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ABSTRACT The robust bounded control problem for the permanent magnet linear motors with inequality
constraints is studied. Firstly, the dynamical model of the system is built, through the state transformation
is used to satisfy the inequality constraint of the position output. Thus, the controller after the state
transformation can ensure that the control output of the linear motor stays the desired range. Selecting
the appropriate boundary function, and then the upper and lower bounds of the control output can be set
according to our control requirements. The control scheme can guarantee uniform boundedness and uniform
ultimate boundedness. The results of experiments and simulation show that the proposed algorithm can
assure the control output within the desired range regardless of the uncertainty.

INDEX TERMS State transformation, inequality constraints, robust control, linear motor, uncertainty.

I. INTRODUCTION

The permanent magnet linear motor (PMLM) has sim-
ple structure, high execution efficiency and fast response
speed [1], [2]. It has been widely used in the field of intel-
ligent manufacturing and industrial production [3], [4]. The
principle of PMLM is equivalent to the rotating motor, which
is equivalent to expanding the rotating motor into a straight
line. Both of them use three-phase coil windings and realize
the steering function of the motor through the internal Hall
element. Because the linear motor is directly connected to the
load, there is no need for gear, belt, and other transmission
links. This linear motor can reduce friction and interfer-
ence [5], [6]. And it can avoid mechanical lag, return error,
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and other defects of the rotating motor. Theoretical travel is
not limited. Therefore, the permanent magnet linear motor
can satisfy the needs of high speed, high dynamic response,
and high precision when driving directly. In addition, the
control performance of PMLM is also influenced by all kinds
of uncertain factors, such as uncharted external disturbance,
friction [7], etc. In the study of PMLM, it is essential to
improve the control performance [8], [9].

In the control technology of PMLM, the precise control of
linear motors is essential [10], but the influence of unknown
external disturbance and friction increases the difficulty of
linear motor position control. [11] designed a robust con-
troller composed of adaptive compensator, PID feedback con-
troller and feedforward compensator. [12] and [13] proposed
a typical adaptive robust control, which combines robust
control and traditional adaptive control to overcome various
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uncertainties. [14] proposed a robust position tracking control
method of PMLM based on model. [15] designed a controller
combining adaptive robustness and neural network, which
has a certain anti-interference ability. [16] and [17] proposes a
robust visual tracking method based on fuzzy detection strat-
egy. [18] proposes an improved PID control or redesigned
robust control with simple implementation and practical
results. [19] designed a robust approximate constraint con-
troller based on the Udwadia-Kalaba equation to control
PMLM. For the effect of nonlinear factors, [20] proposes an
adaptive compensation controller. These resolve the unknown
load and friction effect of the permanent magnet linear motor
to a certain extent. However, under actual working conditions,
the displacement of permanent magnet linear motor must be
limited within a certain range [21], [22]. [23] designed a con-
troller considering input constraints and parameter uncertain-
ties for nonholonomic wheeled mobile robot. [24] proposed
a trajectory planning approach to achieve minimum energy
consumption and zero residual vibration for flexible servo-
motor systems with state constraints. [25] studied the adaptive
neural torsional vibration suppression control problem for
the drive system with state and input constraints. Because
the travel of the linear motor has a range, when the motor
is subjected to external interference, the displacement of the
linear motor deviates from the predetermined trajectory, the
bumping phenomenon will occur, which will not only have a
certain impact on the lifetime and accuracy of the motor, but
also may cause production accidents. Whether this condition
can be satisfied is closely related to product safety issues.

So far, few literatures have considered the problem of bilat-
eral constrained control for linear motors. The research scope
of this paper belongs to the PMLM technology. Trajectory
tracking control for nonlinear linear motors with uncertain
external disturbances is studied. There are uncertainties in the
system, which may be caused by external load disturbance
and unknown parameters. Other than its possible bound-
ary, no other information is known. This is a problem with
bounded control output. Because PMLM has a lower and
an upper limit, the displacement of the PMLM needs to be
limited to the desired range.

From the analysis of the existing literature, it can be seen
that there are some problems in the control of PMLM. From
the perspective of these difficulties, the main contributions of
this paper are three aspects. Firstly, aiming at the bounded
control of PMLM, a method of the state transformation is
proposed, which can transform the bounded state into the
unbounded state. Secondly, the robust bounded controller of
permanent magnet linear motor with inequality constraints is
proposed to control the transformed system under the con-
ditions of uncertainties. The uniform boundedness and uni-
form ultimate boundedness of uncertain systems are proved.
Finally, the numerical simulation and experimental verifi-
cation of the PMLM are completed. Through the analysis
of the experimental and simulation results, it is shown that
the proposed robust control with inequality constraints can
ensure the performance of the PMLM mechanical system
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under the conditions of uncertainties. And the displacement
of permanent magnet linear motor system can be controlled
within the defined range. The effect of control can meet the
requirements of some high applications.

Il. DYNAMIC MODEL OF PMLM
A complete PMLM system includes cushion, linear motor,
displacement sensor, guide rail, and drag chain, etc [26].
The cushion is used to prevent the motor body from being
damaged when the moving parts of the linear motor move
back and forth. And the displacement sensor is used to detect
the position of the motor in real time.

For PMLM, its dynamic model is usually approximated
by a second-order system [27], which can be expressed by
equation(1).

y1(t) = y2(1)

e ke e

() = Rmy2(t)+RmV(t) p (1)
x(t) = y1(t)

Here, y; represents the moving displacement of the linear
motor, Y1 € (Vm, YM), Ym represents the lower bound of
displacement and yy, represents the upper bound of displace-
ment. y, represents the linear velocity of PMLM, R represents
the impedance, m represents the mass of the motor, k; repre-
sents the power constant, k, represents the back electromotive
force, and d(¢) can be regarded as the disturbance including
ripple force and friction force. v(¢) is the control signal.

It is assumed that the disturbance of the motor consists of
two terms, namely the friction force and the ripple force, and
friction varies with load. It is expressed as follows

dt) = Fripple + Ffric ()

Here, Fippie is the ripple force,Fj;c is the friction force.
Fpyic is expressed by the equation(3)

Fire = [fo+ (h = f0 057 4 13| sign) 3

where f. represents the Coulomb friction coefficient, f; rep-
resents the static friction coefficient, f, represents the viscous
friction coefficient, x; represents the lubricant parameter [28].
Here We use the overall identification method based on the
least squares to obtain friction parameters.

Frippie 1s described as:

Fripple = A sin(wy) + Az sin(3wy) + Az sin(Swy)  (4)

Here Ay, Aj, A3, w are constants.

We choose y as the generalized coordinate, and y is the
displacement of linear motor. We can convert the linear motor
model of the approximate second-order system into the gen-
eral form of the system dynamics model.

H@y,o,0)¥t)+ Cy, 3,0, )() + F@y,y,0,t) =t(t) (5)

Here t € R represents the time, y € R" represents the
coordinate, y € R" represents the velocity, y € R" represents
the acceleration, T represents the control input and o € R
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represents the uncertain parameter. H(y, o, t) represents the
inertia matrix, C(y, y, o, t) represents the Coriolis/centrifugal
force vector, and F(y,y, o, t) represents the friction force
and disturbance. The functions H, C and F are continuous.
Furthermore, ¥ C R is compact and unknown, which
represents the possible bounding of o.

Therefore, the dynamical model of PMLM can be
expressed as follows:

Rm . . R
k—y(t) + key(t) + k—d(t) = (1) (6)
f f

Remark. In addition to the friction force, there are other
uncertainties in linear motors. The mass is uncertain due to
the variation of the load. Resistance usually varies with coil
temperature.

Remark. Displacement y is limited within (v, yar), where
YM > Ym, which is related to the displacement range of
linear motor, when the working condition requires higher
requirements. If the displacement of linear motor exceeds the
defined displacement range, it may have an impact on the
safety of production. However, despite the large effect, this
interval condition has not been taken into account in previous
studies. In the next section, we will address this problem
through the state transformations.

IIl. THE STATE TRANSFORMATIONS
In the mechanical system of PMLM, the value of state dis-
placement should be within the defined boundary in some
applications where the working conditions are demanding.
However, the existence of uncertain external disturbances in
systems can cause the state variables to exceed the specified
range [29]. Therefore, we propose the state transformation
to convert the displacement y with limitation into the state x
without limitation, which can assure that the displacement y
is not able to exceed the limitation (y;;, ya).

Assume that the motor position satisfies the bilateral
constraint as follows:

Ym <Y <YM @)

Let’s set the state transformation equation as:

7 7
x:tan|:—(y—ym)——] (8)
YM — Ym 2
with
x4 = tan [L d = ym) — 1} ©)
YM — Ym 2

Here y represents the actual position, y; represents the
expected position, x represents the actual position after the
state transformation, and x; represents the expected position
after the state transformation.

Where, the constraints can be closed intervals, but other
conversion functions are needed. The constraint interval in
this paper is open, which is determined by the conversion
function we design. Considering the practical characteristics
of the linear motor, we design the conversion function as
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tan function. fan function is only applicable to the open
interval by definition.

From the equation(8), we can see that y — yy as
x — 4+ooandy — y, as x — —oo. Thus, by selecting an
appropriate function x, the state transformation can convert
the state y with limitation to the state x without limitation.
From equation(8), we can get

arctan(x) + )]Mzﬂ (10)

Take the derivative of the equation(10) to get the first
derivative

_IM — Ym

. YM —Ym X
=— 11
Y 7 14x2 an
Take the derivative of the equation(11) again to get the
second derivative

. YM —Ym [1 —}—xz]}i — 2xx2
T [1+ x2]2
Substituting the equation(11) and (12) into the dynamics
equation(6), we can get:

(12)

Rmyy —ym [1+ 22|53 =20k yyy—ym &
kf T [1 + x2]2 ¢ T 1+ x2
R
+ —d(@) = w(1) (13)
kg

Further simplified to the general form of the dynamical
model

_ 2 _
Rm (yp — ym) [1 +2(X) ]).é ) Om ym; LR 0
ks [14 (0)?2] w[1+@?] K
— 2
_2RmOw — 3w F .

mhy [1+ @P]°

This transforms the bounded constraint problem on y into
an unbounded constraint problem on x.

Accordingly, we can get the inertia matrix H, Coriolis
force/centrifugal force matrix C and friction vector F of the
linear motor mechanical system after the state transformation.

g BmGm —ym) (1+x?)
ke (1 +)€2)2

., OmM —ym)
o en(l—i—xz)
_ 22
Fo Ed(t)_2Rm(yM Ym) XX (15)

ky ke (1 +x2)2

(i) H(x) is positive definite symmetric matrix, and is uni-
formly bounded for all x. It can be expressed as

0<gl <HX) LTI (16)

where ¢, ¢ are positive constant.
(i) The matrix H (x) — 2C(x, x) is skew symmetric for all
x, x. That is, for any vector ¢,

¢T{H(x) — 2C(x, %)} =0 (17)
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The following figure shows the process of state transforma-
tion. The first part (a) of Figure(1) shows the ideal trajectory
of the state variables. In the ideal state, y(z) always stays
within the bounds yy; and y,,. However, due to the uncertainty
factor, the actual trajectory of y(#) is shown in the second
part (b). Therefore, the state transformation is applied as
shown in the third part (¢). Through the function «, the state
variable y is converted to x. After the state transformation,
y will always remain within the boundary. In the next section,
arobust controller is designed to ensure that the state variable
y tracks the desired trajectory.

actual situation

constraints satisfied state transformation

x=a(y)
Hoo c
x(1)
t-;

FIGURE 1. The state transformation process.

IV. ROBUST CONTROL

A. ROBUST CONTROLLER DESIGN

After the state transformations, we choose x as the gen-
eralized coordinate, where x is the state variable after the
state transformation. Consider the linear motor system for
position tracking control, assuming that the desired position
xd(-) : [tg, 00) — R”,xd(—> -) is C2. For any given time
t € [tg, 00) , x%(), x%(t) and ¥%(r) uniformly bounded. Then,
the output tracking error is:

e(t) = x(1) — x4(1) (18)
and hence
o(r) = x(1) — x4(@1), &) = i@t) — ¥4(r) (19)
System equation(5) can be rewritten as

H(x, 0, DG (1) + &0) + C(x, &, 0, NGE (1) + &)
+F(x,x,0,t)=1t(t) (20)
Actually, uncertainty exists in the system due to the
uncertainty of the parameters and the constant changes of

the parameters and unmodeled dynamics. Therefore, the
dynamic model could be divided into the uncertain term
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and the nominal term. The functions H(-), C(-) and F(-) are
expressed as follows:

H(x,0,t) = AH(x,0,t)+ H(x, )
Cx,%,0,t) = AC(x,x,0,1)+ Clx, X, 1)
F(x,%,0,t) = AF(x,%,0,t) + F(x, X, 1) 21)
where _AH , _AC and _AF are uncertain terms which depend
ono, H(-), C(-) and F(-) are the nominal terms.

Assuming that the boundary of uncertainty is estimated
by p.

ple e, 0,1) 2| ®le,é,0,1) | (22)
where

(e, é,0,1) = —AH(x, o, )3 — Sé)
— AC(x, %, 0, )(x% — Se)
— AF(x,%,0,1) (23)

Note that for a given S >0 is constant. Apparently, if all
the uncertainties in the mechanical system disappear, then
o =0.

Regard the trajectory tracking error vector as follows

er) == [e(t) én]" (24)

The problem of trajectory tracking is to design a controller
to guarantee the tracking error vector e(¢) small enough.
The control torque 7(¢) can be geted by

t(t) = HG? — $é)+ C(i¢ — Se) + F
— Kpe — K& — y(é + Se)p? (25)

where K, is the proportional control parameter and K, is
the differential control parameter. These control parameters
come from traditional PID control. The scalar y > 0. K),,
K, and y all are constant, which are the flexible parameter
variables.

For the mechanical system expressed in equation(5), the
control equation(25) adopted would make the tracking error
e(t) uniformly bounded and uniformly ultimately bounded.
The last item is a robust feedback item, mainly for uncer-
tainty.

B. STABILITY ANALYSIS

Lyapunov minmax method [30], [31] is used to analyze the
stability of the proposed controller. The Lyapunov function
candidate [32] is choose as:

L. T d .
Vie, t) := E(e + Se)” H(e + x“(t))(e + Se)

1
+ EeT(Kp + SK,)e (26)

In order to prove that the Lyapunov function V is a suitable
candidate, V must be proved to be positive definite and
decreasing.

With equation(16), H(x, o, t) is bounded, so

1 . ,» Ly
V > Es | €+ Se | +§e (K, + SKy)e
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PHIE} @7)
here

2
Y- |:£s + ky + sk, 5si| (28)

ss S
It can be easily proved that Y > 0. Therefore, V is positive
definite.

Vzéwﬂxw%m%zakw (29)

where ¢ =min{%kmm (I)}, ¢ > 0.
Because the inertial matrix in equation(16) is bounded,
thus

I_ . 2 17
Vs 5glletSel” +5e (K + SKy)e
1. .i=e
= E [ee] T |:é:| (30)
where
T = |:§S + kp + siky, §S:| (31)
gs S
1 — .
V < Shmar(De +&) < Lolell® (32)
where £, = max{%)»max (T)}, & > 0.

Taking the time derivative of V along a trajectory of (20),
for any allowed o (+), yields

. 1 .

V =(e+Se) H@E+Se)+ @+ Se)'H(é + Se)
+ e’ (K, + SK,)é (33)
Introduce equation(19) into the first two terms of the equa-

tion (33) denoted by Vi
. T . wd . 1, Ty
=(e+Se) HX —x“ + Se) + 5(6+Se) H(e + Se)

(34

Substitute HX of equation(5) and t of equation (25)
into (34) in turn,

=@+ S [(HGE —Se)+ Cx? —Se) + F
. . 2 AT .
pe — Kye —y(e+ Se)p” — C(x* —Se + Se +e)

1 .
—F) — Hx? + MSé] + S+ Se) H(e + Se)

= (e +Se) [~AHE! — Sé) — AC(H? — Se) —
— AF — y(é 4 Se)p®] — (¢ + Se)T (Kpe + K@)
+@+ Se)T(%H — C)(é + Se) (35)

Consider the dynamic properties of the mechanical system
(17), hence

(e + Se)T(%H —C)eée+Se)=0 (36)
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With equation (22)
Vi = (64 Se) [ — y(e 4 Se)p?] — (¢ + Se) (Kpe
+ K@)
< (e+Se) [p—y(é+Se)p?] — éTKyé — T SKpe
—e' (K, + SK,)é (37)

Substituting equation (37) into equation (33), it is easy to
get that
V =(e+5) [p—y@+Se)p’]l — &' Kié — e’ SKye

1 2
- aleol G8)

IA

for all (e, t)e R?" x R, where
¢3 = min{in(Ky), )Lmin(SKp)} (39

The uniform boundedness performance follows. Upon
invoking the standard arguments as in [33], that is, given any
r > 0 with ||e(t))| < r, where 9 is the initial time, there is
a d(r) given by

4 \/§>2r ifr >R 40)
r) =
\/;1 R, ifr <R
R—l : (1)
B &

Furthermor_el uniform ultimgte boundedness also follows.
Thatis |e| < d,Vt > 1o+ T(d, r), with

d>d= L p 42)

&

0 ifr < Z\/E
Gor —((12/{2)51 ifr > d\/> (43)
4“3({1/4“2)61 Iy

Td,r) =

Please note that by adjusting the parameter variables K,
K, and y from equation (41), d can become arbitrarily small.

C. DESIGN PROCEDURE

As shown in Figure(2), we summarize the flow chart of robust
bounded control with inequality constraints for PMLM.
In this paper, the dynamical system satisfying the output state
with inequality constraint for the linear motor is obtained.
By selecting an appropriate transformation function, the out-
put state y with limitation is transformed into the state x
without limitation. Then we have robust control over the
unbounded state x. No matter how the uncertain external
disturbance is, the control output y can be kept within the
controllable and safe range. For the transformed state x,
we designed a robust controller based on PD. By selecting
proper K,, Ky, ¥, and §, the error of linear motor trajec-
tory tracking is small enough. As K}, increases, the system
response speeds up, and the steady-state error decreases.
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However, as K, increases, the system gradually overshoots
and oscillates at the same time, and the system takes longer
to reach steady state, and the control cost is higher. The
introduction of K, can reduce the overregulation caused by
K, which makes the response of the whole system slower
and the steady-state error larger. In addition, the value of y
directly affects the ultimately bounded range and determines
the trade-off between system performance and control cost.
And S is closely related to the convergence rate of the error.

Uncertain dynamical
systems

I

> Control Achievement

Choose the control

dynamical systems

| |
£ Inequality constraints fantion® |
g of control outpous | |
@ |
) | | | |
=
-l | Choose the proper |
E The state The novel control funtionA. p . Kp. |
transformation scheme | Kv |
| | '
|
| Satisfy the
Transformed | assumptions :

FIGURE 2. The control design procedure.

V. SIMULATION AND EXPERIMENTAL RESULTS

Next, we will use numerical simulation and experiments on
the permanent magnet linear motor to verify the correctness
of the robust bounded control theory with inequality con-
straints. The parameters of the PMLM are shown in Table 1.

TABLE 1. The parameters of the PMLM.

Notation Value Definition Unit
M M =1.4 Mass of the liner otor kg

R R=56 Resistance of the system ohms
kg k=1 Force constant N/A
ke k. =60  Back electromotive force V/m/s
fo 5 Viscous friction coefficient N/m/s
fs 8 Static friction coefficient N

fe 5 Coulomb friction coefficient N

Zs 0.5 Lubricant parameter m/s
Aq 3 The proportion of coefficient —

As 2 The proportion of coefficient —

As 1 The proportion of coefficient —

A. NUMERICAL SIMULATION

Firstly, we use the MATLAB to verify the correctness of
the robust bounded control theory for permanent magnet
linear motor with inequality constraints. We use the step
signal and sinusoidal signal to study the ability, which dealing
with uncertainty and dynamic characteristics of the robust
controller with and without inequality constraints. For the
simulation, we select the appropriate controller parameters as
follows, K, = 100; K, = 10; § = 1; y = 0.6954; Quality is
treated as an uncertainty, AM = 5sin(0.01¢). The initial value
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of sinusoidal tracking is e(0) = [0.05 O]T. We set motor
position x limited to [—0.101m, 0.101m]
We present the step signal as shown below:

x=0.1m (44)

We present the sinusoidal signal, which enables the per-
manent magnet linear motor system to achieve sinusoidal
trajectory tracking. We present the sine signal as shown
below:

X = 0.1sin(£)m 45)

We analyze the results of the step signal response. The
comparison of response between the robust controller with
and without inequality constraints to control the PMLM sys-
tem is shown in Figure 3. The step response of the linear
motor without the inequality constraint reaches stability at
approximately 0.01 s. The overshoot of the step response
is 102.8 mm, which exceeds the set upper bound (101mm)
by 1.8 mm. The step response of the linear motor with the
inequality constraint reaches stability at 0.15 s, and the max-
imum value during the response is 100mm, which does not
exceed the set upper bound (101mm).

T
= = =upper bound
= = =lower bound
1 -t
00 x without constraint
desired x
----- x with constraint b

150‘

50 |

X 0.00454143
Y 102.777
o

Displacement (mm)
o

A0k emmmemeeea O L cccciccaaaaa

-150

Time (s)

FIGURE 3. Comparison of tracking the step signal with and without
inequality constraints.

Next, we analyze the simulation results of the sinusoidal
signal response. The comparison of response between the
robust controller with and without inequality constraints to
control the PMLM is shown in Figure 4. The errors of
sinusoidal trajectory tracking are shown in Figure 5. The
comparison of the control inputs is shown in Figure 6.

As can be seen from Figure 4, the initial displacement
of the linear motor is 50mm, which satisfies the condition that
the initial value is incompatible. The linear motor without
the inequality constraint reaches stability at 2s when track-
ing the sinusoidal curve. The maximum overshoot of the
sinusoidal tracking is 102mm, which exceeds the set upper
bound 101mm. The sine tracking of the linear motor with
inequality constraint reaches stability at 0.2 s. The boundary
condition is not exceeded and the error range is controlled
within [—0.02 mm, 0.02 mm]. From the simulation results,
it can be seen that the control effect with the inequality
constraint is significantly better than the effect without the
inequality constraint.
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150 T
= = =upper bound
____________________ = = =lower bound o
/\ x without constraint
desired x
—Xx with constraint

Displacement (mm)

-150 . . .

Time (s)

FIGURE 4. Comparison of tracking the sinusoid signal with and without
inequality constraints.

10 T
——desired e

’é‘ 0 — — e < ——e with constraint |-
£ \ e without constraint
= -10 0.1
2
§ 20 005
é 30 0 K<
> 4 6 8
o
840 |
o
2
o -50 "

-60 . . .

0 5 10 15 20
Time (s)

FIGURE 5. The error of tracking a sinusoid signal with and without
inequality constraints.

Tau (N.m)

-40 f

-60 I I I
0 5 10 15 20

Time (s)

FIGURE 6. The current of tracking a sinusoid signal with and without
inequality constraints.

B. RESULTS OF PMLM EXPERIMENT

In this section, we will carry out the experimental verification
of the inequality constraint algorithm on the experimen-
tal platform of PMLM. Figure 7 shows our experimental
platform, which primarily consists of the following parts:
c¢SPACE control platform, PMLM mechanical systems,
and computer with MATLAB/Simulink simulation software.
We will use the control block diagram of Simulink to com-
plete the experiment. Combined with numerical simulation,
two groups of experiments are designed: step response and
sinusoidal signal trajectory tracking. For the trajectory track-
ing problem of the sinusoidal signal, some interference is
applied to the motor in the process of moving to test the
motor’s ability to deal with the uncertainty and verify the
correctness and practicability of the robust controller with
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FIGURE 7. Permanent magnet linear motor(PMLM) experimental
platform.
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FIGURE 8. The experimental results of tracking a step signal with and
without inequality constraints.

inequality constraints. Here, the resistance and inductance
will tend to become larger to some extent with increasing
temperature. But these changes are negligible and are not
considered in this paper at this time. We select the appropriate
controller parameters as follows, K, = 120; K, = 10, § = 1;
y = 0.6954.

Figure 8 shows the step responses of PMLM with and
without inequality constraints. We can see that in the exper-
iment of step response, The step time without the inequality
constraint is 1s to reach stability. The maximum value during
the step response is 102mm, which exceeds the set upper
bound 101mm. The step response with inequality constraint
reaches stability at 0.8 s, and the maximum value during
the response is close to 100mm. So the robust controller
with inequality constraints can limit the motor displacement
within the boundary.

The sinusoidal trajectory tracked by the linear motor is
x = O.OQSsin(fT)m. The sinusoidal trace of the robust con-
troller without inequality constraints is shown in Figure 9.
In the sinusoidal tracking experiment without inequality
constraint, the artificial external disturbances are applied at
7s,9s,11s,13s, respectively. We can clearly see that when
the motor is controlled by a robust controller without
inequality constraints, the displacement of the linear motor
reaches the minimum value —106mm and maximum value
105mm at 11s and 13s respectively, which exceed the set
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FIGURE 9. The experimental results of tracking sinusoidal signals without
inequality constraints.
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FIGURE 10. The experimental error results of tracking sinusoidal signals
without inequality constraints.
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FIGURE 11. The experimental current results of tracking sinusoidal
signals without inequality constraints.

boundary [—101 mm, 101 mm]. As can be seen from
Figure 10, the trajectory tracking error of the robust con-
troller without the inequality constraint varies in [—0.93 mm,
0.93 mm] when it reaches stability. When external distur-
bances are applied, the maximum and minimum errors of the
linear motor are [—11.83 mm, 11.83 mm]. Control torque of
the filtered PMLM is shown in Figure 11.

The sinusoidal trace of the robust controller with inequality
constraints is shown in Figure 12. In the sinusoidal tracking
experiment with inequality constraint, the artificial external
disturbances are applied at 7s,9s,11s, respectively. We can
clearly see that when the motor is controlled by a robust con-
troller with inequality constraints, the displacement is always
controlled within the set boundaries [—101 mm, 101 mm].
As can be seen from Figure 13, the trajectory tracking error
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FIGURE 12. The experimental results of tracking sinusoidal signals with
inequality constraints.
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FIGURE 13. The experimental error results of tracking sinusoidal signals
with inequality constraints.
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FIGURE 14. The experimental current results of tracking sinusoidal
signals with inequality constraints.

of the robust controller with the inequality constraint varies in
[—0.5 mm, 0.5 mm] when it reaches stability. When external
disturbances are applied, the maximum and minimum errors
of the linear motor are [—0.985 mm, 0.985 mm]. Control
torque of the filtered PMLM is shown in Figure 14.

Here, we uses RMSE and MAXE to illustrate the impact
of algorithms with and without inequality constraints on
dynamic performance, where

MAXE = max (|e;]) (46)

(47)
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From Figure 15, We can clearly see that the control
performance of the robust controller without the inequality
constraint is comparable to the robust controller with the
inequality at steady state. However, when there is an external
disturbance, the performance of the robust controller with
inequality constraint is much better than that of the robust
controller without inequality constraint. And the position
of the linear motor can be strictly restrained within the set
boundaries to prevent the occurrence of edge-bumping and
production accidents.

The sinusoidal experiment results show that the proposed
inequality constraint theory can improve the ability of the
robust controller to deal with some uncertainties such as
external disturbance and friction.

Il Without Constraint
1 [ Iwith Constraint
Steady state N Disturbance state
8
05
| 6
l IT )
2
0
N 0
B\
RMSE 1 \%
Y RMSE ™~
x U \
MAXE S
= MAXE\\\/ >

FIGURE 15. Experiment result of tracking sinusoidal signal.

VI. CONCLUSION

In this paper, a robust bounded control algorithm for per-
manent magnet linear motors with inequality constraints is
proposed. Based on the state transformation, the algorithm
transforms the state variable domain to satisfy the inequality
constraint of the control output. A robust bounded controller
is designed, which consists of a model-based PD control item
and robust item. Lyapunov minimax method is used to prove
the effectiveness of the algorithm.

The simulation and experimental results of the PMLM
experimental platform based on cSPACE show that the pro-
posed robust controller with inequality constraint can be used
to control the PMLM, which can be used to limit the displace-
ment of the PMLM within the set limit during the process
of robust control. The proposed inequality constraint theory
can improve the ability of a robust controller to deal with
external disturbance, friction, and other uncertainties, which
is especially suitable for practical engineering applications.
Next, we will take the motor temperature compensation
into consideration to further reduce the effect of temperature
variation on inductance and resistance. And we will verify
the proposed control algorithm on other uncertain systems,
such as the two-link manipulator and the permanent magnet
synchronous motor.
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