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ABSTRACT The robust bounded control problem for the permanent magnet linear motors with inequality
constraints is studied. Firstly, the dynamical model of the system is built, through the state transformation
is used to satisfy the inequality constraint of the position output. Thus, the controller after the state
transformation can ensure that the control output of the linear motor stays the desired range. Selecting
the appropriate boundary function, and then the upper and lower bounds of the control output can be set
according to our control requirements. The control scheme can guarantee uniform boundedness and uniform
ultimate boundedness. The results of experiments and simulation show that the proposed algorithm can
assure the control output within the desired range regardless of the uncertainty.

9 INDEX TERMS State transformation, inequality constraints, robust control, linear motor, uncertainty.

I. INTRODUCTION10

The permanent magnet linear motor (PMLM) has sim-11

ple structure, high execution efficiency and fast response12

speed [1], [2]. It has been widely used in the field of intel-13

ligent manufacturing and industrial production [3], [4]. The14

principle of PMLM is equivalent to the rotating motor, which15

is equivalent to expanding the rotating motor into a straight16

line. Both of them use three-phase coil windings and realize17

the steering function of the motor through the internal Hall18

element. Because the linear motor is directly connected to the19

load, there is no need for gear, belt, and other transmission20

links. This linear motor can reduce friction and interfer-21

ence [5], [6]. And it can avoid mechanical lag, return error,22
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and other defects of the rotating motor. Theoretical travel is 23

not limited. Therefore, the permanent magnet linear motor 24

can satisfy the needs of high speed, high dynamic response, 25

and high precision when driving directly. In addition, the 26

control performance of PMLM is also influenced by all kinds 27

of uncertain factors, such as uncharted external disturbance, 28

friction [7], etc. In the study of PMLM, it is essential to 29

improve the control performance [8], [9]. 30

In the control technology of PMLM, the precise control of 31

linear motors is essential [10], but the influence of unknown 32

external disturbance and friction increases the difficulty of 33

linear motor position control. [11] designed a robust con- 34

troller composed of adaptive compensator, PID feedback con- 35

troller and feedforward compensator. [12] and [13] proposed 36

a typical adaptive robust control, which combines robust 37

control and traditional adaptive control to overcome various 38
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uncertainties. [14] proposed a robust position tracking control39

method of PMLM based on model. [15] designed a controller40

combining adaptive robustness and neural network, which41

has a certain anti-interference ability. [16] and [17] proposes a42

robust visual tracking method based on fuzzy detection strat-43

egy. [18] proposes an improved PID control or redesigned44

robust control with simple implementation and practical45

results. [19] designed a robust approximate constraint con-46

troller based on the Udwadia-Kalaba equation to control47

PMLM. For the effect of nonlinear factors, [20] proposes an48

adaptive compensation controller. These resolve the unknown49

load and friction effect of the permanent magnet linear motor50

to a certain extent. However, under actual working conditions,51

the displacement of permanent magnet linear motor must be52

limited within a certain range [21], [22]. [23] designed a con-53

troller considering input constraints and parameter uncertain-54

ties for nonholonomic wheeled mobile robot. [24] proposed55

a trajectory planning approach to achieve minimum energy56

consumption and zero residual vibration for flexible servo-57

motor systemswith state constraints. [25] studied the adaptive58

neural torsional vibration suppression control problem for59

the drive system with state and input constraints. Because60

the travel of the linear motor has a range, when the motor61

is subjected to external interference, the displacement of the62

linear motor deviates from the predetermined trajectory, the63

bumping phenomenon will occur, which will not only have a64

certain impact on the lifetime and accuracy of the motor, but65

also may cause production accidents. Whether this condition66

can be satisfied is closely related to product safety issues.67

So far, few literatures have considered the problem of bilat-68

eral constrained control for linear motors. The research scope69

of this paper belongs to the PMLM technology. Trajectory70

tracking control for nonlinear linear motors with uncertain71

external disturbances is studied. There are uncertainties in the72

system, which may be caused by external load disturbance73

and unknown parameters. Other than its possible bound-74

ary, no other information is known. This is a problem with75

bounded control output. Because PMLM has a lower and76

an upper limit, the displacement of the PMLM needs to be77

limited to the desired range.78

From the analysis of the existing literature, it can be seen79

that there are some problems in the control of PMLM. From80

the perspective of these difficulties, the main contributions of81

this paper are three aspects. Firstly, aiming at the bounded82

control of PMLM, a method of the state transformation is83

proposed, which can transform the bounded state into the84

unbounded state. Secondly, the robust bounded controller of85

permanent magnet linear motor with inequality constraints is86

proposed to control the transformed system under the con-87

ditions of uncertainties. The uniform boundedness and uni-88

form ultimate boundedness of uncertain systems are proved.89

Finally, the numerical simulation and experimental verifi-90

cation of the PMLM are completed. Through the analysis91

of the experimental and simulation results, it is shown that92

the proposed robust control with inequality constraints can93

ensure the performance of the PMLM mechanical system94

under the conditions of uncertainties. And the displacement 95

of permanent magnet linear motor system can be controlled 96

within the defined range. The effect of control can meet the 97

requirements of some high applications. 98

II. DYNAMIC MODEL OF PMLM 99

A complete PMLM system includes cushion, linear motor, 100

displacement sensor, guide rail, and drag chain, etc [26]. 101

The cushion is used to prevent the motor body from being 102

damaged when the moving parts of the linear motor move 103

back and forth. And the displacement sensor is used to detect 104

the position of the motor in real time. 105

For PMLM, its dynamic model is usually approximated 106

by a second-order system [27], which can be expressed by 107

equation(1). 108
ẏ1(t) = y2(t)

ẏ2(t) = −
kf ke
Rm

y2(t)+
kf
Rm

v(t)−
d(t)
m

x(t) = y1(t)

(1) 109

Here, y1 represents the moving displacement of the linear 110

motor, y1 ∈ (ym, yM ), ym represents the lower bound of 111

displacement and yM represents the upper bound of displace- 112

ment. y2 represents the linear velocity of PMLM,R represents 113

the impedance, m represents the mass of the motor, kf repre- 114

sents the power constant, ke represents the back electromotive 115

force, and d(t) can be regarded as the disturbance including 116

ripple force and friction force. v(t) is the control signal. 117

It is assumed that the disturbance of the motor consists of 118

two terms, namely the friction force and the ripple force, and 119

friction varies with load. It is expressed as follows 120

d(t) = Fripple + Ffric (2) 121

Here, Fripple is the ripple force,Ffric is the friction force. 122

Ffric is expressed by the equation(3) 123

Ffric =
[
fc + (fs − fc) e−(ẏ/ẋs)

2
+ fvẏ

]
sign(ẏ) (3) 124

where fc represents the Coulomb friction coefficient, fs rep- 125

resents the static friction coefficient, fv represents the viscous 126

friction coefficient, xs represents the lubricant parameter [28]. 127

Here We use the overall identification method based on the 128

least squares to obtain friction parameters. 129

Fripple is described as: 130

Fripple = A1 sin(ωy)+ A2 sin(3ωy)+ A3 sin(5ωy) (4) 131

Here A1, A2, A3, ω are constants. 132

We choose y as the generalized coordinate, and y is the 133

displacement of linear motor. We can convert the linear motor 134

model of the approximate second-order system into the gen- 135

eral form of the system dynamics model. 136

H (y, σ, t)ÿ(t)+ C(y, ẏ, σ, t)ẏ(t)+ F(y, ẏ, σ, t) = τ (t) (5) 137

Here t ∈ R represents the time, y ∈ Rn represents the 138

coordinate, ẏ ∈ Rn represents the velocity, ÿ ∈ Rn represents 139

the acceleration, τ represents the control input and σ ∈ Rp 140
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represents the uncertain parameter. H (y, σ, t) represents the141

inertia matrix,C(y, ẏ, σ, t) represents the Coriolis/centrifugal142

force vector, and F(y, ẏ, σ, t) represents the friction force143

and disturbance. The functions H , C and F are continuous.144

Furthermore, 6 ⊂ Rp is compact and unknown, which145

represents the possible bounding of σ .146

Therefore, the dynamical model of PMLM can be147

expressed as follows:148

Rm
kf
ÿ(t)+ keẏ(t)+

R
kf
d(t) = v(t) (6)149

Remark. In addition to the friction force, there are other150

uncertainties in linear motors. The mass is uncertain due to151

the variation of the load. Resistance usually varies with coil152

temperature.153

Remark. Displacement y is limited within (ym, yM ), where154

yM > ym, which is related to the displacement range of155

linear motor, when the working condition requires higher156

requirements. If the displacement of linear motor exceeds the157

defined displacement range, it may have an impact on the158

safety of production. However, despite the large effect, this159

interval condition has not been taken into account in previous160

studies. In the next section, we will address this problem161

through the state transformations.162

III. THE STATE TRANSFORMATIONS163

In the mechanical system of PMLM, the value of state dis-164

placement should be within the defined boundary in some165

applications where the working conditions are demanding.166

However, the existence of uncertain external disturbances in167

systems can cause the state variables to exceed the specified168

range [29]. Therefore, we propose the state transformation169

to convert the displacement y with limitation into the state x170

without limitation, which can assure that the displacement y171

is not able to exceed the limitation (ym, yM ).172

Assume that the motor position satisfies the bilateral173

constraint as follows:174

ym < y < yM (7)175

Let’s set the state transformation equation as:176

x = tan
[

π

yM − ym
(y− ym)−

π

2

]
(8)177

with178

xd = tan
[

π

yM − ym
(yd − ym)−

π

2

]
(9)179

Here y represents the actual position, yd represents the180

expected position, x represents the actual position after the181

state transformation, and xd represents the expected position182

after the state transformation.183

Where, the constraints can be closed intervals, but other184

conversion functions are needed. The constraint interval in185

this paper is open, which is determined by the conversion186

function we design. Considering the practical characteristics187

of the linear motor, we design the conversion function as188

tan function. tan function is only applicable to the open 189

interval by definition. 190

From the equation(8), we can see that y → yM as 191

x → +∞ and y → ym as x → −∞. Thus, by selecting an 192

appropriate function x, the state transformation can convert 193

the state y with limitation to the state x without limitation. 194

From equation(8), we can get 195

y =
yM − ym
π

arctan(x)+
yM + ym

2
(10) 196

Take the derivative of the equation(10) to get the first 197

derivative 198

ẏ =
yM − ym
π

ẋ
1+ x2

(11) 199

Take the derivative of the equation(11) again to get the 200

second derivative 201

ÿ =
yM − ym
π

[
1+ x2

]
ẍ − 2xẋ2[

1+ x2
]2 (12) 202

Substituting the equation(11) and (12) into the dynamics 203

equation(6), we can get: 204

Rm
kf

yM − ym
π

[
1+ x2

]
ẍ − 2xẋ2[

1+ x2
]2 + ke

yM − ym
π

ẋ
1+ x2

205

+
R
kf
d(t) = v(t) (13) 206

Further simplified to the general form of the dynamical 207

model 208

Rm (yM − ym)
[
1+ (x)2

]
πkf

[
1+ (x)2

]2 ẍ + ke
(yM − ym)

π
[
1+ (x)2

] ẋ + R
kf
d(t) 209

−
2Rm (yM − ym) (x)ẋ2

πkf
[
1+ (x)2

]2 = v(t) (14) 210

This transforms the bounded constraint problem on y into 211

an unbounded constraint problem on x. 212

Accordingly, we can get the inertia matrix H , Coriolis 213

force/centrifugal force matrix C and friction vector F of the 214

linearmotormechanical system after the state transformation. 215

H =
Rm (yM − ym)

(
1+ x2

)
kf π

(
1+ x2

)2 216

C = ke
(yM − ym)

π
(
1+ x2

) 217

F =
R
kf
d(t)−

2Rm (yM − ym) xẋ2

kf π
(
1+ x2

)2 (15) 218

(i) H (x) is positive definite symmetric matrix, and is uni- 219

formly bounded for all x. It can be expressed as 220

0 < ςI 6 H (x) 6 ς I (16) 221

where ς , ς are positive constant. 222

(ii) The matrix Ḣ (x)− 2C(x, ẋ) is skew symmetric for all 223

x, ẋ. That is, for any vector ζ , 224

ζ T {Ḣ (x)− 2C(x, ẋ)}ζ = 0 (17) 225
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The following figure shows the process of state transforma-226

tion. The first part (a) of Figure(1) shows the ideal trajectory227

of the state variables. In the ideal state, y(t) always stays228

within the bounds yM and ym. However, due to the uncertainty229

factor, the actual trajectory of y(t) is shown in the second230

part (b). Therefore, the state transformation is applied as231

shown in the third part (c). Through the function α, the state232

variable y is converted to x. After the state transformation,233

ywill always remain within the boundary. In the next section,234

a robust controller is designed to ensure that the state variable235

y tracks the desired trajectory.236

FIGURE 1. The state transformation process.

IV. ROBUST CONTROL237

A. ROBUST CONTROLLER DESIGN238

After the state transformations, we choose x as the gen-239

eralized coordinate, where x is the state variable after the240

state transformation. Consider the linear motor system for241

position tracking control, assuming that the desired position242

xd (·) : [t0,∞) → Rn, xd (→ ·) is C2. For any given time243

t ∈ [t0,∞) , xd (t), ẋd (t) and ẍd (t) uniformly bounded. Then,244

the output tracking error is:245

e(t) = x(t)− xd (t) (18)246

and hence247

ė(t) = ẋ(t)− ẋd (t), ë(t) = ẍ(t)− ẍd (t) (19)248

System equation(5) can be rewritten as249

H (x, σ, t)(ẍd (t)+ ë(t))+ C(x, ẋ, σ, t)(ẋd (t)+ ė(t))250

+F(x, ẋ, σ, t) = τ (t) (20)251

Actually, uncertainty exists in the system due to the252

uncertainty of the parameters and the constant changes of253

the parameters and unmodeled dynamics. Therefore, the254

dynamic model could be divided into the uncertain term255

and the nominal term. The functions H (·), C(·) and F(·) are 256

expressed as follows: 257

H (x, σ, t) = 1H (x, σ, t)+ H (x, t) 258

C(x, ẋ, σ, t) = 1C(x, ẋ, σ, t)+ C(x, ẋ, t) 259

F(x, ẋ, σ, t) = 1F(x, ẋ, σ, t)+ F(x, ẋ, t) (21) 260

where 1H , 1C and 1F are uncertain terms which depend 261

on σ , H (·), C(·) and F(·) are the nominal terms. 262

Assuming that the boundary of uncertainty is estimated 263

by ρ. 264

ρ(e, ė, σ, t) >‖ 8(e, ė, σ, t) ‖ (22) 265

where 266

8(e, ė, σ, t) = −1H (x, σ, t)(ẍd − Sė) 267

−1C(x, ẋ, σ, t)(ẋd − Se) 268

−1F(x, ẋ, σ, t) (23) 269

Note that for a given S >0 is constant. Apparently, if all 270

the uncertainties in the mechanical system disappear, then 271

8 ≡ 0. 272

Regard the trajectory tracking error vector as follows 273

e(t) :=
[
e(t) ė(t)

]T (24) 274

The problem of trajectory tracking is to design a controller 275

to guarantee the tracking error vector e(t) small enough. 276

The control torque τ (t) can be geted by 277

τ (t) = H (ẍd − Sė)+ C(ẋd − Se)+ F 278

−Kpe− Kvė− γ (ė+ Se)ρ2 (25) 279

where Kp is the proportional control parameter and Kv is 280

the differential control parameter. These control parameters 281

come from traditional PID control. The scalar γ > 0. Kp, 282

Kv and γ all are constant, which are the flexible parameter 283

variables. 284

For the mechanical system expressed in equation(5), the 285

control equation(25) adopted would make the tracking error 286

e(t) uniformly bounded and uniformly ultimately bounded. 287

The last item is a robust feedback item, mainly for uncer- 288

tainty. 289

B. STABILITY ANALYSIS 290

Lyapunov minmax method [30], [31] is used to analyze the 291

stability of the proposed controller. The Lyapunov function 292

candidate [32] is choose as: 293

V (e, t) :=
1
2
(ė+ Se)TH (e+ xd (t))(ė+ Se) 294

+
1
2
eT (Kp + SKv)e (26) 295

In order to prove that the Lyapunov function V is a suitable 296

candidate, V must be proved to be positive definite and 297

decreasing. 298

With equation(16), H (x, σ, t) is bounded, so 299

V ≥
1
2
ς ‖ ė+ Se ‖2 +

1
2
eT (Kp + SKv)e 300
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=
1
2
ς
(
ė2 + 2sėe+ s2e2

)
+

1
2
(kp + skv)e2301

=
1
2

[
e ė
]
ϒ

[
e
ė

]
(27)302

here303

ϒ :=

[
ςs2 + kp + skv ςs

ςs ς

]
(28)304

It can be easily proved thatϒ > 0. Therefore, V is positive305

definite.306

V ≥
1
2
λmin(ϒ)(e2 + ė2) ≥ ζ1‖e‖2 (29)307

where ζ1 =min{ 12λmin
(
ϒ
)
}, ζ1 > 0.308

Because the inertial matrix in equation(16) is bounded,309

thus310

V ≤
1
2
ς ‖ ė+ Se ‖2 +

1
2
eT (Kp + SKv)e311

=
1
2

[
eė
]
ϒ

[
e
ė

]
(30)312

where313

ϒ :=

[
ςs2 + kp + sikv ςs

ςs ς

]
(31)314

315

V ≤
1
2
λmax(ϒ)(e2 + ė2) ≤ ζ2‖e‖2 (32)316

where ζ2 = max{ 12λmax
(
ϒ
)
}, ζ2 > 0.317

Taking the time derivative of V along a trajectory of (20),318

for any allowed σ (·), yields319

V̇ = (ė+ Se)TH (ë+ Sė)+
1
2
(ė+ Se)TḢ (ė+ Se)320

+ eT (Kp + SKv)ė (33)321

Introduce equation(19) into the first two terms of the equa-322

tion (33) denoted by V̇s323

V̇s = (ė+ Se)TH (ẍ − ẍd + Sė)+
1
2
(ė+ Se)T Ḣ (ė+ Se)324

(34)325

Substitute Hẍ of equation(5) and τ of equation (25)326

into (34) in turn,327

V̇s = (ė+ Se)T [(H (ẍd − Sė)+ C(ẋd − Se)+ F328

−Kpe− Kvė− γ (ė+ Se)ρ2 − C(ẋd
︷ ︸︸ ︷
−Se+ Se+ė)329

−F)− Hẍd +MSė]+
1
2
(ė+ Se)T Ḣ (ė+ Se)330

= (ė+ Se)T [−1H (ẍd − Sė)−1C(ẋd − Se)−331

−1F − γ (ė+ Se)ρ2]− (ė+ Se)T (Kpe+ Kvė)332

+ (ė+ Se)T (
1
2
Ḣ − C)(ė+ Se) (35)333

Consider the dynamic properties of the mechanical system334

(17), hence335

(ė+ Se)T (
1
2
Ḣ − C)(ė+ Se) = 0 (36)336

With equation (22) 337

V̇s = (ė+ Se)T [8− γ (ė+ Se)ρ2]− (ė+ Se)T (Kpe 338

+Kvė) 339

≤ (ė+ Se)T [ρ − γ (ė+ Se)ρ2]− ėTKvė− eT SKpe 340

− eT (Kp + SKv)ė (37) 341

Substituting equation (37) into equation (33), it is easy to 342

get that 343

V̇ = (ė+ Se)T [ρ − γ (ė+ Se)ρ2]− ėTKvė− eT SKpe 344

≤
1
4γ
− ζ3

∥∥e(t)∥∥2 (38) 345

for all (e, t)∈ R2n × R, where 346

ζ3 = min{λmin(Kv), λmin(SKp)} (39) 347

The uniform boundedness performance follows. Upon 348

invoking the standard arguments as in [33], that is, given any 349

r > 0 with
∥∥e(t0))∥∥ ≤ r , where t0 is the initial time, there is 350

a d(r) given by 351

d(r) =


√
ζ2
ζ1
r, if r > R√

ζ2
ζ1
R, if r ≤ R

(40) 352

R =
1
2γ

√
1
ζ3

(41) 353

such that
∥∥e∥∥ ≤ d(r) for all t ≥ t0. 354

Furthermore, uniform ultimate boundedness also follows. 355

That is
∥∥e∥∥ ≤ d,∀t ≥ t0 + T (d, r), with 356

d > d =

√
ζ2

ζ1
R (42) 357

T (d, r) =


0 if r ≤ d

√
ζ1
ζ2

ζ2r2−(ζ12/ζ2)d
2

ζ3(ζ1/ζ2)d
2
−

1
4γ

if r > d
√
ζ1
ζ2

(43) 358

Please note that by adjusting the parameter variables Kp, 359

Kv and γ from equation (41), d can become arbitrarily small. 360

C. DESIGN PROCEDURE 361

As shown in Figure(2), we summarize the flow chart of robust 362

bounded control with inequality constraints for PMLM. 363

In this paper, the dynamical system satisfying the output state 364

with inequality constraint for the linear motor is obtained. 365

By selecting an appropriate transformation function, the out- 366

put state y with limitation is transformed into the state x 367

without limitation. Then we have robust control over the 368

unbounded state x. No matter how the uncertain external 369

disturbance is, the control output y can be kept within the 370

controllable and safe range. For the transformed state x, 371

we designed a robust controller based on PD. By selecting 372

proper Kp, Kv, γ , and S, the error of linear motor trajec- 373

tory tracking is small enough. As Kp increases, the system 374

response speeds up, and the steady-state error decreases. 375
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However, as Kp increases, the system gradually overshoots376

and oscillates at the same time, and the system takes longer377

to reach steady state, and the control cost is higher. The378

introduction of Kv can reduce the overregulation caused by379

Kp, which makes the response of the whole system slower380

and the steady-state error larger. In addition, the value of γ381

directly affects the ultimately bounded range and determines382

the trade-off between system performance and control cost.383

And S is closely related to the convergence rate of the error.384

FIGURE 2. The control design procedure.

V. SIMULATION AND EXPERIMENTAL RESULTS385

Next, we will use numerical simulation and experiments on386

the permanent magnet linear motor to verify the correctness387

of the robust bounded control theory with inequality con-388

straints. The parameters of the PMLM are shown in Table 1.389

TABLE 1. The parameters of the PMLM.

A. NUMERICAL SIMULATION390

Firstly, we use the MATLAB to verify the correctness of391

the robust bounded control theory for permanent magnet392

linear motor with inequality constraints. We use the step393

signal and sinusoidal signal to study the ability, which dealing394

with uncertainty and dynamic characteristics of the robust395

controller with and without inequality constraints. For the396

simulation, we select the appropriate controller parameters as397

follows, Kp = 100; Kv = 10; S = 1; γ = 0.6954; Quality is398

treated as an uncertainty,1M = 5sin(0.01t). The initial value399

of sinusoidal tracking is e(0) =
[
0.05 0

]T . We set motor 400

position x limited to [−0.101m, 0.101m] 401

We present the step signal as shown below: 402

x = 0.1 m (44) 403

We present the sinusoidal signal, which enables the per- 404

manent magnet linear motor system to achieve sinusoidal 405

trajectory tracking. We present the sine signal as shown 406

below: 407

x = 0.1sin(
t
4
)m (45) 408

We analyze the results of the step signal response. The 409

comparison of response between the robust controller with 410

and without inequality constraints to control the PMLM sys- 411

tem is shown in Figure 3. The step response of the linear 412

motor without the inequality constraint reaches stability at 413

approximately 0.01 s. The overshoot of the step response 414

is 102.8 mm, which exceeds the set upper bound (101mm) 415

by 1.8 mm. The step response of the linear motor with the 416

inequality constraint reaches stability at 0.15 s, and the max- 417

imum value during the response is 100mm, which does not 418

exceed the set upper bound (101mm). 419

FIGURE 3. Comparison of tracking the step signal with and without
inequality constraints.

Next, we analyze the simulation results of the sinusoidal 420

signal response. The comparison of response between the 421

robust controller with and without inequality constraints to 422

control the PMLM is shown in Figure 4. The errors of 423

sinusoidal trajectory tracking are shown in Figure 5. The 424

comparison of the control inputs is shown in Figure 6. 425

As can be seen from Figure 4, the initial displacement 426

of the linear motor is 50mm, which satisfies the condition that 427

the initial value is incompatible. The linear motor without 428

the inequality constraint reaches stability at 2s when track- 429

ing the sinusoidal curve. The maximum overshoot of the 430

sinusoidal tracking is 102mm, which exceeds the set upper 431

bound 101mm. The sine tracking of the linear motor with 432

inequality constraint reaches stability at 0.2 s. The boundary 433

condition is not exceeded and the error range is controlled 434

within [−0.02 mm, 0.02 mm]. From the simulation results, 435

it can be seen that the control effect with the inequality 436

constraint is significantly better than the effect without the 437

inequality constraint. 438
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FIGURE 4. Comparison of tracking the sinusoid signal with and without
inequality constraints.

FIGURE 5. The error of tracking a sinusoid signal with and without
inequality constraints.

FIGURE 6. The current of tracking a sinusoid signal with and without
inequality constraints.

B. RESULTS OF PMLM EXPERIMENT439

In this section, we will carry out the experimental verification440

of the inequality constraint algorithm on the experimen-441

tal platform of PMLM. Figure 7 shows our experimental442

platform, which primarily consists of the following parts:443

cSPACE control platform, PMLM mechanical systems,444

and computer with MATLAB/Simulink simulation software.445

We will use the control block diagram of Simulink to com-446

plete the experiment. Combined with numerical simulation,447

two groups of experiments are designed: step response and448

sinusoidal signal trajectory tracking. For the trajectory track-449

ing problem of the sinusoidal signal, some interference is450

applied to the motor in the process of moving to test the451

motor’s ability to deal with the uncertainty and verify the452

correctness and practicability of the robust controller with453

FIGURE 7. Permanent magnet linear motor(PMLM) experimental
platform.

FIGURE 8. The experimental results of tracking a step signal with and
without inequality constraints.

inequality constraints. Here, the resistance and inductance 454

will tend to become larger to some extent with increasing 455

temperature. But these changes are negligible and are not 456

considered in this paper at this time.We select the appropriate 457

controller parameters as follows, Kp = 120; Kv = 10; S = 1; 458

γ = 0.6954. 459

Figure 8 shows the step responses of PMLM with and 460

without inequality constraints. We can see that in the exper- 461

iment of step response, The step time without the inequality 462

constraint is 1s to reach stability. The maximum value during 463

the step response is 102mm, which exceeds the set upper 464

bound 101mm. The step response with inequality constraint 465

reaches stability at 0.8 s, and the maximum value during 466

the response is close to 100mm. So the robust controller 467

with inequality constraints can limit the motor displacement 468

within the boundary. 469

The sinusoidal trajectory tracked by the linear motor is 470

x = 0.095sin( t4 )m. The sinusoidal trace of the robust con- 471

troller without inequality constraints is shown in Figure 9. 472

In the sinusoidal tracking experiment without inequality 473

constraint, the artificial external disturbances are applied at 474

7s,9s,11s,13s, respectively. We can clearly see that when 475

the motor is controlled by a robust controller without 476

inequality constraints, the displacement of the linear motor 477

reaches the minimum value −106mm and maximum value 478

105mm at 11s and 13s respectively, which exceed the set 479
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FIGURE 9. The experimental results of tracking sinusoidal signals without
inequality constraints.

FIGURE 10. The experimental error results of tracking sinusoidal signals
without inequality constraints.

FIGURE 11. The experimental current results of tracking sinusoidal
signals without inequality constraints.

boundary [−101 mm, 101 mm]. As can be seen from480

Figure 10, the trajectory tracking error of the robust con-481

troller without the inequality constraint varies in [−0.93 mm,482

0.93 mm] when it reaches stability. When external distur-483

bances are applied, the maximum and minimum errors of the484

linear motor are [−11.83 mm, 11.83 mm]. Control torque of485

the filtered PMLM is shown in Figure 11.486

The sinusoidal trace of the robust controller with inequality487

constraints is shown in Figure 12. In the sinusoidal tracking488

experiment with inequality constraint, the artificial external489

disturbances are applied at 7s,9s,11s, respectively. We can490

clearly see that when the motor is controlled by a robust con-491

troller with inequality constraints, the displacement is always492

controlled within the set boundaries [−101 mm, 101 mm].493

As can be seen from Figure 13, the trajectory tracking error494

FIGURE 12. The experimental results of tracking sinusoidal signals with
inequality constraints.

FIGURE 13. The experimental error results of tracking sinusoidal signals
with inequality constraints.

FIGURE 14. The experimental current results of tracking sinusoidal
signals with inequality constraints.

of the robust controller with the inequality constraint varies in 495

[−0.5 mm, 0.5 mm] when it reaches stability. When external 496

disturbances are applied, the maximum and minimum errors 497

of the linear motor are [−0.985 mm, 0.985 mm]. Control 498

torque of the filtered PMLM is shown in Figure 14. 499

Here, we uses RMSE and MAXE to illustrate the impact 500

of algorithms with and without inequality constraints on 501

dynamic performance, where 502

MAXE = max (|ei|) (46) 503

RMSE =

√√√√ 1
N

N∑
i=1

e2i (47) 504
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From Figure 15, We can clearly see that the control505

performance of the robust controller without the inequality506

constraint is comparable to the robust controller with the507

inequality at steady state. However, when there is an external508

disturbance, the performance of the robust controller with509

inequality constraint is much better than that of the robust510

controller without inequality constraint. And the position511

of the linear motor can be strictly restrained within the set512

boundaries to prevent the occurrence of edge-bumping and513

production accidents.514

The sinusoidal experiment results show that the proposed515

inequality constraint theory can improve the ability of the516

robust controller to deal with some uncertainties such as517

external disturbance and friction.518

FIGURE 15. Experiment result of tracking sinusoidal signal.

VI. CONCLUSION519

In this paper, a robust bounded control algorithm for per-520

manent magnet linear motors with inequality constraints is521

proposed. Based on the state transformation, the algorithm522

transforms the state variable domain to satisfy the inequality523

constraint of the control output. A robust bounded controller524

is designed, which consists of a model-based PD control item525

and robust item. Lyapunov minimax method is used to prove526

the effectiveness of the algorithm.527

The simulation and experimental results of the PMLM528

experimental platform based on cSPACE show that the pro-529

posed robust controller with inequality constraint can be used530

to control the PMLM, which can be used to limit the displace-531

ment of the PMLM within the set limit during the process532

of robust control. The proposed inequality constraint theory533

can improve the ability of a robust controller to deal with534

external disturbance, friction, and other uncertainties, which535

is especially suitable for practical engineering applications.536

Next, we will take the motor temperature compensation537

into consideration to further reduce the effect of temperature538

variation on inductance and resistance. And we will verify539

the proposed control algorithm on other uncertain systems,540

such as the two-link manipulator and the permanent magnet541

synchronous motor.542
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