 76

tional actuator forces are required in the direction of motion. 77

As the aim of this study is to achieve straight-line motion 78

over the large range, consideration of the large deformation 79

of flexible beams in the mathematical model is necessary. 80

In literature, various models for the analysis of flexible beams 81

with large deformations have been presented. Elastica the- 82

ory is the method which delivers an exact solution to large 83

deflections [22]. However, due to its non-closed-form nature 84

(solution in terms of elliptic integrals), it is not suitable in the 85

synthesis of mechanisms. Pseudo-rigid-body model (PRBM) 86

initiated by Midha and Howell [1] is another technique uti- 87

lized to evaluate the large deflection of flexible beams. PRBM 88

is sensitive to loading condition, change in load due to extra 89

force or moment demands for generating a new pseudo- 90

rigid-body model via the optimization process. In the cases 91

under consideration here (orientations B and C has shown 92

in Fig. 1(b) and (c)), the loading conditions change continu- 93

ously as a function of deformation. The other disadvantage of 94

PRBM which arises due to lumped parameter approximation 95

is an inaccurate slope at the end of the beam and inability 96

to capture the elastic and elasto-kinematic effects along the 97

axial direction. The recent advancement in modeling large 98

deformation of the compliant mechanism includes energy 99

minimization based solutions. Su and Turkkan [23] presented 100

a method based on the minimum potential energy principle 101

and optimization. This method uses any beam model with a 102

closed-form energy equation in the minimization framework. 103

The accuracy of this method depends on the accuracy of the 104

beam model used in the framework. Chen and Ma [23] also 105

presented an energy-based modeling framework for compli- 106

ant mechanisms. Their future aim is to include the principle 107

of minimum potential energy. Few recent works [24], [25] 108

have presented models for planar compliant mechanisms 109

applicable for small deformations only. Chained beam 110
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constraint model (CBCM) is a new technique proposed111

recently by Ma and Chen [26], for analyzing large deflec-112

tions of planar flexible beams. In CBCM, a flexible beam113

is discretized into a few elements, and then beam constraint114

model (BCM) is applied to each of these elements. BCM115

is based on a polynomial approximation to elastica theory.116

The advantages of BCM are that it provides compact, closed-117

form relations between end loads and end displacements.118

BCM captures the geometric linearities associated with pla-119

nar beam flexure, load stiffening effect and elasto-kinematic120

effects [27]; consequently, CBCM takes these significant121

effects into account. However, BCMdoes not predict accurate122

results when deformation is more than 10% of the length of123

the beam. Therefore, CBCM plays a vital role in capturing124

large flexure deformations (more than 10%). In contrast to125

most other techniques, CBCM considers axial strain resulting126

from the axial load, capable of predicting deflection with127

the high compressive load. In comparison to FEM, CBCM128

requires very few elements to model the large deflection of129

flexible beams because of the capability of each element to130

capture intermediate deflection accurately and thus reduces131

time to reach accurate solution. Hence, CBCM is suitable for132

analysis and proposed optimization of parasitic error in the133

DPCMs operating in orientation B and C.134

This article first analyzes DPCM operating in orienta-135

tion B (to predict parasitic error), considering the combined136

effect of bending and axial gravitational load, along with137

experimental and FEA validation. Subsequently, it investi-138

gates DPCM operating in orientation C using CBCM and139

FEA, where the effect of additional bending moments due to140

gravitational load on the motion of mechanism is significant.141

Based on the analysis, we further propose a novel approach to142

achieve ultra-precise straight-line motion over a large range143

for DPCMs operating in both the orientations (B and C)144

by minimizing parasitic error with respect to different flex-145

ible beam parameters like width, thickness, and length. The146

optimization problem considers the stress constraint during147

deformation of flexible beams to avoid beams’ failure due148

to fatigue. Finally, this paper proposes design steps to obtain149

optimized beam dimensions directly using a few equations150

and nondimensional graphs for DPCMs operating in orienta-151

tion B. The results presented in this article can be extended to152

other configurations or orientations, where the effect of loads153

acting on mechanisms is similar to gravity. The proposed154

design procedure reduces the effort of the designer to get the155

optimized dimensions. The proposed linear motion platforms156

are useful as precision motion stages in applications like157

micro 3D printing [28], non-contact micro-machining equip-158

ments [29], [30], and non-contact metrology, to name a few.159

The other applications are precise guidance or measurement160

in optical systems [30], non-contact scanning, CMM probes,161

and microscopy stages.162

II. MODELING OF DPCM163

A nonlinear mathematical model for DPCM operating in164

orientations B and C is presented in this section. Primarily165

detailed modeling for orientation B has been explained. Mod- 166

eling for orientation C remains the same; except a change in 167

load equilibrium equations. The load equilibrium equations 168

for orientation C are presented in Appendix C. DPCM under 169

consideration here, operating in orientation B, consists of 170

8 flexible beams and two rigid masses. The intermediate 171

mass (ms1) is connected to ground through four flexible outer 172

beams forming an outer parallelogram. Similarly, four inner 173

beams connected to intermediate mass (ms1) and primary 174

mass (ms2) forms an inner parallelogram. The DPCM is 175

symmetric about mid-plane (see Fig. 25 in Appendix A). 176

Theoretically, DPCM has geometrical symmetry, material 177

symmetry, and symmetric boundary conditions about the 178

mid-plane. Therefore, only half-portion of the mechanism is 179

considered for modeling purposes, as shown in Fig. 2. This 180

assumption simplifies the mathematical model and reduces 181

the computational cost. It also makes the mathematical model 182

easier to understand. 183

FIGURE 2. Double parallelogram compliant mechanism [31].

A. CHAINED BEAM CONSTRAINT MODEL 184

A chained BCM method [26], recently developed for mod- 185

eling compliant mechanisms, is adopted here for modeling 186

DPCM. A brief outline of modeling procedure is given in 187

this section for the sake of completeness. CBCM discretizes 188

flexible beams in compliant mechanisms into a few num- 189

bers of elements (see Fig. 26 in Appendix A) and each of 190

these elements is modelled using BCM. BCM developed 191

by Awtar et al. [32] accurately predicts intermediate deflec- 192

tion (within 10% of the length of the beam) of a flexible 193

beam. BCM is capable of capturing geometric nonlinearities 194

associated with an intermediate transverse deflection. Equa- 195

tion (1) and (2) represent the relations between end load and 196

end displacement specified by BCM in the non-dimensional 197

form [32]: 198[
f
m

]
=

[
g11 g12
g21 g22

] [
δy
α

]
+ p

[
k11 k12
k21 k22

] [
δy
α

]
199

+p2
[
q11 q12
q21 q22

] [
δy
α

]
, (1) 200
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δx =
t2p
12L2

−
1
2

[
δy α

] [
k11 k12
k21 k22

] [
δy
α

]
201

−p
[
δy α

] [
q11 q12
q21 q22

] [
δy
α

]
, (2)202

where,203

f =
FL2

EI
, p =

PL2

EI
, m =

ML
EI
,204

δy =
1y(L)
L

, δx =
1x(L)
L

, x =
X
L
,205

are the normalized load and deflection parameters of the206

beam. The non-dimensional beam characteristic coefficients207

g’s, k’s and q’s are given in Table 3 in Appendix A. BCM208

considers the effect of geometric nonlinearity due to arc209

length conservation and the effect of nonlinearity due to210

curvature on the deflection of planar beamflexure undergoing211

intermediate deflection. It also takes into account the effect of212

axial force on the deflection of a flexible beam.213

In CBCM [26] transfer of loads from one element to the214

next is carried out using the following equations of load215

equilibrium for the jth element216  cos θj sin θj 0
− sin θj cos θj 0
1+ δxj −δyj 1

  fj
pj
mj

 =

 fj−1
pj−1
mj−1

 . (3)217

The geometric constraints stated by CBCM [26] for the218

whole beam are219

N∑
j=1

[[
cos θj − sin θj
sin θj cos θj

] [
Lj(1+ δxj)
Ljδyj

]]
=

[
X0
Y0

]
,220

θN + αN = θ0, (4)221

where, Lj is the length of the jth element and Lj = L/N222

for equal discretization. Equation (1) and (2) obtained from223

BCM for all elements, along with load equilibrium and the224

geometric constraint presented in (3) and (4) respectively,225

constitutes the CBCM model for a beam undergoing large226

deformation. If three load parameters (Po,Fo,Mo) are known,227

then the remaining three deflection parameters (Xo, Yo, θo)228

are found out by numerically solving the CBCM equations or229

vice versa.230

B. STATIC ANALYSIS OF DPCM231

DPCM under consideration consists of four flexible beams,232

as shown in Fig. 2. Each flexible beam is further divided into233

six equal elements using CBCM to make sure that deflection234

of every element is within 10% of the length of the element.235

Further, 3 equations presented in (1) and (2) of BCM are236

applied to each of the six elements would give 18 equations237

pertaining to the load displacement relationships. The load238

equilibrium equations presented in (3) are applied to these239

elements would give additional 15 equations. In addition,240

3 geometric constraint equations are given by (4). Besides,241

three extra equations are formed, to transform the known load242

in the global coordinate frame (Fo, Po and Mo = 0) to last243

elements local coordinate frame. Thus, a flexible beam with244

FIGURE 3. Free body diagram of Intermediate mass [31].

FIGURE 4. Free body diagram of primary mass [31].

six elements require 39 nonlinear equations to model large 245

deformation with CBCM. Total, 156 (39 × 4) equations are 246

formulated for DPCM with four beams by applying CBCM. 247

Two rigid-body masses attached to flexible beams are also 248

constituent elements of DPCM. This attachment of masses 249

to flexible beams impose certain geometric constraints on 250

the beams and also transfers the load to the beams. Free 251

body diagrams of intermediate mass and primary mass for 252

orientation B are shown in Fig. 3 and 4, respectively. 253

Equation (5) is obtained by applying load equilibrium to 254

primary mass ms2. 255

Fo− Fo1 − Fo2 = 0, 256

Po− Po1 − Po2 = 0, 257

(Fo1 + Fo2)a+ Po1

(
b
2

)
= Po2

(
b
2

)
+Mo1 +Mo2. (5) 258
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The geometric constraints for primary mass ms2 are given259

by260

θo1 = θo2,261

Xo1 = Xo2 − b sin(θo1),262

Yo2 = Yo1 + b− b cos(θo1). (6)263

Similarly, (7) is obtained by applying load equilibrium to264

intermediate mass ms1.265

Fo3 + Fo4 = FRo1 + FRo2,266

PRo1 + PRo2 = ms1(9.81)− Po3 − Po4,267

PRo1

(
b
2

)
+ Po4

(
d
2

)
= PRo2

(
b
2

)
+ Po3

(
d
2

)
268

−(Fo3 + Fo4)c269

+(FRo1 + FRo2)c270

+MRo1 +MRo2271

+Mo3 +Mo4. (7)272

The geometric constraints on intermediate mass ms1 are273

θo3 = θo4,274

Xo4 = Xo3 − d sin(θo3),275

Yo3 = Yo4 + d − d cos(θo3). (8)276

Finally, 168 nonlinear equations consisting of load equi-277

librium conditions (5) and (7), CBCM equations, and geo-278

metric constraints (6) and (8) are numerically solved using279

‘‘fsolve’’ (nonlinear system solver) in MATLAB to find280

168 unknowns. These unknowns consists of nondimensional281

parameters f , p,m, δy, δx , α of each element (thus a flex-282

ible beam with six elements contain 36 local unknowns),283

along with Fox ,Pox ,Mox , Xox ,Yox and θox as a global284

unknowns (x indicates beam number). Therefore, the total285

number of unknowns per beam become 42, which leads to286

168 unknowns for a DPCM consisting of 4 such beams.287

A different set of load equilibrium conditions as in (5) and (7)288

would be obtained for DPCM in orientation C. All other equa-289

tions would remain the same. The load equilibrium equations290

for primary mass and secondary mass of DPCM operating in291

orientation C are presented in Appendix C.292

After solving the above simultaneous equations for given293

loads (Fo,Po,Mo) and initial dimensions of the inner and294

outer beam, we obtain the solution in terms of elemental level295

deformations. From these elemental solutions, global solu-296

tion for complete deformation profile for each of the beams297

is computed. Particularly the tip deformation in the axial298

direction for each beam gives its own parasitic error. The total299

parasitic error (e) is further obtained by subtracting individual300

parasitic errors of inner and outer beams as follows:301

e = e1 − e2,302

= (Li − Xo1)− (Lo − Xo3). (9)303

This error will be used for further analysis and proposed304

optimization in subsequent sections.305

C. MINIMIZATION OF PARASITIC ERROR 306

This section presents novel ideas forminimization of parasitic 307

error in the proposed orientations B and C, respectively. Fur- 308

thermore, it develops physical insights into how the concepts 309

presented lead to the minimization of the error. Interestingly, 310

it is found that orientations B and C require a completely 311

different set of ideas that would work for minimization of 312

parasitic error. 313

1) DPCM OPERATING IN ORIENTATION B 314

For DPCM operating in orientation B, gravity effects play a 315

dominating role in creating asymmetry in the loading. There- 316

fore, the motion of the stage will not be in a straight line as 317

intended because of parasitic error in X-direction. The spe- 318

cific results of DPCMoperating in orientation B are presented 319

in Fig. 8 in Section IV-A later. We formulate optimization 320

problem here to address the following question: Are there set 321

of beam parameters which will induce some asymmetry in 322

the structure in such a way that the motion of the platform is 323

still in a straight line eliminating parasitic error? In particular, 324

for a set of inner beam parameters, we look at the change in 325

width, thickness or the length of outer beams, one at a time, 326

keeping other values the same, for minimization of parasitic 327

error over entire desired stroke. 328

Hence, we define the optimization objective function f as 329

f (x) =
N∑
i=1

[ei − e0]2, (10) 330

where, i = 1, 2, . . . .,N are the applied load steps and e0 is 331

parasitic error at zero transverse force. 332

The e0 indicates the component of parasitic error because 333

of axial deformation of beams due to gravity even without 334

applying any transverse force. This component e0 can be 335

considered as a new reference point to achieve straight-line 336

motion in the xy plane, passing through the point(0, e0) and 337

having equation as y = e0 (y direction is along the direction 338

of gravity). With this understanding, we formulate objective 339

function f by subtracting e0 in order to minimize further 340

variations of parasitic error. The optimized trajectory traced 341

by motion stage, with and without consideration of e0 in the 342

objective function is shown in Fig. 27 in the Appendix A. 343

Considering various parameters to be optimized and con- 344

straints thereof, we propose the following mathematical for- 345

mulation of the optimization problem: 346

Minimize
x

f (x), 347

Subjected to xmin ≤ x ≤ xmax; 348

σmax ≤ Se. (11) 349

Design variable (x) is one of the outer beam parameters like 350

Lo, to orWo, and it should be positive and within some bounds 351

xmin and xmax . For the optimization problem under consider- 352

ation, the minimization of objective function f can only be 353

obtained by reducing the transverse stiffness of outer beams 354

and making it equal to or close to the transverse stiffness 355
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of inner beams. Suppose thickness (to) or width (Wo) is the356

design variable (x). The stiffness of outer beams can only be357

reduced by reducing the thickness or width value compared358

to inner beams. Therefore, the upper bound limit for x is the359

corresponding thickness (ti) or width (Wi) of the inner beam,360

and the lower bound can be any positive value close to zero.361

When the length (Lo) is the design variable, the stiffness of362

outer beams can only be reduced by increasing the length of363

outer beams. Therefore, the lower bound for x is the length364

(Li) of the inner beam and the upper bound is obtained by365

trial and error such that the minimum value of the objective366

function falls within two bounds. The constrained optimiza-367

tion problem presented in (11) is solved using MATLAB.368

The results of DPCM after optimization of parasitic error are369

discussed in Section IV-A3 later.370

2) DPCM OPERATING IN ORIENTATION C371

In the case of DPCMs operating in orientation C, gravity372

loads due to stage masses are in the direction of bending373

of beams rather than in axial direction as in orientation B.374

Furthermore bending of inner beams (in addition to that375

caused by applied force) is caused by gravity load of only the376

primary stage however in bending of outer beams, both pri-377

mary and intermediate stage masses participate. Thus initial378

equilibrium position has some parasitic error contributed by379

asymmetric bending of inner and outer beams. Asymmetry380

continues further as we apply external force Fo leading to381

large parasitic errors in following straight line. Changing382

beam parameters alone will not change this variation signif-383

icantly to reduce parasitic error. Hence a novel approach is384

proposed here to resolve this issue. In this approach, we pro-385

posed to attach two separate tension springs (always in ten-386

sion throughout the desired stroke) at primary and secondary387

mass such that these springs will nullify the static deflection388

of inner and outer beams (see Fig. 5). This will make sure389

that the DPCM will not have any static deflection when the390

external force applied is zero. After attaching the external391

springs such that k1x1 = ms1g and k2x2 = ms2g and then392

optimizing the beams for a new situation gives the desired393

precision in traversing straight line. The mathematical for-394

mulation of the optimization problem in this orientation is the395

same as orientation B (presented in (11)), except for a small396

change in the objective function. The objective function f for397

orientation C is398

f (x) =
N∑
i=1

[ei]2. (12)399

The component e0 of parasitic error is not present in (12)400

because there is no axial load on the flexible beams in this401

orientation. As well as the parasitic error due to static deflec-402

tion has been nullified by attaching the external springs. The403

results of DPCM after applying the proposed strategy are404

discussed in Section IV-B2. The initial stretch x1 and x2 from405

their respective free lengths (x0) decide the spring stiffness406

k1 and k2, respectively. The smaller the initial stretch of the407

FIGURE 5. DPCM operating in orientation C.

spring, the required stiffness of the spring is large and vice 408

versa. Suppose the stiffness of the springs is more, the overall 409

motion stiffness increases, leading to more actuator power 410

for a particular range of motion. Therefore, it is advisable to 411

use springs with lower stiffness values by keeping the initial 412

stretch as maximum as possible. The initial stretches have 413

to be x1 > stroke and x2 > stroke
2 to satisfy the necessary 414

condition that both the springs must always be in tension. 415

III. FEA AND EXPERIMENTAL DETAILS 416

The CBCM based simulations predicted that the proposed 417

strategies substantially reduced the parasitic error over the 418

entire stroke for both the orientation B and C (Results are 419

discussed in Section IV later). To cross-verify the CBCM 420

results, Finite element analysis (FEA) has been carried out 421

using ANSYS 16.2 workbench. The hexahedron elements 422

are used along with 1% convergence on the displacement in 423

the transverse direction. The convergence criteria have been 424

applied to displacement because deformation of beams is 425

more significant in this study. 426

Further, experimental work is carried out on a fabricated 427

prototype of DPCM operating in orientation B to validate 428

the effectiveness of the proposed method and optimization. 429

Schematic, along with actual experimental setup, is shown 430

in Fig. 6 and 7, respectively. For orientation B, experimental 431

results are in good agreement with CBCM and FEA results. 432

Orientations B and C are structurally alike and have simi- 433

lar loading conditions (transverse load and no twisting load 434

induced during deformation due to stage masses). Hence, the 435

proposed methodology for orientation C is validated using 436

FEA and CBCM results. 437

Table 1 shows the various parameters of the fabricated 438

double parallelogram compliant mechanism before and after 439

optimization. The guidelines provided by Gandhi et al. [33] 440
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TABLE 1. Parameters of DPCM.

FIGURE 6. Schematic diagram of experimental setup [31].

are followed to build a warp-free assembly of spatial dou-441

ble parallelogram compliant mechanism using the flexible442

members and rigid masses. The experimental parasitic error443

along X-axis and transverse displacement of motion stage444

along Y-axis is measured through fiber optics probe (Philtek445

RC 140) and optical encoder (Renishaw V2BBI30D50B),446

respectively. Reading of encoder and fiber optics probe, along447

with actuation of the voice coil actuator (BEI Kimco LA15-448

26-000A) to move the motion platform is performed through449

the dSPACE 1103 DAQ system.450

IV. RESULTS451

Results obtained before and after applying the proposed novel452

ideas are presented in this section for both the orientations B453

and C. The results are discussed separately for DPCMs oper-454

ating in orientation B and C under the Section CASE I and455

CASE II, respectively. The experimental results presented in456

this study are an average of 3 groups of sample data.457

A. CASE I: DPCM OPERATING IN ORIENTATION B458

1) CHARACTERIZATION OF UNOPTIMIZED DPCM459

The trajectory of the motion stage of DPCM, before opti-460

mization, predicted by model along with experimental and461

FEA results, is shown in Fig. 8. As expected, we observe462

the gradual nonlinear increase in parasitic error in the463

axial X direction as a function of transverse deformation464

in Y direction, maximum being 123µm over a range465

FIGURE 7. Experimental setup of double parallelogram compliant
mechanism.

of +/− 10 mm. Further, we observe that parasitic error 466

is a result of uncompensated axial deformations of inner 467

and outer beams. Fig. 8 shows that the path of the motion 468

stage predicted by the mathematical model under the given 469

loading condition is very close to FEA and experimental 470

results. 471

Owing to different axial forces in outer (tension) and inner 472

(compression) beams, the axial deformations in these beams 473

at any given transverse force Fo are going to be different. 474

This difference in axial deformations at an applied force is 475

observed in Fig. 9, which presents individual parasitic errors 476

of inner and outer beams. 477
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FIGURE 8. Trajectory of motion stage before optimization.

FIGURE 9. Force against parasitic error.

FIGURE 10. Force against transverse displacement.

Thus, these axial deformations would not compensate for478

each other (although in the opposite direction) as in the case479

of DPCM in orientation A and would result in the parasitic480

error we observe in Fig. 8.481

Another way to look at these results is from transverse482

deformation perspective. Fig. 10 shows transverse deforma-483

tions of inner and outer beams, all having identical parame-484

ters, as the applied force Fo is increased. The difference in485

transverse deformation we observe is due to the differential486

effect of axial forces in these beams. We can see from BCM487

equations that for a constant axial force in this case, axial488

static deformations ’δx’ of both inner and outer beams is iden-489

tically, nonlinearly related to transverse deformations ’δy’.490

Thus the parasitic error is a natural result of different trans-491

verse deformations of these beams as observed in Fig. 10.492

The error between experimental and simulation results are493

shown in Fig. 28 and 29 in Appendix A for parasitic error494

and transverse displacement, respectively.495

2) SELECTION OF BEAM PARAMETER FOR OPTIMIZATION496

It is clear that when all the beam parameters are identical497

for inner and outer beams, motion stage has an undesired498

parasitic error due to axial (gravitational) load experienced by 499

inner and outer beams. This parasitic error can be minimized 500

by varying at least one of the flexible beam parameters width, 501

thickness, or length. The effect of each beam parameter on the 502

parasitic error of motion stage is different. Fig. 11 shows the 503

value of objective function given by (10) against variation of 504

the outer beam parameters while other parameters are kept 505

constant and equal to inner beam parameters. It is clear from 506

Fig. 11 that the objective function has a minimum value in 507

case of width as compared to other beam parameters which 508

are thickness and length. Therefore, optimization of width is 509

preferred as compared to optimization of other beam param- 510

eters. Moreover, experimentally it is also easier to reduce the 511

width of the flexible beam and practically implement it into 512

the experimental setup of DPCM. Hence, the width of the 513

flexible beam selected as a design variable for optimization. 514

FIGURE 11. Objective function value against beam parameters.

3) CHARACTERIZATION OF OPTIMIZED DPCM 515

The trajectory traced by motion stage, after optimization of 516

the width of the outer beams is shown in Fig. 12. CBCM and 517

FEA results show that the parasitic error in X direction has 518

drastically reduced from 123µm to less than 1 µm and 2 µm, 519

respectively after optimization. However, the experimental 520

parasitic error is around 6µm. This deviation between experi- 521

mental and model predicted parasitic error is due to manufac- 522

turing and assembly errors associated with the experimental 523

setup. 524

After optimizing width of the outer beams, transverse 525

deformation of inner and outer beams, along Y direction 526

is almost identical for each and every load step applied 527

as shown in Fig. 13. The axial load on beams, when ten- 528

sile, increases transverse stiffness and when compressive, 529

decreases it because of change in direction of additional bend- 530

ing moment it contributes during deformation. Optimization 531

process adjusts the beam stiffnesses for this change. Particu- 532

larly width of outer beams, which are in tension, is decreased 533

as compared to inner ones to compensate for the effect so that 534

the effective stiffness (considering axial force) of both beams 535

is almost identical. Thus their deformations are identical at 536

any point during motion. In addition, because of identical 537

lengths of beams, the axial deformations of inner and outer 538

beams also become identical (See Fig.14). Hence the total 539

parasitic error is very close to zero. However, in the case 540

of unoptimized DPCM the effective transverse stiffnesses 541
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FIGURE 12. Trajectory of motion stage after optimization.

of inner and outer beams are different (even though beams542

are identical). The optimized width of the outer beam has a543

lower value than the unoptimized width (see Table 1) which544

means the transverse stiffness of outer beams has reduced545

compared to unoptimized DPCM. The reduction in the trans-546

verse stiffness of outer beams reduces the overall stiffness of547

DPCM after optimization, which results in less force/power548

requirement for a particular range of motion than unopti-549

mized DPCM. Fig. 13 also shows that the maximum applied550

transverse force is 5.8 N, which is less compared to 7.1 N551

force required in case of unoptimized DPCM, for the same552

stroke of+/−10 mm as shown in Fig. 10. The error between553

experimental and simulation transverse displacement, as well554

as parasitic error, is shown in Fig. 30 and 31 in Appendix A,555

respectively.556

FIGURE 13. Force against transverse displacement.

FIGURE 14. Force against parasitic error.

a: DESIGN STRESS557

The CBCM based model of DPCM also predicts the maxi-558

mum normal stress produced in the flexible beam under the559

applied loading condition. Note that shear stress is negligible560

as compared to normal stress. The prediction of maximum561

normal stress helps to design the flexible beams. Maximum 562

stress generated in the beams should be less than the fatigue 563

strength of the flexible beam material. The maximum normal 564

stresses produced in the inner and outer beams of the opti- 565

mized DPCM under the applied load are shown in Fig.15. 566

The maximum stress produced in the inner and outer beam 567

is 79.49MPa and 89.58MPa, respectively. In both the beams, 568

stress is less than the fatigue strength (275 Mpa) of the beam 569

material. The maximum stresses in inner and outer beams 570

predicted by CBCM are in good agreement with FEA results. 571

FIGURE 15. Maximum normal stress produced in inner and outer beam.

4) PROPOSED DESIGN STEPS FOR OPTIMIZED DPCM 572

For DPCMs operating in orientation B, a general design 573

procedure has been formulated, in this section, to get opti- 574

mized beam dimensions directly from few non-dimensional 575

graphs and equations obtained from them. This procedure 576

will be helpful in obtaining the optimized beam parameters 577

without the need for writing or rerunning the code again for 578

given specific case. The procedure to obtain optimized beam 579

dimensions for few cases of thickness to length ratio
( t
L

)
and 580

mass ratio
(ms1
ms2

)
is outlined below. 581

Step 1: Application requirements would define the fol- 582

lowing inputs required to design an optimized DPCM: the 583

desired range of stroke (maximum motion on one side from 584

mean position) and values of primary (ms2) and secondary 585

mass (ms1). Once, these inputs are available; the designer can 586

choose the length of the beams such that the stroke value is 587

in between 1 to 40% of the length of the beam. Length of 588

inner (Li) and outer (Lo) beams are same and indicated as L. 589

Step 2: Find out the maximum allowable beam thickness 590

value to avoid the fatigue failure of the beams for the selected 591

length and desired stroke from (13). Equation (13) is derived 592

from the graph shown in Fig. 16. 593

Select the appropriate value of thickness such that it is less 594

than the tmax obtained from (13). Thickness is equal for both 595

inner and outer beams and indicated as t . 596

Se
E
= 3

stroke.tmax
2L2

(13) 597

Step 3: Based on the thickness to length ratio
( t
L

)
, stroke 598

to length ratio
( stroke

L

)
and mass ratio

(ms1
ms2

)
, get the value 599

of non-dimensional stiffness difference (NSD) between inner 600
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FIGURE 16. Strain against non-dimensional deformation.

FIGURE 17. Non-dimensional stiffness difference against stroke to length
ratio for different mass ratios.

and outer beams from the graph shown in Fig. 17. The more601

accurate value of NSD can be obtained using equations given602

in Table 4 in Appendix A. By substituting the values in (14),603

get the difference between the width of the inner and outer604

beamsW ∗d where the value of primary mass (ms2) is 1 kg.605

NSD =
E(W ∗d )t

3
· stroke

ms2gL3
(14)606

Step 4: Calculate the actual width difference (Wd ) for the607

desired mass using the graphs shown in Fig.18. The accurate608

value ofWd can be obtained using equations given in Table 5609

in Appendix A, whereWd = Wi −Wo.610

FIGURE 18. Wd /W ∗

d against primary mass.

Step 5: The inner beams are under compression, which 611

may lead to buckling failure of inner beams if not designed 612

for buckling. After the selection of length and thickness, find 613

out the minimum value for the width of inner beams to avoid 614

buckling using (15): 615

(Wi)min =
3ms2gL2

π2Et3
. (15) 616

Select the value of the width of the inner beams such that 617

it is higher than (Wi)min to avoid buckling of inner beams. 618

Finally, we get the value of the width of the outer beams 619

Wo by subtracting the difference between inner and outer 620

beams (Wd ), which we already got in previous Step 4. 621

This procedure is designed based on the fundamental 622

understanding of variations and applicable to large range 623

of beam dimensions for both small and large deformations. 624

The illustrative example to carry out the proposed design 625

procedure with sample case is explained in Appendix B. 626

B. CASE II: DPCM OPERATING IN ORIENTATION C 627

1) CHARACTERIZATION OF UNOPTIMIZED DPCM 628

Various parameters of DPCM operating in orientation C used 629

for simulation are shown in Table 2. The trajectory of the 630
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FIGURE 19. Path followed by motion stage before optimization.

motion stage of DPCM operating in orientation C, before631

optimization, predicted by the model and FEA, is shown in632

Fig. 19. The trajectory of the motion stage predicted by FEA633

and CBCM is nearly same up to the transverse displacement634

of+/− 4 mm, as the displacement increases further, the error635

between trajectory predicted by FEA and CBCM increases.636

The maximum difference between FEA and CBCM pre-637

dicted parasitic error is around 10µm at 10 mm transverse638

displacement. We observe that the trajectory traced by the639

motion stage is inclined and has a gradual increase in par-640

asitic error on both sides of mean position (zero transverse641

displacement). The parasitic error is positive on one side642

of the mean position and negative on another side of mean643

position (see Fig. 19). This means the motion stage (primary644

mass) moves in outward direction while traversing in the645

direction of gravity and vice versa. Parasitic error in axial X646

direction increases as a function of transverse deformation647

in the Y direction, the error becomes 140µm over a range648

of +/− 10 mm. In this case, the parasitic error is a result of649

asymmetric bending of inner and outer beams.650

This asymmetric bending is due to asymmetric gravity load651

acting on the inner and outer beams which cause different652

axial deformation in inner and outer beams at every instant653

of the load. This causes the parasitic error of both the beams654

to be different even though both the beams are of identical655

dimensions (see Fig. 20). Due to different bending moments656

in outer and inner beams, the axial deformations in these657

beams at any applied transverse force Fo are going to be658

different (except one point where error curves cross each659

other) which can be observed in Fig. 20. Thus, these uncom-660

pensated axial deformations would result in the parasitic error661

we observe in Fig. 19.662

Another perspective to understand these results is663

from transverse deformation of inner and outer beams.664

Fig. 21 shows transverse deformations of inner and outer665

beams, all having identical parameters, against the applied666

transverse force Fo. The asymmetric transverse deformation667

is a consequence of asymmetric bending of inner and outer668

beams due to gravitational load at any particular applied669

transverse force. This asymmetric transverse deformation670

leads to different parasitic error in inner and outer beams.671

The gravitational load is always acting on both the inner672

and outer beams; this can be observed from asymmetric673

static deformation of inner and outer beams present at zero674

FIGURE 20. Force against parasitic error.

FIGURE 21. Force against transverse displacement.

transverse force. This constant gravitational load acting in 675

the direction of gravity leads to different force requirements 676

on both sides of zero transverse position. Therefore, the force 677

required to achieve −10 mm (towards gravity) and +10 mm 678

(opposite to gravity) stroke from the mean position is 12 N 679

and 32 N respectively. 680

2) CHARACTERIZATION OF OPTIMIZED DPCM 681

The trajectory traced bymotion stage, after attaching two sep- 682

arate springs to intermediate and primary mass with required 683

stiffness (k1 and k2) and initial stretch (x1 and x2), and then 684

optimizing width of the outer beams is shown in Fig. 22. 685

The attached springs nullifies the static deflection of both 686

the beams due to stage masses and brings DPCM to mean 687

position. CBCM and FEA results show that the parasitic error 688

in X direction has drastically reduced from 140µm to less 689

than 1µm and 6µm, respectively after attaching springs of 690

required stiffness and further optimizing the width of outer 691

beams. Optimizing outer beams after attaching the springs is 692

required because the addition of springs makes the system 693

configuration such that the transverse force experienced by 694

inner and outer beams is not equal. The external transverse 695

force applied to the primary mass act on both inner beams 696

and spring with stiffness k2 attached to massms2. As the inner 697

beams and spring of stiffness k2 are in parallel configuration, 698

the applied force is shared between them in the ratio which 699

is present between their stiffness. The force experienced by 700

inner beams gets transferred to intermediate mass. However, 701

again, it is divided into two parts because intermediate-mass 702

ms1 and spring of stiffness k1 are in parallel configuration. 703

This indicates that the force experienced by outer beams is 704

always less than the force experienced by inner beams. Hence 705
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TABLE 2. Parameters of DPCM operating in orientation C.

FIGURE 22. Path followed by motion stage after optimization.

FIGURE 23. Force against transverse displacement.

stiffness of outer beams must be less than that of inner beams706

to obtain equal transverse deformation.707

Fig. 21 clearly shows that for unoptimized DPCM, static708

deformation of inner and outer beam is 1.25 mm and709

3.55 mm, respectively. A difference of 2.3 mm is observed710

between the initial static deformations of inner and outer711

beams. This difference between the transverse deformations712

remains nearly constant for the entire range of motion which713

leads to unequal axial deformations (parasitic errors) of inner714

and outer beams. However, there is zero static deformation715

in inner or outer beams after applying the proposed strategy.716

It is observed in Fig. 23 that the transverse deformations of717

inner and outer beams after optimization, along Y direction718

is almost identical for each and every load step. Therefore,719

the parasitic error experienced by the inner and outer beams720

gets indistinguishable for every load step (see Fig. 24). Hence,721

the total parasitic error reduces close to zero. The maximum722

FIGURE 24. Force against parasitic error.

force required on both sides of the mean position is 26 N for 723

the stroke of+/− 10 mm, which is slightly less than the 32 N 724

force required for unoptimized DPCM for same stroke. This 725

shows that with the proposed method, it is possible to obtain 726

ultra-precise straight-line motion for DPCMs operating in 727

orientation C. 728

V. CONCLUSION 729

This work proposed novel methods towards achieving a close 730

to perfect straight-line motion using DPCM in configurations 731

or orientations (B and C) amenable to several applications. 732

The method minimizes parasitic error over the entire stroke 733

with variation in beam parameters such as width, thickness, 734

and length. Recently published CBCM was used to model 735

the beam and optimize parameters on account of its com- 736

putation effectiveness while capturing the large deforma- 737

tions. Results were further validated using an extensive set of 738

experiments for orientation B. Moreover, optimization data 739

is generalized in non-dimensional form, and a constructive 740

procedure is outlined to design beams given the applica- 741

tion requirements. The proposed design steps require neither 742

modeling nor simulation and hence easily usable for quick 743

design of optimized mechanisms. This work thus opens up 744

possibilities in use of compliant motion platforms operating 745

in different orientations for a much larger range of motion 746

with an ultra-precise straight-line motion for corresponding 747

applications. It is evident that by variation of parameters, it is 748

possible to achieve nanoscale resolution in the straightness of 749

motion. 750
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TABLE 3. Beam characteristics coefficients of BCM matrices [32].

NOMENCLATURE751

E Young’s Modulus, N/m2.
Fo Transverse load applied to primary mass, N.
Fox Transverse load on beam x, N.

FRox Reaction force on beam x acting along.
the transverse direction, N.

g Acceleration due to gravity, m/s2.
I Area moment of inertia of the flexible link, m4.
L Length of the beam, m.
Li Length of the inner beam, m.
Lo Length of the outer beam, m.
ms1 Intermediate mass, kg.
ms2 Primary mass, kg.
Mo Moment applied to primary mass, N.
Mox Moment on beam x, N.
MRox Reaction moment on beam x, Nm.

Po Constant gravitational load acting on primary.
mass along the axial direction, N.

Pox Axial load on beam x, N.
PRox Reaction force on beam x acting along the.

axial direction, N.
Se Endurance strength of beam material, N/m2.

stroke Maximum transverse displacement on one
side.
from mean position, m.

ti Thickness of the inner beam, m.
tmax Maximum allowable beam thickness, m.
to Thickness of the outer beam, m.

Wd Difference between width of inner and outer.
beam at desired primary mass.

W ∗d Difference between width of inner and outer.
beam when primary mass is 1 kg.

Wi Width of the inner beam, m.
Wo Width of the outer beam, m.
x Suffix x indicates the beam number.

throughout nomenclature.
Xox Deformed length of beam x along axial.

direction (see Fig. 26 in Appendix A ), m.
Yox Transverse deformation of beam x, m.
σmax Maximum normal stress, N/m2.
θox Slope at the end of beam x.

APPENDIX A752

SUPPLEMENTARY FIGURES AND TABLES753

See Figure 25–31 and Tables 3–5.754

FIGURE 25. DPCM with 8 beams.

FIGURE 26. Flexible beam discretized into six elements [31].

FIGURE 27. Trajectory of motion stage.

FIGURE 28. Error between experimental and simulation parasitic error for
unoptimized DPCM: er1: FEA and Experiment er2: CBCM and Experiment.

APPENDIX B 755

ILLUSTRATIVE EXAMPLE FOR THE PROPOSED DESIGN 756

PROCEDURE 757

The mass of rigid elements ms1 and ms2 of DPCM operating 758

in orientation B is 8 kg and 10 kg respectively. The desired 759
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TABLE 4. Equations to calculate NSD.

TABLE 5. Equations to calculate Wd .

range of motion is 120 mm. The beam material has an elastic760

modulus of 100 Gpa and endurance strength is 500Mpa. Find761

out the beam dimensions for which parasitic error of DPCM 762

will be within 5 micron? 763
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FIGURE 29. Error between experimental and simulation transverse
displacement for unoptimized DPCM: er1: FEA and Experiment er2: CBCM
and Experiment.

FIGURE 30. Error between experimental and simulation transverse
displacement for optimized DPCM: er1: FEA and Experiment er2: CBCM
and Experiment.

FIGURE 31. Error between experimental and simulation parasitic error for
optimized DPCM: er1: FEA and Experiment er2: CBCM and Experiment.

Step 1: The inputs given in the problem for DPCM are764

ms1 = 8 kg, and ms2 = 10 kg,765

stroke = 60 mm766

(maximum motionon oneside frommeanposition).767

Now, length of the beam is selected such that the stroke is in768

between 1 to 40 % of the length of the beam. Therefore, L =769

200 mm.770

Step 2: Find maximum thickness (tmax) of the beam for the771

selected length (L = 200 mm) to avoid fatigue failure under772

the desired stroke using (13) as below773

tmax =
2L2Se

3Estroke
=

2× (0.200)2 × 500× 106

3× (100× 109)× 0.060
,774

tmax = 0.0022 m = 2.2 mm.775

We selected t = 1.5 mm such that t < tmax .776

Step 3: For
t
L
= 0.0075,

stroke
L

= 0.3 and
ms1
ms2

=777

0.8, we get NSD = 0.2576 from Fig. 17 shown in the778

Section IV-A4. Thus, 779

W ∗d =
NSD.ms2gL3

Et3.stroke
=

0.2576× 1× 9.81× (0.200)3

(100× 109)× 0.00153 × 0.06
, 780

W ∗d = 0.000998343 m = 0.998343 mm. 781

Step 4: From Fig. 18(b) of Section IV-A4, the value of
Wd

W ∗d
782

is 9.906 at the desired primary mass of 10 kg. Therefore, 783

Wd = W ∗d × 9.906 = 0.998343× 9.906 784

Wd = 9.88958 mm. 785

Step 5: Find out (Wi)min to avoid buckling of inner beams 786

from (15) as below 787

(Wi)min =
3ms2gL2

π2Et3
=

3× 10× 9.81× (0.200)2

52 × (100× 109)× 0.00153
, 788

(Wi)min = 0.003534 m = 3.5340 mm. 789

We selected Wi = 50 mm such that Wi > (Wi)min. There- 790

fore W0 = 50 − 9.88958 = 40.1104 mm. The dimensions 791

of flexible beams obtained from the design steps for the 792

considered example of DPCM are validated with CBCM. 793

FIGURE 32. Path followed by motion stage.

FIGURE 33. Stresses generated in inner and outer flexible beam.

Fig. 32 and 33 show that the parasitic error is within 794

1 micron over the stroke of 60 mm and maximum stresses 795

induced during the desired stroke are less than the endurance 796

strength, respectively. 797

APPENDIX C 798

LOAD EQUILLIBRIUM EQUATIONS FOR DPCM 799

OPERATING IN ORIENTATION C 800

Load equilibrium equations of primary mass ms2 are 801

Fo− Fo1 − Fo2 − ms2g = 0, 802
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Po1 + Po2 = 0,803

(Fo1 + Fo2)a+ Po1

(
b
2

)
= Po2

(
b
2

)
+Mo1+Mo2. (C16)804

Similarly, load equilibrium equations of intermediate mass805

ms1 are806

Fo3 + Fo4 + ms1g = FRo1 + FRo2,807

PRo1 + PRo2 = −Po3 − Po4,808

PRo1

(
b
2

)
+ Po4

(
d
2

)
= PRo2

(
b
2

)
+ Po3

(
d
2

)
809

−(Fo3 + Fo4)c+MRo1810

+(FRo1 + FRo2)c+MRo2811

+Mo3 +Mo4. (C17)812
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