
Received 25 July 2022, accepted 10 August 2022, date of publication 24 August 2022, date of current version 6 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3201353

A Stackelberg Game Approach for Managing
AI Sensing Tasks in Mobile Crowdsensing
HAMTA SEDGHANI 1,2, MINA ZOLFY LIGHVAN1, HADI S. AGHDASI1,
MAURO PASSACANTANDO 3, GIACOMO VERTICALE 2, (Member, IEEE),
AND DANILO ARDAGNA 2, (Member, IEEE)
1Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran
2Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
3Department of Computer Science, University of Pisa, 56126 Pisa, Italy

Corresponding author: Hamta Sedghani (hamta.sedghani@polimi.it)

This work was supported by the European Commission funded by the H2020 Grant through AI in Secure Privacy pReserving computINg
continuum (AI-SPRINT) under Grant 101016577.

ABSTRACT Mobile Crowdsensing (MCS) is a new paradigm that leverages the collective sensing ability
of a crowd so that a special task can be performed through the aggregation of information collected from
personal mobile devices. While MCS brings several benefits, its application is prevented by challenges such
as the efficient recruitment of users, effectivemechanisms for rewarding users to encourage participation, and
an effective and fast enough approach for managing the underlying resources that support large-scale MCS
applications involving a large number of people in data collection. On the other hand, Artificial Intelligence
(AI) applications, which are mostly based on Deep Neural Networks (DNN), are becoming pervasive today
and are executed by the end users’ mobile devices, which are characterised by limitedmemory and computing
power, and low battery level. This paper describes and evaluates an incentive mechanism for a mobile
crowdsensing system with an AI sensing task based on a one-leader multi-follower Stackelberg game. The
MCS platform, as a leader, provides an AI sensing task to be executed by a DNN, which can be deployed
in two different ways: fully on the user device or partially on the device and partially on edge or cloud
resources. The users, as followers, make their decisions regarding their participation to the MCS system and
select their desired deployment given the energy and memory available on their device and the deployment
reward proposed by the MCS platform. The goals of the MCS platform are: i) to motivate the users to
participate in the system, ii) to maximize its profit, and iii) to identify the optimal resources supporting the
sensing task that minimizes the cost and provide performance guarantees. This problem has been formulated
as a mixed integer nonlinear program and propose an efficient algorithmic approach to solve it quickly. The
proposed approach has been compared with some baseline methods and with BARON state-of-the-art solver.
Results show that our approach converges to the optimal solution much faster than BARON (up to orders of
magnitude) especially in large scale systems. Furthermore, the comparison to the baseline methods shows
that our approach always beats the best baseline method under different scenarios providing up to 16%
improvement for the MCS platform profit.

INDEX TERMS Mobile crowdsensing, AI sensing tasks, incentive mechanism, Stackelberg game.

I. INTRODUCTION
Mobile Crowdsensing (MCS) is a distributed paradigm to
use the sensing and computing capabilities of end-user’s
devices for environmental data collection and analysis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

MCS systems are generally used in two different scenar-
ios based on the type of user involvement [1]: i) Par-
ticipatory [2] where the users participate in the system
voluntarily and the user manual intervention is needed
for certain input; ii) Opportunistic [3] where the data
is gathered automatically in the background without user
intervention.

91524 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-6495-5717
https://orcid.org/0000-0003-2098-8362
https://orcid.org/0000-0001-7508-9706
https://orcid.org/0000-0003-4224-927X
https://orcid.org/0000-0001-5067-858X

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

Artificial Intelligence (AI) applications and Deep Learn-
ing (DL) have been growing rapidly in these years and
cloud computing and its technologies have improved AI
very much [4]. The combination of AI and cloud computing
results in an extensive network capable of holding massive
volumes of data while continuously learning and improv-
ing. Moreover, nowadays AI applications have been moving
toward mobile computing and Internet of Things (IoT) [5]
while cloud resources are usually far from the mobile devices
and this long distance might be the cause of long latency.
However, end user’s devices may not be powerful enough
to process some heavy tasks such as the execution of AI or
DL applications. To solve this issue, edge computing estab-
lishes a new computing paradigm that moves AI and machine
learning close to where the data generation and computation
actually take place.

Nowadays, due to the pervasiveness of AI, a significant
number of real world applications are based on neural net-
works or deep neural networks (DNN), which include a
large number of layers. One clear example comes from
Augmented Reality (AR) applications [6]. AI technologies
such as machine learning and deep learning are well suited to
AR applications because they can collect data by a cam-
era and also integrate some other data from the device’s
gyroscopes, sensors, accelerometers and GPS. For example,
in recent navigation systems, novel AI applications using
cloud processing help to add scene descriptions and to inte-
grate the data coming from the gyroscopes and GPS positions
to provide a safe route.

The resource shortage of mobile devices in MCS sys-
tems could be more sensitive when the applications have
quality of service (QoS) response time constraints. Hence,
edge paradigm allows faster computing and it can enhance
the performance of AI-enabled applications and keep the
operating costs down. Partitioning the DNN of AI application
component and running partially on local device and assign-
ing the other partitions to the existing resources on edge or
cloud is a common approach to use optimally the resources on
computing continua while satisfying QoS constraints [7], [8].

The limited capacity of mobile devices to execute the
sensing tasks with heavy process on one hand and the cost
of running the application on edge or cloud on the other hand
make the resource allocation problem across the computing
continuum very difficult. Game theory models are needed
to support the AI application execution taking into account:
i) on the field the memory capacity and energy available at
the mobile devices and MCS platform’s budget for pricing
the tasks, and ii) on the edge/cloud the costs to guarantee
a given latency threshold and the competition to access the
resources at the MCS platform site (e.g., a set of small
datacenters located inside the 5G Radio Access Network
(RAN)) and in the remote cloud. There are a lot of existing
works [9], [10], [11], [12], [13], [14], [15], [16], [17] focusing
on DNN partitioning of AI application components which
are run by distributing computations among mobile devices
and edge or cloud. On the other hand, many works focus on

incentivizing the smart devices users to run different sensing
tasks in MCS by relying on auction mechanism [18], [19],
[20], [21], [22], [23], [24], while some others rely on game
theory [25], [26], [27], [28], [29], [30], [31], [32]. However,
none of recent works considered MCS systems based on
AI applications where the computational load needs to be
dynamically partitioned across the computing continuum and
the smartphone resources of all the users involved. Previous
literature assumes light tasks that all smart devices are able to
run, whereas current MCS applications are also characterized
by heavy tasks, like image processing, and their adoption is
steadily increasing [33]. To the best of our knowledge, this
is the first work considering heavy tasks in MCS systems
which tries to balance the computing load of the task between
the user’s local device and edge/cloud resources. As the first
literature work, this paper: i) considers a MCS system with
the goal of incentivizing the users to participate and run an
AI sensing task with DNN running on their local device or
edge/cloud; ii) allocates tasks according to the memory and
energy available at the users’ local device while guarantee-
ing a response time performance constraint. This problem is
formulated as a bi-level game and the results show that the
proposed approach converges to the optimal solution much
faster than the BARON state-of-the-art solver.

In this work, MCS platform is located in the edge layer
(e.g., in one or multiple 5G towers) and some mobile aug-
mented reality (AR) sensing tasks are run by users through
their devices. The computation required by AI sensing tasks
can also be offloaded to the cloud when edge servers are
saturated. The interaction among the MCS platform and the
end users is formulated as a Stackelberg game aiming at:
i) maximizing the MSC provider utility, ii) optimizing the
edge and cloud resource management while iii) guaranteeing
users’ device memory and energy constraints, and iv) fulfill-
ing application performance constraints.

The aim is to motivate the users to run the AI sensing
tasks: each user considers running the task as a cost (based
on the device energy consumption) and needs to receive a
specific price from the MCS platform as a reward. The users
are motivated to run the task only if the cost of running the
task is less than their reward.

In summary, the main contributions of this paper are the
following:

1) The interaction among multiple mobile users and MCS
platform is formulated as a one-leader multi-follower
Stackelberg game, where the platform is the leader and
the users are the followers.

2) An approach based on KKT conditions is developed to
find the optimal number of edge and cloud resources
and to solve the mixed integer nonlinear problem
underlying the Stackelberg game quickly.

3) The performance of the proposed approach is finally
evaluated by comparing our solution algorithmwith the
BARON state-of-the-art solver. Experimental results
show that this approach can find the optimal solution
much faster than BARON.

VOLUME 10, 2022 91525

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

The remainder of this paper is organized as follows.
Related works are discussed in Section II. Section III
describes the mobile edge cloud system model, Section IV
formulates the platform and user problems, while the Stackel-
berg game model is described in Section V. In Section VI, the
heuristic solution approach is explained. Experimental results
are discussed in Section VII, while conclusions are finally
drawn in Section VIII.

II. RELATED WORK
The growth of interest in IoT devices, the data those devices
produce and the ability of DL based solutions to generate
valuable inferences from this massive volume of data, caused
a growth of interest in MCS and resource management in
AI applications. In this section, the recent works published
in these two areas are investigated.

A. INCENTIVE MECHANISMS IN MCS
The most important issue in MCS systems is to motivate
the smart device users to participate and perform the sensing
tasks. Game theory methods, specially Stackelberg game and
auction mechanism are the most common way to incentivize
the users to run the sensing tasks and receive a reward in
return. An incentive mechanism based on Stackelberg game
has been proposed in [29], where theMCS platform estimates
the users’ utility function parameters and solves the optimiza-
tion problem of the game in a centralized manner instead of
exchanging a lot of messages in distributed methods.

In [31], authors proposed a three-step mechanism based
on Stackelberg game to tackle three problems: pricing the
incoming tasks by platform, selecting the favourite tasks by
users and finally worker selection by platform. For the sake
of incomplete information at each step, they use backward
induction analysis to drive the Stackelberg equilibrium. Thus,
they solve the third problem by leveraging Lyapunov opti-
mization, the second problem by modeling as a bounded
knapsack problem and proposing a polynomial approxima-
tion algorithm and the first problem by designing an online
pricing algorithm based on Zinkevich’s online gradient learn-
ing approach. Similarly, in [34] authors propose a three-stage
Stackelberg game to motivate the users with unknown qual-
ities to participate in a Spatial Crowdsourcing (SC) system.
They model the worker selection process as a K-arm Com-
binatorial MultiArmed Bandit problem and propose a greedy
arm-pulling to find the optimal workers. Then, they design
the game to determine the optimal strategy group of the
payment problem, in which the requester and the platform
are the first-tier and second-tier leaders, respectively, while
the selected workers are followers and they prove that there
exists a unique Stackelberg Equilibrium for the game.

Different from other works, authors in [35] inspired
some behavioral economics concepts such as capital deposit,
intertemporal choice and addiction to present a long-term
motivation. They proposed an addiction incentive mechanism
that consists of three steps: the formation, cultivation and
maintenance of addiction. This mechanism influences the

utility function of participants and motivates them to coop-
erate in the MCS system for a long-term.

B. RESOURCE MANAGEMENT IN AI APPLICATIONS
The significant growth of AI and Deep Learning pervasive-
ness specially in smart city with AR technology, caused that
rather than continuing to rely on a traditional data center
compute model, the industry has embraced the notion of a
compute continuum which means putting the right compute
resources at optimal processing points in the system span-
ning from cloud data center to edge systems and endpoint
devices. For this reason, AI application partitions placement
in computing continuum is gaining increasing interest in
research and industrial applications. For example, [10] pro-
posed a hierarchical AI learning framework for the Mobile-
Edge-Cloud (MEC) computing paradigm, which develops
a novel hybrid method to partition and assign the DNN
model layers and the data samples across the three levels
of the edge device, edge server and cloud data center. The
authors formulate the problem of scheduling the DNN train-
ing tasks at both layer partitioning and data partitioning as
an integer linear problem (ILP) and they achieve the min-
imum training time by solving this optimization problem.
Conversely, [7] focused on inference time and proposed a
lightweight scheduler, called Neurosurgeon to automatically
partition DNN computation between mobile devices and data
centers. At design time, Neurosurgeon profiles the mobile
device and the server to generate performance prediction
models of each DNN layer and estimates the power con-
sumption of executing layers on the mobile device. Then
at runtime, it selects the best partition point based on the
target. If the target is latency/energy, it finds the point
that minimizes the total execution-time/energy-consumption.
Similarly, Huang et al. [36] assume that there is only one
partitioning point and the DNN model is partitioned into two
parts for executing DNN inference on mobile web and the
edge, respectively. They formulate the partition placement
problem as a multi-objective optimization with latency and
mobile energy as two objectives while guaranteeing an upper
bound constraint for each. They use the weighted sum of
latency andmobile energy to solve the problem in linear com-
plexity and find the optimal partition point. Authors in [17]
formulated the DNN partitions placement and resource selec-
tion problem as a mixed-integer nonlinear program and pro-
posed a random greedy algorithm to solve it.

Some other work on DNN partitions placement considers
also the goal of optimizing both training and inference time.
For instance, [11] proposed a lightweight DNN with binary
neural network (BNN) to execute the DNN on themobile web
with the goal of reducing the size of DNN and accordingly
mobile energy consumption and latency. Then, it provides
a training method for the lightweight DNN and developed
an inference library to run the BNN. Finally, an online
scheduler based on Deep Reinforcement Learning (DRL),
is proposed to maximize the resource utilization of the edge
devices.

91526 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

In [12], authors modeled a DNN as a DAG and propose
an approach to execute the DNN on a mobile device and
cloud, cooperatively, and reduce the mobile cloud computing
optimal scheduling problem to the shortest path problem.
If the scenario does not have any constraint (mobile bat-
tery limitations, quality of service constraints), the optimal
scheduling can be obtained by solving the shortest path
problem in the graph model. For the scenario with Cloud
limited resources, they formulate an ILP for both the training
and inference phase by computing the execution time for
computation and communication both in the mobile device
and cloud VM and try to minimize them by considering a
bound for the cloud VM execution time to alleviate the server
load. For the scenario with QoS constraint, they minimize the
required energy consumption in mobile device while meeting
a specified deadline for the total time spent.

Only few works used game theory to model the interaction
between mobile user devices and edge or cloud to support the
AI application execution. Among them, [37] proposed aDNN
partitioning and offloading scheme between mobile devices
and edge server. Inspired by Neurosurgeon, it generates per-
formance prediction models of each DNN layer and estimates
the power consumption of executing layers on the mobile
devices and edge servers. A slot model and dynamic pricing
strategy for the servers are used to schedule the offloaded
tasks in the MEC side and motivate mobile users towards
an efficient task scheduling under budget and delay con-
straints. At the end, two distributed algorithms with certain
and uncertain aggregative information based on aggregative
game theory are proposed to minimize the users’ device cost.
In [38], authors divide the DNN to multiple partitions that
can be smaller than a single layer and propose a distributed
algorithm to offload partitions based on a matching game
approach to reduce the total computation time.

Conversely, [39] models IoT devices competing for com-
puting offloading across fog devices as a weighted potential
game. They prove that there exists at least one Nash equilib-
rium point and they proposed a distributed algorithm to solve
the task offloading problem.

All the previous researches investigated the problems of
incentive mechanism in MCS and resource management in
AI applications, separately, and none of them has addressed
the two challenges together. In this work, a MCS system is
considered in which the MCS platform expects that the users
run an AI sensing task consisting of a DNN and the users have
to decide to run the DNN on their local device or remotely on
the edge or cloud resources.

Differently from [37] that use a slot model and [38] that
use a FIFO execution queue to schedule the tasks in the edge
server, in this work M/G/1 queue is used to model the edge
and cloud resources. Moreover, on the contrary of [38] that
does not consider the cost of neither users nor edge servers
and [37] that ignore the cost of edge servers, this paper not
only takes into account the user cost but also minimizes the
MCS platform cost. In this paper edge servers resources are
limited and theMCS platformmight to use the extra resources

in the cloud to guarantee the application performance con-
straint incurring extra cost to rent cloud VMs. To efficiently
solve this problem, the interaction among the MCS platform
and the users has been modeled as an Stackelberg game and
a closed form has been found to determine an approximated
optimal number of edge and cloud resources by relying on
KKT conditions.

III. SYSTEM MODEL
In this section, the MCS model is introduced (Section III-A)
and the MCS platform profit and users’ cost model is formu-
lated in Section III-B and Section III-C, respectively.

A. MOBILE CROWDSENSING MODEL
This section provides an overview on how the MCS sys-
tem is modeled to run an AI sensing task among end-user’s
smart devices and to assign the edge and cloud resources
to complete the task if it is needed. A mobile crowdsensing
system is considered leveraging edge servers and cloud vir-
tual machines (VMs) as shown in Figure 1: a MCS platform
includes edge nodes with limited resources, a pool of unlim-
ited VMs can be run in the cloud side which are connected
to the edge platform through a fast network with negligible
delay. Finally, a large number of mobile users would like to
run an AI sensing task with their smart devices which are
connected to the edge platform through a network with a non-
negligible latency. As an example, a scenario is considered
in which the frames coming from the AI sensing task of the
smartphones or smart AR glasses are, possibly, partially pro-
cessed in the field and then sent to the edge platform/cloud.
The goal is to split the AI components execution in a way
that the execution cost and energy cost can be optimized by
finding a trade off between performance and cost.

FIGURE 1. Task’s resource assignment model.

The AI sensing task is offered by the MCS platform and
a controller agent (see Figure 1) deployed in the end-user’s

VOLUME 10, 2022 91527

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

device interacts with theMCS platform and sends some user’s
information (e.g., battery energy level).

For the sake of simplicity, one sensing task based on a
single DNN is considered. A deployment contains one or two
partitions. A user can decide to run the DNN totally on her/his
device or offload a part of computation from her/his device
remotely while theMCS platform decides to run deployments
locally or deploy and run them on the cloud. It is assumed
that the platform knows all users’ parameters thanks to the
AI sensing task agent and the users have energy and memory
constraints to run the task. Moreover, a response time perfor-
mance constraint is set for the AI task and it must be satisfied.

The set of users is defined as U and it is assumed that there
are Ne homogeneous servers in the edge system unlimited
homogeneous VMs (possibly faster than the edge servers) in
the cloud while users’ devices are heterogeneous.

In the proposed model, the AI sensing task with a DNN
can be specified by two alternative deployments indexed
by k . An example of AI sensing task with its candidate
deployments is shown in Figure 2. The partition point is
decided by the platform. This paper, similarly to [7], consid-
ers an AlexNet convolutional neural network and the pool5
layer is selected as the partition point since, according to
the profiling data reported in [7], minimizes the end-to-
end application latency. Additional details are reported in
Section VII-A The first deployment (k = 1, see Figure 2a)
is a full DNN which can be deployed only on the user device,
while the other (k = 2, see Figure 2b) have two partitions:
the first partition will be run only by the user device while
the second one can be run on the edge servers or on the
cloud VMs.

The power consumption for running deployment k in user
device is denoted by p(k)i while the power consumption of the
second deployment on the edge server is given by pe. The
users receive a time unit reward equal to U (1) when running
the task locally (set by the MCS platform which varies in
the interval [Umin,Umax]), while receive U (2)

= γ U (1) for
the second deployment k = 2, where γ < 1 because of
lighter computational load of the second deployment on the
local devices. By considering these rewards for users we can
incentivize them to run the task as far as the available memory
and energy allow.
D(k)
i is defined as the demanding time (i.e., the time

required to serve a single request of the underlying service
without resource contention [40]) required to run the deploy-
ment k = 1, 2 on user device, while the demanding time to
serve deployment k = 2 is denoted with De and Dc on the
edge and cloud resources, respectively. Both the edge server
and cloud VMs are modelled as an M/G/1 queue [16], shown
in Figure 3, while the local end-user’s devices are modelled
as a delay center. A controller located in the edge side decides
to send the load to edge servers or cloud VMs, based on the
MCS platform decision.

In this model, the MCS platform would like to maximise
its net income given by the revenues to support the sensing
task minus the rewards to the users, the energy costs to run

the deployments at the edge servers and the cost of remote
cloud VMs. Resource planning is performed periodically on a
time horizon T . TheMCS platform can serve the deployments
on the edge by allocating ne nodes (where ne < Ne, i.e., the
number of edge server available) or on cloud with nc VMs.
It is assumed that theMCS platform owns the edge infrastruc-
ture and will try to maximize usage of edge resources before
leasing any additional resources on a public cloud.

On the other hand, user i decides which deployment to use
according to his/her energy consumption for the execution of
the deployment and also the reward recived by the MCS for
running the deployment. Hence, themobile users trade-off the
energy consumption of their device and the reward received
from the platform side. This definition of our system allows
us to model the problem as a Stackelberg game in which the
MCS platform is the leader and the users are the followers.

In order to define the assignment decisions, namely to
characterize which candidate deployment is selected and how
the corresponding deployments are assigned to the resources,
the following binary variables are introduced:

x(k)i =

{
1 if user i selected deployment k ,
0 otherwise,

(1)

yei =

{
1 if user i is served by an edge server,
0 otherwise,

(2)

yci =

{
1 if user i is served by cloud VMs,
0 otherwise,

(3)

where x(k)i is a user decision variable, while yei and y
c
i are the

MCS platform decision variables.
There is the following constraint for x(k)i (at most, only one

deployment has to be selected, since the user can decide to
stop running the task):

2∑
k=1

x(k)i ≤ 1, ∀ i ∈ U , (4)

and there is also the following constraint that forces the
platform to run the selected deployment of the user either on
the edge or on the cloud:

yei + y
c
i = x(2)i , ∀ i ∈ U . (5)

Note that the index of deployments in the previous equation
is k = 2 because the first deployment will be run totally
on the user’s device. Each user has a maximum memory
capacity denoted by M̄i which limits the user to run different
deployments. Then, the memory constraint can be expressed
as follows:

2∑
k=1

m(k)x(k)i ≤ M̄i, (6)

where m(k) denotes the memory requirement of
deployment k .

91528 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 2. Example of AI sensing task component with its candidate deployments.

FIGURE 3. Queuing model of resources.

The input load of user i is denoted by λ (expressed in terms
of requests/s). So the total load of deployment k = 2 is as
follows:

3 =
∑
i∈U

λ x(2)i . (7)

Since all users are going to run the same sensing task, the
same input load is considered for all users.

In this work, each edge server and cloud VM is modeled as
single server single class queue system (i.e., as an individual
M/G/1 queue). Hence, the load of the second deployment in
the edge and cloud will be as follows:

Le =
∑
i∈U

De x
(2)
i λ yei , (8)

Lc =
∑
i∈U

Dc x
(2)
i λ yci . (9)

In order to avoid resource saturation, if the second partition of
deployment k = 2 is run at the edge or cloud, the equilibrium
conditions for the M/G/1 queue must hold. In particular, this
is equivalent to prescribe:

Le
ne
< 1, (10)

Lc
nc
< 1. (11)

This implication can be rewritten as the following alternative
conditions:

Le < ne, (12)

Lc < nc. (13)

Now, the average response time for user i is computed as
follows:

Ri =
2∑

k=1

(
D(k)
i x(k)i +

δ(k)x(k)i

Bi

)

+
Dex

(2)
i yei

1− Le
ne

+
Dcx

(2)
i yci

1− Lc
nc

, (14)

where the first expression denotes the average running time
of selected deployment on the edge server, the second expres-
sion indicates the latency from users to MCS platform,
δ(k) denotes the data transfer size of the first deployment
(k = 1) or first part of the second deployment (k = 2) from
user i to the edge platform and Bi indicates the bandwidth
of the network. In the above equation, only the transmission
delay between the end users and the edge platform is consid-
ered, which includes the radio interface. The delay between
the edge nodes and the central cloud is ignored because that
network segment has high-speed links and is rarely the bot-
tleneck [41]; therefore the resulting delay is negligible. The
third and forth expression indicate the average running time
of the second deployment on edge and cloud, respectively.
It is assumed that Deλ < 1 which means that one server in
the edge is powerful enough to serve the load of a single user.
Moreover, the cloud VMs are more powerful than the edge
servers and it holds Dc < De.

VOLUME 10, 2022 91529

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

In order to guarantee QoS requirements of the sensing task,
a threshold R̄ is defined for the average response time of a
user:

Ri ≤ R̄, ∀ i ∈ U . (15)

B. MCS PLATFORM PROFIT MODEL
It is assumed that the platform revenue function to support
the sensing task is the strictly concave function defined
in (16), where µ is a system parameter. This logarithmic
function is widely used in previous works for MCS systems
(see, e.g., [25], [26], [28], [42], [43], [44])and it is based on
the participation of users:

φ(x) = µ log

(
1+

N∑
i=1

log(1+
2∑

k=1

x(k)i)

)
. (16)

The rationale behind of this logarithmic function is that, when
the number of participants is small, a small increasemakes the
function increase fast. Then, when the number of participants
is larger, the effect slows down. So, this logarithmic function
reflects the platform’s diminishing return on participating
users. The profit of the edge platform is as follows:

Pe = φ(x)−
N∑
i=1

2∑
k=1

U (k)x(k)i −T (βepene + cnc) , (17)

where βe is a coefficient to convert the energy consumption
of edge server to monetary, c is the cloud VM cost per
second (per second billing option is recently available in, e.g.,
AWS1 and Azure2) and T is time horizon with which the
edge provider manages the resource planning. In practice,
the impact of the sensing task computation complexity is
applied to the cost function. The more computation users do
on their device the lower is the cost for the platform because
the platform needs less computing resources in the edge and
in the cloud.

As stated previously, it is assumed that the cost of running
the deployment on the edge is always less than the cloud one,
i.e., βe pe < c.

C. USER COST MODEL
The energy consumption per request for user i is computed
by:

Ti
2∑

k=1

p(k)i x(k)i , (18)

where Ti denotes the total time user i devotes to run the
sensing task. The cost function of user i to run her/his sensing
task is as follows:

Ci = λTiβi
2∑

k=1

x(k)i p(k)i , (19)

1https://aws.amazon.com/ec2/pricing/
2https://azure.microsoft.com/en-us/pricing/details/virtual-

machines/windows/

where βi is a coefficient to convert the energy consumption
of user’s device to monetary cost.

IV. PLATFORM AND USER PROBLEM FORMULATION
In the system under study, the MCS problem is modeled as
a Stackelberg game where the platform is the leader and the
users are the followers. The platform’s problem is formulated
in Section IV-A and the users’ problem in Section IV-B.

A. PLATFORM’s PROBLEM
The MCS platform will solve the following optimization
problem:

max
U (1),ne,nc,yei ,y

c
i

Pe = φ(x)−
N∑
i=1

2∑
k=1

U (k)x(k)i

−T (βepene + cnc) (20)

subject to: ne ≤ Ne, (21)
2∑

k=1

(
D(k)
i x(k)i +

δ(k)x(k)i

Bi

)

+
Dex

(2)
i yei

1− Le
ne

+
Dcx

(2)
i yci

1− Lc
nc

≤ R̄, ∀ i ∈ U,

(22)

Le < ne, (23)

Lc < nc, (24)

yei + y
c
i = x(2)i , ∀ i ∈ U, (25)

U (2)
= γU (1), (26)

Umin ≤ U (1)
≤ Umax , (27)

yei , y
c
i ∈ {0, 1}, ∀ i ∈ U, (28)

ne, nc ∈ Z+. (29)

In order to guarantee the problem’s feasibility, there are
two assumption on the performance constraint:

• If the memory and energy of the device is enough to
run the first deployment and U (1)

≥ λTiβip
(1)
i , this

condition must hold: D(1)
i +

δ(1)

Bi
≤ R̄;

• If the memory and energy of the device is enough to
run the second deployment and U (2)

≥ λTiβip
(2)
i , this

condition must hold: D(2)
i +

δ(2)

Bi
+min{De,Dc} ≤ R̄.

An example of platform net profit function for 100 users
(obtained by solving the best reply among the platform and its
users) is shown in Figure 4.We setU (1)

= Umax = 2 and then
decreased the reward to Umin by the step size equal to 0.01.
Clearly, the platform problem is not convex. In this analysis it
was assumed that all users have enough energy and memory
to run both deployments. FromU (1)

= 2 toU (1)
= 0.80 some

linear changes are observed increasingly and decreasingly
in platform profit because of changing the selected deploy-
ments by users while the platform revenue (φ(x)) is fixed
because the number of participants remained fix. When the
reward is high, the users select the first deployment because
of receiving more reward while by decreasing the reward,

91530 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 4. Platform net profit function with 100 users.

gradually, the users select the second deployment because the
reward becomes less than the energy cost for running the first
deployment. From U (1)

= 0.80 to U (1)
= 0.30, the changes

are linear increasingly because the users do not change their
selected deployment and the first and third terms of platform
profit function (20) is fixed while the second term that is
linear in U (k) decreases. After U (1)

= 0.30 some non-linear
changes are observed because the users gradually drop and
the platform revenue φ(x) affects on the profit function.

B. USER’s PROBLEM
Each user i will solve the following optimization problem:

max
xi

2∑
k=1

x(k)i

(
U (k)
− λTiβip

(k)
i

)
(30)

subject to:
2∑

k=1

x(k)i ≤ 1, (31)

Ti
2∑

k=1

p(k)i x(k)i ≤ Ēi, (32)

2∑
k=1

m(k)x(k)i ≤ M̄i, (33)

x(k)i ∈ {0, 1} ∀ k = 1, 2. (34)

Constraint (31) guarantees that the user selects at most one
deployment, while (32) and (33) avoid running the deploy-
ments on the user’s local device if it does not have enough
energy and memory, respectively. The last constraint defines
the decision variable’s domain. For the sake of simplicity,
parameters and variables are summarized in Table 1 and
Table 2, respectively.

V. STACKELBERG GAME FORMULATION
In this section, the Stackelberg game is formulated as a
mixed-integer nonlinear optimization problem by embedding
the users’ problem in the platform problem and by relying on
a commercial mixed-integer nonlinear solver. Since finding
an optimal solution by a state of the art tool is very slow
because of the very large number of variables and constraints
for instances of relevance in practice, an efficient heuristic

TABLE 1. Problem parameters.

TABLE 2. Decision variables.

approach to solve the Stackelberg game quickly is proposed
in Section VI.

As already mentioned, in our scenario the AI sensing task
has a controller agent that provides the knowledge about
users’ parameters to the MCS platform such as Ti, βi, Ēi
and p(k)i . In this way, the platform can anticipate the user
decision in a centralized manner without contacting users.
The user side problem in (30)–(34) can be simply solved by
checking a few conditions (see Algorithm 1). The necessary
condition to run deployment k by a user is that the user
has enough energy and memory and the reward received by
the platform is more than the cost of running deployment k
(lines 3-8). If the problem setting satisfies the user’s necessary
condition for running all deployments, he/she will select the
more profitable one (lines 9-14).

Each agent solves the user problem locally, sends the solu-
tion to the MCS platform that then can solve centrally its
problem. The MCS platform problem can then be rewritten

VOLUME 10, 2022 91531

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

Algorithm 1 User’s MCS Algorithm

1: Input: i, αi, p
(k)
i , Ēi, βi, r (k)

2: Initialization: x(1)i , x(2)i ← 0
3: if Tip

(1)
i ≤ Ēi andm

(1)
≤ M̄i andU (1)

≥ λTiβip
(1)
i then

4: x(1)i ← 1
5: end if
6: if Tip

(2)
i ≤ Ēi and m

(2)
≤ M̄i and U (2)

≥ λTiβip
(2)
i then

7: x(2)i ← 1
8: end if
9: if x(1)i = 1 and x(2)i = 1 then

10: if U (1)
− λTiβip

(1)
i ≥ U

(2)
− λTiβip

(2)
i then

11: x(2)i = 0
12: else
13: x(1)i = 0
14: end if
15: end if
16: return x(1)i , x(2)i

as follows:

max
U (1),ne,nc,yei ,y

c
i

Pe = φ(x∗(U))−
N∑
i=1

2∑
k=1

U (k)x(k)i

−T (βepene + cnc) (35)

subject to: x∗i (U)

= argmax
xi

{
2∑

k=1

x(k)i

[
U (k)
− λTiβip

(k)
i

]
:

2∑
k=1

x(k)i ≤ 1, Ti
2∑

k=1

p(k)i x(k)i ≤ Ēi,

2∑
k=1

m(k)x(k)i ≤ M̄i, (36)

x(k)i ∈ {0, 1} ∀ k = 1, 2
}
, ∀ i = 1, . . . ,N ,

ne ≤ Ne, (37)
2∑

k=1

(
D(k)
i x(k)i +

δ(k)x(k)i

Bi

)

+
Dex

(2)
i yei

1− Le
ne

+
Dcx

(2)
i yci

1− Lc
nc

≤ R̄, ∀ i ∈ U, (38)

Le < ne, (39)

Lc < nc, (40)

yei + y
c
i = x(2)i , ∀ i ∈ U, (41)

U (2)
= γU (1), (42)

Umin ≤ U (1)
≤ Umax , (43)

yei , y
c
i ∈ {0, 1} ∀ i ∈ U, (44)

ne, nc ∈ Z+. (45)

We remark that the optimality constraint (36) can be replaced
by a set of linear constraints with additional binary vari-
ables. The cost of user i to run deployment k is denoted as

parameter C (k)
i , so the cost is: C (k)

i = λTiβip
(k)
i . Since

the memory and energy constraints are independent of the
other variables, these conditions are checked before solving
the problem and embedded as binary parameter s(k)i in the
optimization problem. Therefore, binary parameter s(k)i = 1 if
user i has both enough energy and memory to run deployment
k and s(k)i = 0, otherwise. The linear constraints equivalent
to (36) are defined as follows:

−(1− t (k)i)M ≤ U (k)
− C (k)

i ≤ t
(k)
i M ∀ k (46)

−(1− z(1)i)M ≤ (U (1)
− C (1)

i)− (U (2)
− C (2)

i) ≤ z(1)i M

(47)

−(1− z(2)i)M ≤ (U (2)
− C (2)

i)− (U (1)
− C (1)

i) ≤ z(2)i M

(48)

x(k)i ≤ s(k)i t (k)i ∀ k (49)

x(1)i ≥ s(1)i t (1)i + s
(2)
i (z(1)i − 1) ∀ k (50)

x(2)i ≥ s(2)i t (2)i + s
(1)
i (z(2)i − 1) ∀k (51)

x(1)i + x
(2)
i ≤ 1 (52)

x(k)i , t (k)i , z(k)i ∈ {0, 1} ∀ k (53)

where M is a large enough parameter and t (k)i , z(k)i are addi-
tional binary decision variables. For the reader’s convenience,
the parameters and variables of users’ linear constraints are
shown in Table 1 and Table 2.
The Stackelberg game, that is the optimization

problem (35)–(45) of the MCS platform side, is a mixed-
integer nonlinear program (MINLP) and it can be solved
by a global solver. However, not only there is no guarantee
to find the optimal solution because of bilinear non-convex
term U (k)x(k)i in the objective function, but also computing
the solution is very slow because of the large number of
constraints in (38) (as we will show in the experimental result
section). Therefore, a heuristic approach is proposed in the
next section to solve the problem faster.

VI. HEURISTIC SOLUTION APPROACH
To solve problem instances of practical interest, a heuristic
approach based on three main ingredients is developed. First,
Section VI-A shows that, under the assumption of a fixed
platform reward, a solution to the MCS platform resource
allocation problem (i.e., the decisions for ne and nc) close
to the optimum can be identified by solving a convex opti-
mization problem. Secondly, in Section VI-B it is proved that
the optimal reward can be identified by inspection by consid-
ering O(N) relevant reward values. Finally, in Section VI-C,
a heuristic algorithm is provided to sort the users opting for
the second deployment in two groups, one served from the
edge and one served from the cloud. Figure 5 indicates the
steps of the proposed approach.

A. PLATFORM RESOURCE ALLOCATION SUBPROBLEM
This section, shows that the MCS platform resource alloca-
tion problem, which consists in finding the optimal values

91532 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 5. Proposed approach steps.

for ne and nc, can be approximately reformulated as a con-
vex optimization problem by assuming fixed rewards for the
deployments. This solutionwill then allow to solve the overall
Stackelberg game quickly by means of a heuristic approach.

For each possible value of reward, the MCS platform must
solve the users’ optimization problem by Algorithm 1 and
identify each user’s desired deployment. Let 3 be the arrival
rate of customers opting for deployment k = 2.
Next, the MCS platform can compute the amount of edge

and cloud resources (ne, nc) and how to split 3 into a rate of
users that will be served in the edge, λe, and in the cloud, λc.
This is achieved by continuous relaxation as follows.

First, a new response time constraint has been introduced
as the response time of platform, ¯̄R, as follows:

¯̄R = R̄− E
[
D(2)
i x(2)i

]
− E

[
δ(2)x(2)i

Bi

]
, (54)

where E
[
D(2)
i x(2)i

]
denotes the expected demand time of run-

ning the first part of second deployment on the local device

of users who selected the second deployment and E
[
δ(2)x(2)i
Bi

]
indicates the expected transmission delay to transfer the out-
put data of the first part of the second deployment to the
MCS platform. The rationale behind (54) is that, in order
to guarantee the server side response time, it is necessary
to provide a margin to account for the user side processing
time and data transmission delay. Hence, the response time
constraints (22) is redefined on the MCS platform side as
follows:

λe

3
·

Dene
ne − Deλe

+
λc

3
·

Dcnc
nc − Dcλc

≤
¯̄R. (55)

The following result can be demonstrated.
Theorem 1: The response time constraint in (55) is convex.
Proof: The proof is given in Appendix A. �

In order to identify an estimate for ne and nc, a simplified
MCS platform problem can be written by neglecting yei and
yci , assuming a fixed reward for the deployment, and relaxing

the integrality constraint on ne and nc, which is now consid-
ered as continuous variables:

min
ne,nc,λe,λc

βepene + cnc

subject to: ne ≤ Ne,
λe

3
·

Dene
ne − Deλe

+
λc

3
·

Dcnc
nc − Dcλc

≤
¯̄R,

Deλe < ne,

Dcλc < nc,

λe + λc = 3,

ne, nc ≥ 0,

λe, λc ≥ 0.

Thanks to the linear objective function and the convex con-
straints, the Karush-Kuhn-Tucker (KKT) optimality condi-
tions can be exploited to obtain the optimal values of deci-
sion variable ne and nc in the relaxed problem by applying
Theorem 2. Integer solutions are then found by rounding.
Theorem 2: If the total arrival rate satisfies the following

condition

3 ≤
Ne(¯̄R− De)
¯̄RDe

,

then the MCS platform does not use the cloud VMs (n∗c = 0,
λ∗c = 0) and the optimal number of edge servers is

n∗e =
¯̄RDe3
¯̄R− De

with λ∗e = 3.
Otherwise, the edge servers are saturated (n∗e = Ne), the

optimal edge rate is

λ∗e =
Ne3(¯̄R−

√
DcDe)

NeDe + ¯̄R3De − Ne
√
DcDe

,

the optimal number of cloud VMs is

n∗c =
Dc3[¯̄RDe3− Ne(¯̄R− De)]

Ne(
√
De −

√
Dc)2 + De3(¯̄R− Dc)

,

and λ∗c = 3− λ
∗
e .

Proof: The proof is given in Appendix B. �

B. OPTIMAL REWARD
In the previous section, a fixed reward was assumed for
the deployments and a nearly optimal number of resources
was found by relying on KKT conditions. In order to solve
the Stackelberg game, finding the optimal reward is needed,
which we prove being in a finite set of special points. Hence,
the optimal value can be found by inspection. Afterwards,
Theorem 2 can be applied to find the optimal number of
resources for the corresponding optimal reward and then
through Algorithm 3, that will be introduced in Section VI-C,
the final assign of the users is performed to the resources
in the edge/cloud guaranteeing the original response time
constraints (22).

VOLUME 10, 2022 91533

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 6. Platform net profit function with 10 users.

To describe the behavior of the platform profit function
(mentioned in Figure 4) in details, the profit function related
to 10 users scenario is shown in Figure 6. This plot shows that,
by varying the reward, the platform profits exhibits points of
discontinuity, which are located when a small change in the
profit forces users to drop from the system or change their
deployment decisions. Accordingly, two types of points of
discontinuity are defined:
• Dropping points: The values of reward that makes the
user’s participation benefit equal to zero and it means
that the user does not have any motivation to participate
in the MCS system. To obtain these points, for each
user i, the cost of running the second deployment on
the user’s device is calculated: C (2)

i = λTiβip
(2)
i . If the

reward of running the second deployment (U (2)) is equal
or less than the cost of user, the user will drop. Therefore,
the dropping point of user i is as: dropi = U (2)

i = C (2)
i .

• Changing deployment points: These points specify
the rewards that make the benefit of running the first
and second deployment equal. To obtain these points,
for each user i, the cost of running the first and sec-
ond deployments on the user’s device are calculated as:
C (1)
i = λTiβip

(1)
i and C (2)

i = λTiβip
(2)
i , respectively.

If the reward of running the deployments are U (1)
i and

U (2)
i , the user’s benefit of running the first and second

deployments are: U (1)
i − C (1)

i and U (2)
i − C (2)

i . On the
other hand, as it was mentioned in Section III-A, the
relationship between these rewards is: U (2)

= γU (1).
Accordingly, the reward that makes the benefits of run-
ning two deployment equal for user i can be obtained as
follows:

U (1)
i =

C (1)
i − C

(2)
i

1− γ
(56)

Therefore, changing deployment point for user i is
defined as: changei = U (1)

i
We are then able to state the core theorem for our solution as
follows:

Theorem 3: The optimal reward solution lays at one of the
points of discontinuity or in a right neighborhood of a point
of discontinuity.

Proof: Assuming the users’ decisions x(k)i are fixed
given the platform profit function (20), the only part of the
platform profit function that changes with increasing U (1) is
U (k)x(k)i , which causes a reduction of the platform profit. So,
in each interval in which the users’ decisions are fixed, the
maximum point is at the beginning of the interval. On the
other hand, we know that users’ behaviors impose the plat-
form’s profit and the behavior of a user will change when
they make a decision to participate in the MCS system or
not and change the selected deployment from one to another.
These behavior changes happen only immediately after the
points of discontinuity and the platform profit can increase
or decrease as shown in Figure 6. Therefore, in a specific
interval between two points of discontinuity where the users’
decision are fixed, the optimal solution is either obtained by
increasing the reward by ε, by setting U (1)

i = changei + ε or
U (1)
i =

dropi
γ
+ ε), if the platform profit is also increased.

Otherwise, the optimal solution in that interval is either
U (1)
i = changei or U

(1)
i =

dropi
γ

. Accordingly, it can be
concluded that the optimal platform profit will happen imme-
diately after or exactly at these points of discontinuity. �

Given Theorem 3, we could just inspect the O(N) points
of discontinuity to find the optimal reward (see Algorithm 2).
Note, however, that the values for the number of resources
ne and nc obtained in Section VI-A are not guaranteed to be
optimal, because they were obtained by considering in (54)
an approximate response time ¯̄R, which is a function of the
average demand time and network transfer delay of users.
For this reason, not only the best reward among the points
of discontinuity but also an elite set of optimal solutions are
considered.

Algorithm 2 receives as input the number of users, the
users’ parameters, the boundary of rewards and γ . For each
user i, the points of discontinuity, which include dropi and
changei are computed (lines 3-7). Since dropi is the reward
related to the second deployment, the corresponding reward
of first deployment is proportionally equal to dropi

γ
. Given

the reward of the first deployment in discontinuity points
and the points immediately after them, if the rewards are in
interval [Umin,Umax], the algorithm solves the users’ problem
according to each reward (U) to obtain the users’ partici-
pation plan x, finds the approximate ne, nc, λe, λc through
Theorem 2 and computes the platform profit and add these
results in the solution list (lines 8-17). Finally, the solution list
is sorted by P, decreasingly, and the PopSize best elements as
a result is returned (lines 18-20).

C. ASSIGNING THE RESOURCES TO THE USERS
In Section VI-A, closed formulas for the approximate number
of edge and cloud resources related to a specific reward have
been obtained and Algorithm 2 has been used to maximize
the platform profit. The solution obtained by KKT condi-
tions only yields ne and nc, then it is needed to assign these

91534 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

Algorithm 2 Optimal Rewards Algorithm
1: Input: N , users’ parameters, Umin, Umax, γ
2: Initialization: Solutions← []
3: for i← 1 to N do
4: C (1)

i ← λTiβip
(1)
i

5: C (2)
i ← λTiβip

(2)
i

6: changei←
C (1)
i −C

(2)
i

1−γ

7: dropi← C (2)
i

8: for c in
{
dropi
γ
,
dropi
γ
+ ε, changei, changei + ε

}
do

9: if Umin ≤ c ≤ Umax then
10: U (1)

← c, U (2)
← cγ

11: x ← Solve user model given U
12: ne, nc, λe, λc ← Compute solution through

Theorem 2 given U and x
13: P ← Compute platform profit given

U , x, ne, nc, λe, λc
14: append (P,U , x, ne, nc, λe, λc) to Solutions
15: end if
16: end for
17: end for
18: sort Solutions by P decreasingly
19: return first PopSize elements of Solutions

resources to the users. This step is necessary for solving the
Stackelberg game. TheAlgorithm 3 is proposed, which solves
the assignment problem under the assumption that the load of
every user must be served either on the edge or on the cloud
(see constraint (5)).

Similarly to Theorem 2, two scenarios are considered.
In the first scenario, the edge servers are enough to serve all
users’ requests, yielding nc = 0. In turn, this scenario has two
possible situations: in the first one, the number of edge servers
is enough for serving all users and there is no violation of
the response time constraint. In the second one, some users’
response time constraints are violated. In this latter case, the
user with the most severe violations is identified and the
number of edge servers that this user needs to avoid violation
is computed. In other words, if the user with largest violation
is satisfied, we can be sure that all other users are satisfied.

In the second scenario, the number of edge servers is not
enough to serve all users’ request and cloud VMs are needed,
i.e., nc > 0. In this scenario, the users are assigned to the
cloud with higher delay induced by running the first partition
(on the local device) given the fact that the cloud VMs are
faster and the response time violation of such users can be
avoided by relying on more performing resources. Then, the
required number of edge servers is identified by satisfying
the user’s response time constraint with the largest value
remained in the edge.

Since in both scenarios ne might have been increased and
the maximum number of edge servers overstepped, the users
assignment is adjusted by moving the users from edge to the
cloud one by one. As a final step, given the load assigned to

the cloud, the proper number of cloud resources is identified.
These ideas are implemented by Algorithm 3, which receives
a list of elite solutions from Algorithm 2, the response time
threshold and users’ demands as inputs. For each solution in
the elite list, given the response time constraint R̄, the load of
users is appropriately assigned to the resources to obtain an
optimal and feasible assignment.

The necessary information is extracted from the initial
Algorithm 2 solution (line 4) and a set of users who selected
the second deployment is obtained (line 5) then, the two
scenarios that was mentioned above is considered. If the first
scenario is the case (i.e., the number of edge servers is enough
to serve the total load and nc = 0), all users are assigned to
the edge and then the response time of all users is evaluated
to check the response time constraint violation (lines 6-8).

If no users are in violation, the number of edge servers
obtained by the closed form solution of Theorem 2 is the exact
result (9-10), otherwise, the violations (V) of all users are
sorted increasingly to find the user with maximum violation
and compute the minimum number of edge servers (n̄e) that
will satisfy his/her response time constraint (lines 11-16).

In the second scenario, the MCS platform needs to use
cloud VMs to serve the users’ load (nc > 0). In this
case, the local execution delay of users (V) is computed
(lines 18-20) and the users are sorted by the delay, decreas-
ingly (line 21). Given λc and based on the fact that the cloud
VMs are faster, first j users are assigned to cloud (lines 21-22)
and the others to the edge to avoid the violation of users with
higher local delays. Accordingly, the (j + 1)-th user is the
user with maximum local delay in the edge and the mini-
mum number of edge servers (n̄e) is computed to satisfy the
(j+ 1)-th user’s response time constraint (lines 23-25).
In both scenarios, when the number of edge servers is

computed to avoid users’ violation, the maximum number
of existing servers might have been overstepped in the edge.
If this is the case, the user j with maximum V (which can be
violation in the first scenario or delay in the second scenario)
is kept in the edge and the assignment of the other users
(with lower V) is iteratively changed from the edge to cloud
(lines 27-28) until the response time constraint of the user j in
the edge is satisfied. In this way, the load of edge and cloud are
adjusted (lines 29-30) and after each adjustment the number
of edge servers that the user j in the edge needs to avoid
violation,is computed (lines 31-32). At the end, given the total
load of cloud, the minimum number of cloud VMs, needed to
serve the users with maximum V in the cloud, is obtained
(lines 34-38). Finally, the platform profit given new opti-
mal number of resources (n̄e, n̄c) is computed (line 39) and
the solution which maximize the platform profit is returned
(lines 40-45).

VII. EXPERIMENTAL RESULTS
In this section, the numerical experiments are presented to
evaluate the performance of our approach. The experimental
setup and system parameters are introduced in Section VII-A.
The scalability analysis and the performance evaluation

VOLUME 10, 2022 91535

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

Algorithm 3 Users’ Resource Assignment

1: Input: EliteSols, R̄,D(k)
i

2: Initialization:BestProfit ← 0, yei , y
c
i ← 0

3: for all Sol in EliteSols do
4: U , x, ne, nc, λe, λc← Sol
5: N (2)

= {i ∈ U : x(2)i = 1}
6: if nc == 0 then F First scenario
7: yei ← 1,∀i ∈ N (2)

8: V [i] = D(2)
i +

δ(2)

Bi
+

De
1−Le/ne

− R̄,∀i ∈ N (2)

9: if all V [i] ≤ 0 then
10: n̄e← ne, n̄c← nc
11: else
12: sort V increasingly
13: j← User with maximum V
14: LD← R̄− D(2)

j −
δ(2)

Bj

15: n̄e←
⌈
Le LD

LD−De

⌉
16: end if
17: end if
18: if nc > 0 then F Second scenario
19: V [i] = D(2)

i +
δ(2)

Bi
,∀i ∈ N (2)

20: sort the users by V decreasingly
21: j← λc

λ
+ 1

22: yci ← 1,∀i ∈ N (2)
: i < j

23: yei ← 1,∀i ∈ N (2)
: i ≥ j

24: LD← R̄− D(2)
j − δ

(2)/Bj

25: n̄e←
⌈
Le LD

LD−De

⌉
26: end if
27: while n̄e > Ne do F Adjusting the load to fix the

violation of max edge servers
28: Assign user i with lowest V in edge to cloud

(yei ← 0, yci ← 1)
29: Lc← Lc + Dcλ, λc← λc + λ

30: Le← Le − Deλ, λe← λe − λ

31: LD← R̄− D(2)
j − δ

(2)/Bj

32: n̄e←
⌈
Le LD

LD−De

⌉
33: end while
34: if λc > 0 then F Compute the number of cloud VMs
35: j← user with maximum V in cloud
36: LD← R̄− D(2)

j − δ
(2)/Bj

37: n̄c←
⌈
Lc LD

LD−Dc

⌉
38: end if
39: P← Compute platform profit given n̄e, n̄c
40: if P > BestProfit then
41: BestProfit ← P
42: BestSol ← (P,U , n̄e, n̄c, ye, yc)
43: end if
44: end for
45: return BestSol

of the proposed approach compared with the solver and
some heuristic baselines are reported in Section VII-B.
All experiments were run on a Linux server machine with

40-cores Intel(R) Xeon(R) CPU 2.40GHz and 64 GB mem-
ory. BARON 22.3.21 solver has been used and its multi-
threading option has been enabled to run the solver as fast
as possible while the proposed approach was run in a single
thread.

All the dataset used in our numerical analyses and our
source code are available on Zenodo.3

A. EXPERIMENT SETUP
In this section, numerical experiments are presented to eval-
uate the performance of the proposed approach. The system
parameters are inspired by the work in [7] where an AlexNet
convolutional neural network has been profiled on a real
hardware mobile platform and in the cloud. Accordingly,
in this paper the pool5 layer, which minimizes the application
end-to-end latency, is considered as the partition point of
the second deployment. In [7], the mobile device uses the
Jetson TK1 mobile platform which is equipped by mobile
SoC, Tegra K1 by NVIDIA [45] and used in the Nexus
9 tablet [46] while the cloudVM is equippedwith anNVIDIA
Tesla K40 GPU. The parameters of users and cloud (such
as demand times, power consumption, data transfer size) are
adjusted randomly in a small range ±10% according to the
values reported in [7] and the edge side parameters are set
proportional to the cloud ones. The parameters (summarized
in Table 3) have been set as follows:
• Edge and cloud demand time: Cloud demand time is
set between 3 and 5 ms and the edge demand is set
proportionally equal to 6

5Dc.
• Requests demand time: Users demand time of first
deployment is set between 70 and 90 ms while the
second deployment is set between 20 and 40 ms.

• Requests arrival rate λ: It is set randomly in the range
of [20, 70] request per second.

• Power consumption of edge servers and users: The
power consumption of edge server is determined in
range of [200, 250] W, while the power consumption of
users’ devices is set proportional to their demand time:

p(1)i =
9D(1)

i [ms]90 W and p(2)i =
8D(2)

i [ms]40 W.
• Coefficients βe, βi: The industrial electricity cost in
Europe [47] is considered, which is approximately in
range [0.2, 0.25] $/kWh. βi is set as 10 percent more
than βe.

• Cloud VM cost: The VM cost is determined consid-
ering current cloud providers costs for medium range
GPU-based VMs and is set in the range [1, 2] $/h.

• Data size: The data transfer size of the second deploy-
ment is set in the range of [0.1, 0.3] MB and the related
amount of first deployment is 10 times less than the
second one.

• Memory: In all experiments, it is assumed that the mem-
ory parameters of users’ devices are enough to run both
deployments (this settings favour the alternative base-
lines that are introduced in the following).

3https://doi.org/10.5281/zenodo.6617705

91536 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

TABLE 3. Simulation parameters.

To perform the evaluation by considering the existing
mobile transmission technologies, a mixed scenario has been
defined in terms of users’ connectivity in which 25% of
users are connected through 5G and the others through 4G
(according to the predictions this mix is representative for the
global market in 2030 [48]).

Moreover, in order to assess the performance of the pro-
posed approach for both small and large systems, the number
of users has been varied in the range [50, 1000] increasing
the population size with step 50. For a fixed problem instance
size, 10 random instances are generated and in the following
every method relevant metrics are evaluated as the average
across 10 instances.

In order to have a comprehensive comparison, the follow-
ing baseline methods are defined:

1) All-Dep1: In this method, all users will run the first
deployment on their own device (recall that parameters
are generated in a way memory constraints, see sub-
section VII-A, are always fulfilled and here the same
assumption is initially introduced also for energy) or
do not participate. The minimum reward that persuades
user i to participate and run the first deployment is

U (1)
i =

λTiβi(p
(1)
i − p

(2)
i)

1− γ

and the best reward of the first deployment (from the
platform perspective) is

U (1)
= max

i∈U

{
U (1)
i : Umin ≤ U

(1)
i ≤ Umax

}
.

2) All-Dep2: In this method, it is assumed that all users
will run the first partition of the second deployment
or do not participate. The MCS platform assign all
the participants to the edge/cloud to run the second
partition of second deployment. The minimum reward
that motivates user i to participate and run the second
deployment is

U (2)
i = λTiβip

(2)
i

and the best reward of the second deployment (from the
platform perspective) is:

U (2)
= max

i∈U

{
U (2)
i : Umin ≤

U (2)
i

γ
≤ Umax

}
.

Assuming the total number of participants is n, to cal-
culate the minimum number of edge servers to serve
all participants, it is needed to obtain the maximum
delay incurred by running the first partition of second
deployment in a local device and transmission delay
among all users:

Delay = max
i∈U

{
D(2)
i +

δ(2)

Bi

}
Depending on assignment of users to edge servers or
cloud VMs, the All-Dep2 method is characterized into
two scenarios:

• All-Dep2-OnlyEdge: According to the maximum
delay among participants, the minimum number of
edge servers to serve all participants will be

ne =
⌈
nλ

R̄− Delay

R̄− Delay− De

⌉
.

For the sake of resource limitation in edge, this
method might be infeasible if ne > Ne.

• All-Dep2-OnlyCloud: Similarly, the minimum
number of cloud VMs to serve all participants will
be

nc =
⌈
nλ

R̄− Delay

R̄− Delay− Dc

⌉
.

In order to analyse how the proposed approach and baseline
methods behave by varying the number of participants, two
different scenarios are also introduced in terms of users’
device energy: high energy, which means all users are able
to run both of deployments, and low energy, the scenario in
which half of users do not have enough energy to run the first
deployment but they are still able to run the second deploy-
ment. The other half of users can run both of deployments.

VOLUME 10, 2022 91537

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 7. Platform profit and execution time of the proposed approach varying the number of users.

FIGURE 8. Number of participants and their deployment for different population size.

FIGURE 9. Edge nodes and cloud VMs varying the number of users.

To quantitatively evaluate the different methods, we define
the gain in terms of platform profit, denoted as ProfitRatio
as follows:

ProfitRatio =
ProposedApproch− OtherMethod

ProposedApproch
,

whereOtherMethod can denote the profit of BARON or other
methods.

B. PERFORMANCE EVALUATION
In this section, numerical experiment is presented to evaluate
the proposed approach. First, the results achieved by the

91538 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 10. Comparison between the solutions obtained by BARON and the proposed approach varying the number of users.

proposed approach are illustrated in Section VII-B1 and
then, the proposed method is compared with the BARON
solver [49] (which has been used to solve the reformula-
tion reported in Section V) and the baseline methods in
Sections VII-B2 and VII-B3, respectively.

1) NUMERICAL RESULTS OF THE PROPOSED APPROACH
In this section, the results obtained by the proposed method
are illustrated in terms of platform profit, execution time,
the number of participants, and the number of resources in
use. The result of Figure 7 is related to the high energy
scenario. The average platform profit achieved by the pro-
posed approach and the average corresponding execution
time across 10 instances varying the number of users is shown
in Figure 7. The logarithmic relation between the platform
revenue and the number of participants (see (16)) is evident
in this plot. The maximum execution time that the proposed
approach needs to find its best solution in large scale scenar-
ios is less than one minute.

Figure 8 presents the number of participants for each
deployment considering the two both energy scenarios by
varying the population size for a representative instance

FIGURE 11. Platform profit ratio obtained when using BARON.

(i.e., where demand time, energy, etc. parameters have been
fixed while varying the population size). This figure shows
that in the high energy scenario, the platform best profit will
be achieved if most of users run the first deployment vice

VOLUME 10, 2022 91539

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 12. Only cloud scenario profit.

FIGURE 13. Profit ratio of all deployment 1 scenario.

versa in the low energy scenario, if most of users run the
second deployment.

Finally, Figure 9 shows the number of edge nodes and
cloud VMs used related to the same instances shown
in Figure 8. In both energy scenarios, the edge servers are
saturated first and then the extra load is assigned to the cloud.
In the low energy scenario, the platform has to use more cloud
VMs because of the inability of users to run the DNN locally
on their own devices.

2) COMPARISON WITH BARON
To validate the approach, the performance of the heuristic
method is compare with the solution of the problem refor-
mulation discussed in Section V, under high energy sce-
nario, which can be achieved by BARON solver. Since the
problem (35)-(45) has a non-concave objective function and
includes non-convex constraints, a global MINLP solver is
required to solve this problem. BARON is able to find a nearly
optimal global solution through interval analysis and range
reduction techniques within a branch-and-bound framework.

Figure 10 shows, for a representative instance, the lower
bound and upper bound identified by BARON vs. the elapsed
time (note that the lower bound is the value of the best

feasible solution found so far). Since the proposed approach
can solve the problem in less than oneminute in theworst case
with 1000 users, the maximum execution time for BARON
has been limited up to one hour. As can be observed in
Figure 10a and Figure 10b, BARON found a solution (upper
and lower bounds are equal) after about 130s and 2600s
for 100 users and 250 users population while the proposed
approach can find almost the same solution in 0.5 and 3s,
respectively. For 400 users, BARON cannot find any feasible
solution for two out of ten instances. Moreover, for feasible
instances, BARON does not stop in one hour although the
lower bound and upper bound are close (see Figure 10c)
while the proposed approach finds the optimal solution in 8s.
Finally, BARON cannot find any feasible solution in one hour
for 450 users for all 10 instances while the proposedmethod is
able to find the best solution in 10s. 10d shows the lower and
upper bounds have not converged. We do not report results
for BARON for populations larger than 450 users because
we could never obtain a feasible solution within the one hour
time limit.

Figure 11 shows the average ProfitRatio across all the
feasible instances. As it is shown, BARON loses up to 13%
against the proposed approach.

91540 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

FIGURE 14. Social welfare comparison.

3) COMPARISON WITH BASELINE METHODS
In this section, the proposed approach is compared with
three baseline methods: All-Dep1, All-Dep2-OnlyEdge and
All-Dep2-OnlyCloud. As it is mentioned in Section VII-A,
All-Dep2-OnlyEdge method might be unfeasible because of
the edge resource constraints. Indeed, this method was not
able to find any feasible solution for all mentioned scenar-
ios. Accordingly, this method is omitted in the plots of this
section.

On the other hand, because cloud resources are more
expensive than the ege servers nodes, under the All-Dep2-
OnlyCloud scenario, the platform profit is always negative
across all instances. Results are reported in Figure 12.
To compare the profit obtained by the proposed approach

and All-Dep1 method, the average ProfitRatio has been cal-
culated across 10 instances of each population size under
the two scenarios of high energy and low energy. Figure 13
shows that when all the users have enough energy to run
both deployments, the profit obtained by All-Dep1 method
and our proposed approach are close, the ProfitRatio is about
1% for 50 users while the ProfitRatio increases linearly with
the population size up to 8% for 1000 users. The reason for
the linear increase is that in All-Dep1 method in high energy
scenario, the platform has to pay to all users the reward of first
deployment and as it is obvious in platform profit function
(see (20)), the relation of platform profit and participants
is linear, vice versa in the proposed approach, some users
run and receive the reward of the second deployment that is
cheaper than the first one while using the shared resources.
On contrary, in the low energy scenario, only the half of
users can participate in All-Dep1 method and it reduces the
platform profit because of the logarithmic profit model espe-
cially when the number of users is low, while in the proposed
method, all users can participate since the users with energy
constraints can still run the second deployment. When the
number of users increases, the participation impact gradu-
ally decreases by the logarithmic term, then, the profit ratio

decreases logarithmically by increasing the population size.
Overall, under the low energy scenario the ProfitRatio ranges
in 6-16% while under the high energy one the ProfitRatio
ranges in 1-8%.

As last analysis, in Figure 14 the average social welfare of
users has been computed across 10 instances under both high
and low energy scenarios. All-Dep1 method always achieves
the highest social welfare because of the higher reward of the
first deployment vice versa All-Dep2-OnlyCloud achieves the
lowest social welfare while the proposed method, privileging
the edge platform according to the two level game solution,
performs always in the middle.

VIII. CONCLUSION
In this paper, an incentive mechanism has been proposed
based on Stackelberg games for a mobile crowdsensing sys-
tem. Different from other literature proposals, an AI sensing
task has been introduced based on a DNN application that
can be run either totally on users’ local device or partially
run on the local device and edge or cloud. The problem
has been formulated as a MINLP based Stackelberg game
and an approach has been developed which is able to find
very efficiently an approximated optimal number of edge and
cloud resources. Results have demonstrated that the proposed
approach outperforms baseline methods under different sce-
narios and it is order of magnitudes faster than the BARON
solver especially in large scale systems.

Future works will extend the proposed method to support
multiple partitioning points for the DNN, in a way users have
more degrees of freedom to choose the best deployment given
their device’s energy level and computing capabilities.

APPENDIX
This Appendix provides the proofs of Theorems 1 and 2. The
convexity proof of the response time constraint (55) is pro-
vided in Appendix A, while the proof of the optimal number
of edge servers and cloud VMs is presented in Appendix B.

VOLUME 10, 2022 91541

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

A. PROOF OF THEOREM 1
Proof: The response time of edge servers for the second

deployment is as follows:

f (ne, λe) =
λe

3
·

Dene
ne − Deλe

and analyze the convexity of function f on the feasible set
{(ne, λe) : ne > Deλe}.

The first derivative of f respect to ne is

∂f (ne, λe)
∂ne

= −
(λe)2(De)2

3 [ne − λeDe]2

and the second derivative of f respect to ne is

∂2f (ne, λe)
∂∂ne

=
2(λe)2(De)2

3 [ne − λeDe]3
.

The first derivative of f respect to λe is

∂f (ne, λe)
∂λe

=
De(ne)2

3 [ne − λeDe]2

and the second derivative of f respect to λe is

∂2f (ne, λe)
∂λe

=
2(De)2(ne)2

3 [ne − λeDe]3
.

The cross partial derivatives are:

∂f (ne, λe)
∂λe

ne =
∂f (ne, λe)
∂ne

λe = −
2λe(De)2ne

3 [ne − λeDe]3
.

Therefore, the Hessian matrix of f is

∇
2f (ne, λe) =

2(De)2

3 [ne − λeDe]3

(λe)
2
− λene

−λene(ne)2

 .
Since the determinant is equal to zero and the trace is positive,
the Hessian matrix is positive semidefinite and f is a convex
function on the feasible set.

The same arguments hold for the second term in (55) with
respect to the variables nc and λc. Since the response time
constraint in (55) is the sum of convex functions, it is convex.

�

B. PROOF OF THEOREM 2
Proof: The edge platform problem where no cloud

VM is used can be formulated as follows (remind that since
it is assumed: βepe < c, no cloud VMs are used under light
load):

min βeeene
subject to: ne ≤ Ne,

Dene
ne − De3

≤
¯̄R,

ne − De3 > 0,

that is equivalent to

min βeeene,

subject to: ne ≤ Ne,

ne ≥
¯̄RDe3
¯̄R− De

,

whose optimal solution is

n∗e =
¯̄RDe3
¯̄R− De

,

provided that the feasible region of the latter problem is
nonempty, i.e.,

3 ≤
Ne(¯̄R− De)
¯̄RDe

,

that is the total load is small enough.
If the total load does not satisfies the above condition, then

edge servers are saturated and also cloud VMs have to be
used. Thus, the edge platform problem is:

min
(λe,nc)

cnc

subject to:
DeNeλe

Ne − Deλe
+

ncDc(3− λe)
nc − Dc(3− λe)

≤
¯̄R3,

0 < λe < 3,

Ne − Deλe > 0,

nc − Dc(3− λe) > 0.

The latter problem is convex and standard constraints quali-
fications hold (e.g., Slater condition is satisfied), hence it is
equivalent to the corresponding KKT system:

µ1

[
DeN 2

e

(Ne − Deλe)2
−

Dcn2c
(nc − Dc(3− λe))2

]
−µ2 + µ3 + Deµ4 − Dcµ5 = 0

c− µ1
D2
c(3− λe)

2

(nc − Dc(3− λe))2
− µ5 = 0

DeNeλe
Ne − Deλe

+
ncDc(3− λe)

nc − Dc(3− λe)
≤
¯̄R3

µ1 ≥ 0,

µ1

[
DeNeλe

Ne − Deλe
+

ncDc(3− λe)
nc − Dc(3− λe)

−
¯̄R3
]
= 0

λe > 0, µ2 ≥ 0, µ2λe = 0

λe < 3, µ3 ≥ 0, µ3(3− λe) = 0

Ne − Deλe > 0, µ4 ≥ 0, µ4(Ne − Deλe) = 0

nc − Dc(3− λe) > 0, µ5 ≥ 0,

µ5[nc − Dc(3− λe)] = 0

Notice that constraints imply µ2 = µ3 = µ4 = µ5 = 0.
Moreover, it follows from second equation that µ1 > 0, thus
first constraint holds as an equality, i.e.,

DeNeλe
Ne − Deλe

+
ncDc(3− λe)

nc − Dc(3− λe)
=
¯̄R3,

that is equivalent to

nc =

[
¯̄R3− DeNeλe

Ne−Deλe

]
Dc(3− λe)

¯̄R3− DeNeλe
Ne−Deλe

− Dc(3− λe)
. (57)

91542 VOLUME 10, 2022

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

Since µ1 > 0, first equation implies that

DeN 2
e

(Ne − Deλe)2
=

Dcn2c
(nc − Dc(3− λe))2

,

hence
√
DeNe

Ne − Deλe
=

√
Dcnc

nc − Dc(3− λe)
,

that is equivalent to

nc =

√
DeDcNe(3− λe)

Ne(
√
De −

√
Dc)+ De

√
Dcλe

. (58)

It follows from (57)–(58) that√
Dc(Ne − Deλe)

[
(NeDe + ¯̄R3De − Ne

√
DcDe)λe

−Ne ¯̄R3+ Ne3
√
DcDe

]
= 0.

Since Ne − Deλe > 0, the optimal edge load is

λ∗e =
Ne3(¯̄R−

√
DcDe)

NeDe + ¯̄R3De − Ne
√
DcDe

.

Finally, the optimal number of cloud VMs from (57) is as
follows:

n∗c =
Dc3[¯̄RDe3− Ne(¯̄R− De)]

Ne(
√
De −

√
Dc)2 + De3(¯̄R− Dc)

.

�

REFERENCES
[1] C. Borcea, M. Talasila, and R. Curtmola, Mobile Crowdsensing.

Boca Raton, FL, USA: CRC Press, 2016.
[2] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,

and M. B. Srivastava, ‘‘Participatory sensing,’’ in Proc. 4th ACM Conf.
Embedded Networked Sensor Syst. (SenSys), 2006, pp. 1–5.

[3] V. Le, H. Scholten, and P. Havinga, ‘‘Towards opportunistic data dissem-
ination in mobile phone sensor networks,’’ in Proc. 11th Int. Conf. Netw.
(ICN), 2012, pp. 139–146.

[4] S. S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi,
M. Golec, V. Stankovski, H. Wu, A. Abraham, and M. Singh, ‘‘AI for next
generation computing: Emerging trends and future directions,’’ Internet
Things, vol. 19, Aug. 2022, Art. no. 100514.

[5] A. Ghosh, D. Chakraborty, and A. Law, ‘‘Artificial intelligence in Internet
of Things,’’CAAI Trans. Intell. Tech., vol. 3, no. 4, pp. 208–218, Dec. 2018.

[6] J. S. Devagiri, S. Paheding, Q. Niyaz, X. Yang, and S. Smith, ‘‘Augmented
reality and artificial intelligence in industry: Trends, tools, and future
challenges,’’ Exp. Syst. Appl., vol. 207, Nov. 2022, Art. no. 118002.

[7] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, ‘‘Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge,’’ in Proc. ACM ASPLOS, 2017, pp. 615–629.

[8] H. Sedghani, D. Ardagna, M. Matteucci, G. A. Fontana, G. Verticale,
F. Amarilli, R. Badia, D. Lezzi, I. Blanquer, A. Martin, and K. Wawruch,
‘‘Advancing design and runtime management of AI applications with
AI-SPRINT (position paper),’’ in Proc. IEEE 45th Annu. Comput., Softw.,
Appl. Conf. (COMPSAC), Jul. 2021, pp. 1455–1462.

[9] E. Li, L. Zeng, Z. Zhou, and X. Chen, ‘‘Edge AI: On-demand accelerating
deep neural network inference via edge computing,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[10] D. Liu, X. Chen, Z. Zhou, and Q. Ling, ‘‘HierTrain: Fast hierarchical edge
AI learning with hybrid parallelism in mobile-edge-cloud computing,’’
IEEE Open J. Commun. Soc., vol. 1, pp. 634–645, 2020.

[11] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, S. Dustdar, and J. Chen,
‘‘A lightweight collaborative deep neural network for the mobile web in
edge cloud,’’ IEEE Trans. Mobile Comput., vol. 21, no. 7, pp. 2289–2305,
Jul. 2022.

[12] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, ‘‘JointDNN: An effi-
cient training and inference engine for intelligent mobile cloud computing
services,’’ IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 565–576,
Feb. 2021.

[13] S. Disabato, M. Roveri, and C. Alippi, ‘‘Distributed deep convolutional
neural networks for the Internet-of-Things,’’ IEEE Trans. Comput., vol. 7,
no. 8, pp. 1239–1252, Aug. 2021.

[14] S. Teerapittayanon, B. McDanel, and H. T. Kung, ‘‘Distributed deep
neural networks over the cloud, the edge and end devices,’’ in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 328–339.

[15] W. S. Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, ‘‘Improving device-
edge cooperative inference of deep learning via 2-step pruning,’’ in Proc.
IEEE INFOCOM, 2019, pp. 1–6.

[16] U. Tadakamalla andD. A.Menasce, ‘‘Autonomic resourcemanagement for
fog computing,’’ IEEE Trans. Cloud Comput., early access, Mar. 9, 2021,
doi: 10.1109/TCC.2021.3064629.

[17] H. Sedghani, F. Filippini, and D. Ardagna, ‘‘A random greedy based design
time tool for AI applications component placement and resource selection
in computing continua,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Sep. 2021, pp. 32–40.

[18] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, ‘‘Free mar-
ket of crowdsourcing: Incentive mechanism design for mobile sensing,’’
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp. 3190–3200,
Dec. 2014.

[19] Z. Cai, Z. Duan, and W. Li, ‘‘Exploiting multi-dimensional task diversity
in distributed auctions for mobile crowdsensing,’’ IEEE Trans. Mobile
Comput., vol. 20, no. 8, pp. 2576–2591, Aug. 2021.

[20] M. E. Gendy, A. Al-Kabbany, and E. F. Badran, ‘‘Maximizing clearance
rate of budget-constrained auctions in participatorymobile crowdsensing,’’
IEEE Access, vol. 8, pp. 113585–113600, 2020.

[21] M. Xiao, B. An, J. Wang, G. Gao, S. Zhang, and J. Wu, ‘‘CMAB-based
reverse auction for unknown worker recruitment in mobile crowdsens-
ing,’’ IEEE Trans. Mobile Comput., early access, Feb. 15, 2021, doi:
10.1109/TMC.2021.3059346.

[22] X. Dong, Z. You, T. H. Luan, Q. Yao, Y. Shen, and J. Ma, ‘‘Optimal mobile
crowdsensing incentive under sensing inaccuracy,’’ IEEE Internet Things
J., vol. 8, no. 10, pp. 8032–8043, May 2021.

[23] J. Xu, Y. Zhou, Y. Ding, D. Yang, and L. Xu, ‘‘Biobjective robust incentive
mechanism design for mobile crowdsensing,’’ IEEE Internet Things J.,
vol. 8, no. 19, pp. 14971–14984, Oct. 2021.

[24] Z. Wang, J. Li, J. Hu, J. Ren, Q. Wang, Z. Li, and Y. Li, ‘‘Towards
privacy-driven truthful incentives for mobile crowdsensing under untrusted
platform,’’ IEEE Trans. Mobile Comput., early access, Jun. 30, 2021, doi:
10.1109/TMC.2021.3093552.

[25] X. Duan, C. Zhao, S. He, P. Cheng, and J. Zhang, ‘‘Distributed algorithms
to compute Walrasian equilibrium in mobile crowdsensing,’’ IEEE Trans.
Ind. Electron., vol. 64, no. 5, pp. 4048–4057, May 2017.

[26] Y. Zhan, Y. Xia, and J. Zhang, ‘‘Incentive mechanism in platform-centric
mobile crowdsensing: A one-to-many bargaining approach,’’ Comput.
Netw., vol. 132, pp. 40–52, Feb. 2018.

[27] S. He, D.-H. Shin, J. Zhang, J. Chen, and P. Lin, ‘‘An exchange market
approach to mobile crowdsensing: Pricing, task allocation, and walrasian
equilibrium,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 4, pp. 921–934,
Apr. 2017.

[28] Y. Zhan, Y. Xia, and J. Zhang, ‘‘Quality-aware incentive mechanism based
on payoff maximization for mobile crowdsensing,’’ Ad Hoc Netw., vol. 72,
pp. 44–55, Apr. 2018.

[29] H. Sedghani, D. Ardagna, M. Passacantando, M. Z. Lighvan, and
H. S. Aghdasi, ‘‘An incentive mechanism based on a Stackelberg game
for mobile crowdsensing systems with budget constraint,’’ Ad Hoc Netw.,
vol. 123, Dec. 2021, Art. no. 102626.

[30] J. Nie, J. Luo, Z. Xiong, D. Niyato, and P. Wang, ‘‘A Stackelberg game
approach toward socially-aware incentive mechanisms for mobile crowd-
sensing,’’ IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 724–738,
Jan. 2019.

[31] Y. Li, F. Li, S. Yang, P. Zhou, L. Zhu, and Y. Wang, ‘‘Three-stage
Stackelberg long-term incentive mechanism and monetization for mobile
crowdsensing: An online learning approach,’’ IEEE Trans. Netw. Sci. Eng.,
vol. 8, no. 2, pp. 1385–1398, Apr. 2021.

[32] L. Xiao, Y. Li, G. Han, H. Dai, and H. V. Poor, ‘‘A secure mobile
crowdsensing game with deep reinforcement learning,’’ IEEE Trans. Inf.
Forensics Security, vol. 13, no. 1, pp. 35–47, Aug. 2017.

VOLUME 10, 2022 91543

http://dx.doi.org/10.1109/TCC.2021.3064629
http://dx.doi.org/10.1109/TMC.2021.3059346
http://dx.doi.org/10.1109/TMC.2021.3093552

H. Sedghani et al.: Stackelberg Game Approach for Managing AI Sensing Tasks in Mobile Crowdsensing

[33] Y. Wang, J. Wang, W. Zhang, Y. Zhan, S. Guo, Q. Zheng, and X. Wang,
‘‘A survey on deploying mobile deep learning applications: A systemic
and technical perspective,’’ Digit. Commun. Netw., vol. 8, no. 1, pp. 1–17,
Feb. 2022.

[34] Y. Xu, M. Xiao, J. Wu, S. Zhang, and G. Gao, ‘‘Incentive mechanism for
spatial crowdsourcing with unknown social-aware workers: A three-stage
Stackelberg game approach,’’ IEEE Trans. Mobile Comput., early access,
Mar. 8, 2022, doi: 10.1109/TMC.2022.3157687.

[35] J. Liu, S. Huang, D. Li, S. Wen, and H. Liu, ‘‘Addictive incentive
mechanism in crowdsensing from the perspective of behavioral eco-
nomics,’’ IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 5, pp. 1109–1127,
May 2022.

[36] Y. Huang, X. Qiao, S. Dustdar, and Y. Li, ‘‘AoDNN: An auto-offloading
approach to optimize deep inference for fostering mobile web,’’ in Proc.
IEEE INFOCOM Conf. Comput. Commun., May 2022, pp. 1–10.

[37] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, ‘‘Task partition-
ing and offloading in DNN-task enabled mobile edge computing net-
works,’’ IEEE Trans. Mobile Comput., early access, Sep. 21, 2021, doi:
10.1109/TMC.2021.3114193.

[38] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D. Francesco, ‘‘Dis-
tributed inference acceleration with adaptive DNN partitioning and
offloading,’’ inProc. IEEE INFOCOMConf. Comput. Commun., Jul. 2020,
pp. 854–863.

[39] S. Yu-Jie, W. Hui, and Z. Cheng-Xiang, ‘‘Balanced computing offload-
ing for selfish IoT devices in fog computing,’’ IEEE Access, vol. 10,
pp. 30890–30898, 2022.

[40] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,Quantitative
System Performance: Computer System Analysis Using Queueing Network
Models. Upper Saddle River, NJ, USA: Prentice-Hall, 1984.

[41] H. Haile, K.-J. Grinnemo, S. Ferlin, P. Hurtig, and A. Brunstrom,
‘‘End-to-end congestion control approaches for high throughput and low
delay in 4G/5G cellular networks,’’ Comput. Netw., vol. 186, Feb. 2021,
Art. no. 107692.

[42] T. Liu and Y. Zhu, ‘‘Social welfare maximization in participatory smart-
phone sensing,’’ Comput. Netw., vol. 73, pp. 195–209, Nov. 2014.

[43] D. Yang, G. Xue, X. Fang, and J. Tang, ‘‘Crowdsourcing to smartphones:
Incentive mechanism design for mobile phone sensing,’’ in Proc. 18th
Annu. Int. Conf. Mobile Comput. Netw., 2012, pp. 173–184.

[44] D. Yang, G. Xue, X. Fang, and J. Tang, ‘‘Incentive mechanisms for crowd-
sensing: Crowdsourcing with smartphones,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 3, pp. 1732–1744, Jun. 2016.

[45] NVIDIA Jetson TK1 Development Kit: Bringing GPU-Accelerated Com-
puting to Embedded Systems, NVIDIA, USA, 2017.

[46] (2016). Nvidias Tegra K1 at the Heart of Googles Nexus 9. [Online].
Available: http://www.pcmag.com/article2/0,2817,2470740,00.asp

[47] (2022). Energy Prices in the EU—Statistics & Facts. [Online].
Available: https://www.statista.com/topics/4226/energy-prices-in-the-eu/
#topicHeader__wrapper

[48] B. Fletcher. (2020).High-Band 5G to Cover 25% of Globe by 2030:Mckin-
sey. Fierce Wireless. [Online]. Available: https://www.fiercewireless.com/
5g/high-band-5g-to-cover-25-globe-by-2030-mckinsey

[49] MINLP:BARON Solver. Accessed: Feb. 12, 2022. [Online]. Available:
https://minlp.com/baron

HAMTA SEDGHANI received the B.Sc. degree
in computer engineering (software) from the Iran
University of Since and Technology, Tehran, Iran,
in 2010, and the M.S. degree in computer engi-
neering (software) from the University of Tabriz,
Tabriz, Iran, in 2014, where she is currently pur-
suing the Ph.D. degree in information technol-
ogy engineering (computer networks). She is also
working as a Researcher with the University of
Tabriz. Her current interests include game theory
and optimization in mobile crowedsensing.

MINA ZOLFY LIGHVAN received the B.Sc.
degree in computer engineering (hardware) and
the M.Sc. degree in computer engineering (com-
puter architecture) from the ECE Faculty, Univer-
sity of Tehran, Iran, in 1999 and 2002, respectively,
and the Ph.D. degree in electronic engineer-
ing (digital electronic) from the Electrical and
Computer Engineering Faculty, University of
Tabriz, Iran. She is currently an Associate Profes-
sor with the Computer Engineering Department,
ECE Faculty, University of Tabriz.

HADI S. AGHDASI received the B.S. degree in
computer engineering from the Sadjad University
of Technology, Mashhad, Iran, in 2006, and the
M.S. and Ph.D. degrees in computer engineering
from Shahid Beheshti University, Tehran, Iran, in
2008 and 2013, respectively. He is currently an
Assistant Professor with the Computer Engineer-
ing Department, University of Tabriz, Tabriz, Iran,
where he is also the Director of the Humanoid
Robots and Cognitive Technology (HRCT) Lab-

oratory and Wireless-Ad hoc and Sensor Networks (WASL) Laboratory. His
current research interests include humanoid robots and intelligent methods
in surveillance systems and cognitive technology. Also, he works on wireless
traditional and visual sensor networks (routing, clustering, coverage, and
visual information transmission).

MAURO PASSACANTANDO received the M.S.
and Ph.D. degrees in mathematics from the Uni-
versity of Pisa, Italy, in 2000 and 2005, respec-
tively. He is currently an Associate Professor in
operations research (qualified for Full Professor-
ship) with the Department of Computer Science,
University of Pisa. His research is mainly devoted
to variational inequalities and equilibrium prob-
lems. In the last years, his work focused on game
theoretic models applied to service provisioning

problems in cloud and multicloud systems and infrastructure and spectrum
sharing in mobile networks.

GIACOMO VERTICALE (Member, IEEE) received
the Ph.D. degree in telecommunications engineer-
ing from the Politecnico di Milano, Italy, in 2003.
He is currently an Associate Professor with the
Politecnico di Milano. He was involved in several
research projects on fixed and wireless broadband
access technologies and promoting the smart grid.
His current research interests include the security
issues of the smart grid, on network function
virtualization, and on edge computing in 5G.

DANILO ARDAGNA (Member, IEEE) received
the Ph.D. degree in computer engineering from the
Politecnico di Milano, in 2004. He is currently an
Associate Professor with the Dipartimento di Elet-
tronica Informazione and Bioingegneria, Politec-
nico di Milano. His work focuses on the design,
prototype, and evaluation of optimization algo-
rithms for resource management of cloud comput-
ing, and big data systems.

91544 VOLUME 10, 2022

http://dx.doi.org/10.1109/TMC.2022.3157687
http://dx.doi.org/10.1109/TMC.2021.3114193

