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ABSTRACT The growth of electric vehicles (EVs) will be followed by a surge in retired EV batteries, which
could be repurposed since they might be having nearly 80% available capacity. Repurposing automotive
batteries for second-use battery energy storage systems (2-BESS) has both economical and environmental
benefits. The challenge with assembling and aggregating second-use batteries to work together in a system
is the heterogeneity in their capacity and power limits that can be evolving based on their degrading state
of health. This paper introduces a new strategy to optimize 2-BESS performance despite the heterogeneity
of individual batteries while reducing the cost of power conversion. In this paper, the statistical distribution
of the power heterogeneity in the supply of batteries is used to optimize the choice of power converters
and design the power flow within the battery energy storage system (BESS) to optimize power capability.
By leveraging a new lite-sparse hierarchical partial power processing (LS-HiPPP) approach, we study how
a hierarchy in partial power processing (PPP) partitions power converters to significantly reduce converter
ratings, process less power to achieve high system efficiency with lower cost (lower efficiency) converters,
and take advantage of economies of scale by requiring only a minimal number of sets of identical converters.
Our results demonstrate that LS-HiPPP architectures offer the best tradeoff between battery utilization and
converter cost and have higher system efficiency than conventional partial power processing (C-PPP) in all
cases.

INDEX TERMS Battery energy storage systems (BESS), second-use battery energy storage systems
(2-BESS), second-use batteries, second-life batteries, repurposed batteries.

I. INTRODUCTION
Batteries from retired electric vehicles (EVs) represent both a
problem and an opportunity. By 2030, there will be 200 GWh
per year of used batteries from EVs [1], that can be used
in stationary and less demanding applications to maximize
their utilization before recycling them. These batteries, when
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removed from the vehicle, still have approximately 80%
capacity and power capability when compared to the fresh.
Reusing these batteries in second-use battery energy storage
systems (2-BESS) reduces mining of raw material and man-
ufacturing costs and environmental burdens. Moreover, they
add economic value to EV batteries.

There are several economic obstacles to the adoption and
deployment of 2-BESS. The price competitiveness of 2-BESS
relative to new batteries relies on lowering the added costs.
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These include the cost of transportation [2], inventory, and
power converters [3]. By distributing the assembly of 2-BESS
geographically, one can use the local supply together with
just-in-time assembly [4] to gather the production, transporta-
tion, and inventory cost. However, this strategy incurs the
challenge of a heterogeneous supply. Even with second-use
batteries that are identical at the time of original manu-
facturing and installed in identical vehicles, these batteries,
when removed, will exhibit a significant degree of variation
because of the different history of drive cycles and tempera-
ture cycling.

BESSs are needed to stabilize the grid with a high pene-
tration of renewables [5], support micro- and nano-grids [6],
support EV fast charging, and reduce the cost of grid upgrades
from the high peak power [7]. A canonical network for a
BESS is illustrated in Fig. 1(a), which is a network of bat-
teries interconnected with a network of power converters that
determine the power flows, and an output to a load.

A typical strategy for BESSs using new batteries, which
have a high degree of homogeneity, is to use conventional par-
tial power processing (C-PPP) architectures [8]. Partial power
processing reduces the required power converter ratings1 [9]
and hence the capital cost of converters [8]. Addition-
ally, by reducing processed power, overall system efficiency
increases and the cost of thermal management decreases [10].
These architectures can have a pre-determined choice of
power converters and power flow topology because of both
the high certainty in and homogeneity among the batter-
ies [11] they process. Fig. 1(b) shows a typical partial power
processing topology for batteries in series. Only the mis-
matched power, which is relatively small, rather than the
full power is processed. This is true for power capability
mismatch among batteries as well as the voltage mismatch
between the entire BESS and the load.

The conventional strategy for BESSs with heterogeneous
batteries, e.g. 2-BESS, is to individually process all the power
from every battery to adjust for the heterogeneity by indi-
vidualizing each battery’s power trajectory [12]. Fig. 1(c)
illustrates the full power processing (FPP) strategy; the dis-
advantage to this approach is that the power ratings of the
converters must be at least equal to the battery power ratings.
Because power converter cost is typically nearly proportional
to their power rating, FPP is the costliest option for power
conversion. Additionally, the system efficiency will be less
than the efficiency of the power converters [13]. For example,
a system efficiency of 98% requires power converters with at
least 98% efficiency, where the cost of the converters also
increases with efficiency [14].

An appealing alternative to FPP for 2-BESS is par-
tial power processing because of the lower cost of power
converters, higher system efficiency, and lower cooling
requirements. However, heterogeneity among batteries is a
challenge. This paper demonstrates the disadvantages of FPP

1Power rating is a quantity that describes the total electrical power
required for normal operation of a power converter.

and the challenges of C-PPP approaches in comparison to a
new strategy for partial power processing, Lite-Sparse Hier-
archical Partial Power Processing (LS-HiPPP). This paper
presents the formulation and results for the optimization of
power capability in LS-HiPPP.

As the heterogeneity of batteries grows, C-PPP and FPP
are even more inefficient. The strategy presented in this paper
for optimizing a 2-BESS uses LS-HiPPP to accommodate
the heterogeneity in the power capability of the individual
batteries. With LS-HiPPP, we show that the overall output
power capability is not heavily compromised as it is with
conventional power processing architectures using the same
converter ratings. In addition, the overall power capability of
a 2-BESS with LS-HiPPP is less sensitive to battery hetero-
geneity, which results in a higher power derating;2 together
with higher power capability, this is more cost effective,
which is represented by a higher power captured value as
discussed in Section III.

Many battery modeling efforts have focused on describing
the State of Health (SoH), namely capacity loss and inter-
nal resistance growth [15] which is particularly important
for managing second-use batteries. The battery SoH can be
extracted from low-rate cycling data by considering the shift
in peaks of the differential voltage [16], [17]. Empirical mod-
els have been widely-used to describe the energy capacity
degradation and power capability fading of batteries over time
and usage based on the operating conditions [18], [19], how-
ever the empirical models require a significant data collection
effort for training so that the models are generally applicable
for predicting degradation over different usage cases [20].

State-of-the-art lithium-ion battery models based on the
Dual-Foil Neman type Pseudo-2D model can be simplified
into single particle models [21] for grid scale energy stor-
age applications with relatively low C-rates corresponding to
multi-hour discharge requirements. These models are able to
capture the impact of operating conditions, temperature, state
of charge, and charging currents on the rates of capacity loss
and resistance growth [15]. The relevant degradation mech-
anism included in the physics-based models include lithium
plating [22], stress and particle crackingwhich leads to loss of
active material [23], [24], and growth of the solid electrolyte
interface (SEI) layer [25].

Semi-empirical models can also be effective for describing
degradation [26]. The coupling of battery performance, ther-
moelectric behavior and degradation can also be addressed by
an auto-regressive moving average model [27]. In the future,
the energy management strategy for 2-BESS could perform
the wear leveling of battery assets by considering the coupled
thermal and degradation mechanisms to extend their life.

Batteries which are close to, or well beyond the knee
point in their capacity loss may be unsuitable for use in
2BESS, however identifying and classifying the battery state

2Power derating means the percentage of the rating specification that is
guaranteed to high certainty. More details about power derating can be found
in Section III-C.
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FIGURE 1. (a) Battery Energy Storage System (BESS) consists of batteries connected to a network of power converters.
(b) Conventional Partial Power Processing (C-PPP) in this particular topology cascades power from neighboring batteries and
processes only the mismatch power. (c) Full Power Processing (FPP) uses a power converter for each battery to individually
determine the charge and discharge current, voltage, and hence power trajectories. FPP delivers in this series case individually
specified voltages to the output load.

of health is challenging [28]. Machine learning techniques
can be used to help identify suitability of battery assets for
use in 2BESS and optimum replacement schedules based on
where the battery capacity lies with respect to the knee point
in capacity degradation rate [29]. In addition, the machine
learning techniques could be applied directly to parameters of
the physics-based models to improve the prediction of future
degradation [30], [31], [32].

State-of-the-art models for the BESS power processing
include the FPP, C-PPP, and hierarchical PPP. FPP include
the series [12] and parallel [33] architectures. C-PPP archi-
tectures are different in the graphical patterns of the bat-
tery energy exchange. [34], [35], [36], [37] only allow the
adjacent two batteries to exchange the energy. [38], [39]
allow each battery to partially deliver the power to the out-
put bus. [11] substitutes this output bus with an extra dc
bus that is formed by a capacitor. In comparison, [40], [41],
[42] use an extra ac bus for the energy exchange. A few
types of hierarchical PPP architectures [43], [44], [45] have
appeared in the literature as the SoC balancers for new
batteries.

The specific list of contributions is as follows:
1) A new lite-sparse hierarchical partial power process-

ing (LS-HiPPP) architecture is introduced in Section II.
The LS-HiPPP achieves the best 2-BESS performance

TABLE 1. Comparison of three power processing architectures.3

compared to the state-of-the-art power processing
architectures despite the large heterogeneity of indi-
vidual batteries. The advantages of LS-HiPPP over the
existing state-of-the-art architectures C-PPP and FPP
are compared in Table 1.

2) Optimization of LS-HiPPP for maximizing the power
output is explained in Section II. A new Distribution

3Given the conditions of 85% converter power efficiency and 20% battery
power heterogeneity. Power heterogeneity is represented by the standard
deviation σ̂p normalized to the expected power. More details about power
heterogeneity can be found in Section II.

4Efficiency refers to the electrical system efficiency and does not include
the auxiliary power consumption [46], such as cooling and control.

5Cost refers to the normalized cost of power converters for constant $/kW.
The base value is the power converter cost of LS-HiPPP and C-PPP.
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Flattening method enables the power processing archi-
tecture optimization.

3) Demonstration of significant improvement for 2-BESS
using LS-HiPPP in battery power utilization, electrical
system efficiency, power derating, and power captured
value, as shown in Section III.

II. METHODS AND THEORY
An objective often used for optimization in operations
research over statistical uncertainties is the ensemble per-
formance in the production of a large number of units,
specifically the expected performance [47]. Expected perfor-
mance metrics are used for optimization and evaluation in the
subsequent sections of this paper.

The design targets for power processing in a 2-BESS are:
(1) minimize the aggregate power rating of the power conver-
sion; (2) minimize the number of power converters; (3) min-
imize the different types of converters; and (4) maximize
the overall performance, specifically power capability in this
paper. A goal of this research is to find the optimal tradeoff
surface for (1) and (4) using optimization methods, with (2)
and (3) as design choices that depend on the pricing structure
of power converters. The choice of design point on the (1) and
(4) tradeoff surface depends on the pricing structures of both
batteries and power converters.

The battery utilization is the fraction that is available at the
output of the combined individual capabilities of the batteries
within a BESS. In this paper, the expected battery power
utilization is maximized given the statistics of the battery
supply and choice of power converters. This more convenient
optimization is a type of duality to minimizing the power
processing for a given choice of battery utilization.

The aggregate power converter rating of a BESS is the
sum of the ratings of the individual power converters within
the energy storage system. The cost of power converters is
known to be monotonic with power rating with fewer types
of converters being more advantageous for economies of
scale.

System efficiency is the ratio of the output power of a
BESS to the sum of the power delivered by the individ-
ual batteries. For full power processing, 100% of the indi-
vidual power is processed by the power converters, which
means system efficiency is determined by power converter
efficiency. Section III-A discusses how partial power process-
ing increases system efficiency without requiring more effi-
cient power converters. More efficient power converters are
typically larger in size and more expensive. Lower system
efficiency means higher losses, which means a larger cost in
thermal management.

Heterogeneity in the battery supply creates performance
variation in the 2-BESS. In this paper, we address the sen-
sitivity of output power to heterogeneity. This can be derived
from the Monte Carlo results of battery power utilization in
Section III. The statistics of the output performance of the
2-BESS determine both the derating and the captured
value.

The power derating is the power capability of a particular
2-BESS within some confidence level when the batteries are
drawn from a statistically distributed supply, which is related
to the derating in [48]. The power captured value is a proxy
for the expected financial value of a 2-BESS capability; in
the context of this paper’s analysis, it is the product of power
derating and power utilization [48]. High power derating
and captured value imply a high-performance energy storage
architecture.

A. 2-BESS ARCHITECTURE: Lite-Sparse HIERARCHICAL
PARTIAL POWER PROCESSING
The approach to partial power processing in this paper is
circuit interconnection that is hierarchical, where most of
the converters are ‘‘lite’’ in power with a sparse number of
converters with more power. This results in a much lower
processed power and hence aggregate converter rating for a
particular 2-BESS performance. We use the hierarchy in the
partial power processing to partition the power converters to
take advantage of economies of scale by requiring only amin-
imal number of sets of identical power converters. This way,
only a few types of power converters are needed, which can be
purchased in larger volumes. The combination of numerous
lower power converters together with a few higher power
converters comprise the power processing for LS-HiPPP.

The optimization of LS-HiPPP is constrained by the sta-
tistical distribution of the battery supply. This paper will
illustrate the strategy for a familiar and frequently used
series interconnection of batteries, within which the power
converter choice, interconnection, and power flow will be
designed, as illustrated in Fig. 2.

In contrast to FPP where every battery requires its own
power converter to process its power, the LS-HiPPP intercon-
nection in this paper consists of two power converter layers.
The first layer consists of a sparse number of power-heavy
converters that is much fewer in number than the batteries.
The second layer consists of a second more dense layer of
lite-power converters.

TheDesign of a battery storage network is the instantiation
of architecture and can be defined by the following:

1) Set of batteries whose elements possess the relevant
characteristics, for example, power capability. Other
relevant characteristics can include the statistical distri-
bution of supply, which can be parameterized by their
moments, e.g. mean and variance.

2) Interconnection of batteries, which can be represented
by a graph or a circuit.

3) Power processing Design.
The BESS shown in Fig.2 with the Layer 1 Sparse and

Layer 2 Lite converters includes a Bus Voltage Regulator.
The Lite-Sparse converters only process the mismatch power
among the series connected batteries, but unlike conventional
power processing, requires lower overall power converter rat-
ings. The Bus Voltage Regulator processes the voltage mis-
match between the series string of batteries and the voltage
required by the current-sink load; in doing so, the voltage
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FIGURE 2. Lite-Sparse Hierarchical Partial-Power Processing (LS-HiPPP)
for series connected 2-BESS. Layer 1 consists of a sparse set of higher
power converters. Layer 2 consists of a dense set of lower power (lite)
converters. A bus voltage regulator processes the mismatch between the
battery series string and the required bus voltage. Only mismatch power
is processed like C-PPP but with fewer power converters and lower
converter ratings for the same performance using heterogeneous
second-use batteries.

heterogeneity is also absorbed. A parallel LS-HiPPP imple-
mentation is also possible and is discussed in [49].

The methods discussed in this paper apply not only to
battery packs but also to battery modules (battery packs may
be partitioned into modules) and individual battery cells.

B. BUS VOLTAGE REGULATOR
The battery string voltage and the desired output voltage
might be different as the batteries are discharged. The bus
voltage regulator is designed to compensate for this volt-
age mismatch dynamically. The bus voltage regulator recy-
cles some of the output power of the 2-BESS to support
the voltage mismatch [50], which can be positive or nega-
tive, between the battery string and load. The output voltage
of the 2-BESS is regulated using feedback. Although the
system efficiency is reduced, the bus voltage regulator uses
partial power processing to minimize the impact [50]. For
example, an 85% efficient bus voltage regulator supporting
a 10% voltage mismatch will reduce the system efficiency
by 1.5%.

C. MODEL SPECIFICS
1) BATTERY MACROMODEL
AGaussian distribution is used for the power capability of the
supply of batteries. Although the methods presented in this
paper can be used for any distribution, including both discrete
and continuous, Gaussian distributions are typically used in
analysis and comparisons among technology or configuration
options.

2) MODEL MAPPING USING DISTRIBUTION FLATTENING
The battery supply statistics can be mapped to the statistics
of individual battery positions by a Distribution Flattening
method. The method of Distribution Flattening generates a
finite set of batteries that represent the expected performance.
Fig. 3 shows a probability density function (PDF) for battery
power capability p(P).
We would like to map this statistical distribution, which is

a continuous function, to a finite expected set of batteries of
size N . In this paper, the statistical distribution of the supply
is Gaussian, but this does not necessarily have to be the case.

This expected set is an ordered set. The elements of this
set are a particular representation of the expected values for
N batteries drawn from the supply distribution. The set is
constructed in the following manner:

1) Divide the distribution into N intervals of equal proba-
bility: [P1,P2], [P2,P3], . . . , [PN ,PN+1]. P1 and PN+1
are the lower and upper bounds of battery power capa-
bility, respectively. An example is shown in Fig. 3. The
nth interval satisfies∫ Pn+1

Pn
p(P) dP =

1
N
. (1)

2) Assign each interval its expected value (1st moment).

P̄n = N
∫ Pn+1

Pn
p(P)P dP. (2)

3) The finite expected set B is constructed as B =

{P̄1, P̄2, . . . , P̄N }.
In general, each interval can be assigned any measure of cen-
tral tendency, including those that are functions of the local
shape of the interval. For example, one could use a function of
the higher moments of the interval. Fig. 3 shows a realization
of B as a series circuit of batteries. In general, B can be
realized by any topology, including circuit topologies.

3) COMPONENT MODELING
The batteries used in practice have a high efficiency so they
can be modeled to have negligible loss. A similar argument
can be made that the optimization results using this approx-
imation will deviate by only a small amount from the true
optimum.

Because each converter processes only a fraction of the
power that is extracted from the batteries, the optimization
result using converters with negligible loss is expected to have
only a small deviation from the true optimum.
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FIGURE 3. Distribution Flattening Method maps a statistical distribution to a series string of batteries that represents the expected behavior for that
string. The design of the sparse Layer 1 converters uses this series string.

D. OPTIMIZING POWER PROCESSING DESIGN
The power processing design can be divided into two activ-
ities: (1) allocation and (2) production. The goal of the first
activity is to pre-determine the sets of power converters that
will be allocated for use in the production of 2-BESS units.
The second activity is the design and construction of a partic-
ular 2-BESS unit during actual production.

The power processing design of a battery storage network
(in this paper a 2-BESS) can be defined by the following set,
which comprises:

1) Sets of power converters, which can be parameterized
by a unique set of power converter ratings (e.g. power
rating) and the number of power converters in the set.

2) Interconnection of power converters to the batteries.
3) Power flows among converters and batteries.
4) Interconnections of input and output ports.
5) Variables of the input and output ports, e.g. voltage,

current, and power.
In general, the power flows and the input and output port

variables can be trajectories that change in continuous or
discrete time, or in a sampled data space that may or may
not be uniform in continuous-time intervals.

The LS-HiPPP structure that we are investigating con-
sists of two layers of bidirectional power converters. Layer 1
is a sparse layer of power converters that is optimized for
the realization of an expected battery set from the sup-
ply population. Layer 2 is a dense layer of power convert-
ers, i.e. the number of converters is equal to one fewer
than the number of batteries, with each converter’s ports
attached to a battery and its adjoining neighbor, as shown in
Fig. 2.

1) DECISION VARIABLES
The power ratings of both Layer 1 and Layer 2 converters
need to be determined. As previously discussed, the structure
we choose for LS-HiPPP in this paper has the interconnection
of Layer 2 converters pre-determined. We also stipulate that
the Layer 2 converters will be identical. For Layer 1, the
number of converters and how they are partitioned into sets
of identical converter ratings are determined as part of the
optimization.

The cost of power converters scales approximately linearly
with power rating (i.e. $/kW). There is a penalty in the Design
as the number of power converter sets increases. In other
words, as the number of different types of converters that are
needed for the Design of a particular BESS product increases,
the worse the economies of scale because fewer converters of
a particular type are purchased.

2) OPTIMIZATION OBJECTIVE: BATTERY UTILIZATION
In this paper, the objective function is the power utilization
of the 2-BESS. The power utilization UP is defined as the
total power delivered from the output port of the 2-BESS
normalized by the sum of the intrinsic power capability of
each individual battery in the 2-BESS.

UP ,
Pout
N∑
j=1

Pbj

, (3)

where Pbj represents the intrinsic power of the jth battery in
the 2-BESS.

For simplicity, we assume that there is no penalty for power
processing in the bus regulation converter. This assumption is
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homologous to restricting battery sets to contain only batter-
ies with identical voltages. This does notmean that this design
method is restricted only to batteries of identical voltages, but
rather, the voltage differences do not change the optimization.

3) OPTIMIZATION FORMULATION
a: LAYER 1 POWER PROCESSING DESIGN
The purpose of Layer 1 is to process the expected mismatch
power among heterogeneous batteries. The design flow of the
power ratings of Layer 1 converters is illustrated in Fig. 4.

The power processing for Layer 1 is designed from the
expected set B that is derived from the Distribution Flatten-
ing of the battery supply set. The series string of batteries
B1 . . .B9 are arranged from lowest to highest expected power
capability as shown in Fig. 3.
A mixed-integer optimization is performed to maximize

the power utilization. For a small number of converters,
an exhaustive search can be performed to find the best inter-
connection. For every interconnection, the optimal power
flow is found using linear programming

max
p(1)i , p

bat
j , pbusj

∑
1≤j≤N

pbusj (4)

subject to − P̄j ≤ pbatj ≤ P̄j, (5)

pbatj =
∑
i∈K (1)

j

p(1)i + p
bus
j , (6)

pbusj = IstringV bat
j , j = 1, 2, . . . , N ,

(7)

where K (1)
j is the index set of the Layer-1 converters whose

inputs are connected to the jth battery, and N is the number
of batteries in the string. In this optimization problem, the
decision variables are the power ratings of theM Layer 1 con-
verters (represented by p(1)1 . . . p(1)M ), the power delivered from
the jth battery to the bus (represented by pbusj ), and the output
power of jth battery (represented by pbatj ). The optimization
objective (4) maximizes the total power transferred to the bus
(i.e. the summation of the power exchanged between each
battery and the bus). Constraint (5) are the battery input and
output power limits. Constraint (6) is the power conservation
law for each battery. Constraint (7) indicates that the direct
power transfer from the jth battery to the bus is proportional
to its voltage V bat

j because all the batteries share the same
string current Istring.

At the maximum utilization, the converters will have opti-

mal interconnection K (1)
j
∗

and power flow p(1)1
∗

· · · p(1)M
∗

.
In general, each converter can be processing a different
power, which can be described as the optimal set of processed
power. The converter ratings for Layer 1 can be partitioned
into sets based on the set of different processed power for
each converter. For example, for a partitioning that consists
of a single converter set, the rating for all the converters will
be the highest processed power from the optimal set; for two
partitions, the converter with the highest processed powerwill

be one partition and the remaining converters will be rated at
the 2nd highest processed power, and so forth for more parti-
tions. This partitioning strategy results in the lowest aggregate
rating for the power converters and hence cost. It is worth
noting that for a sparse Layer 1, the number of partitions is
much fewer than the number of batteries.

b: LAYER 2 POWER PROCESSING DESIGN
The purpose of Layer 2 is to process the mismatch power
from the statistical variation of the batteries. To optimize over
statistical variations, Monte Carlo methods are employed.
The design of Layer 2 proceeds subsequent to the design of
Layer 1. The interconnection and power ratings of the Layer
1 converters become constraints in the design of Layer 2 as
illustrated in Fig. 5. As previously mentioned, the intercon-
nection of Layer 2 is pre-determined and ratings of the power
converters are identical; hence, the goal is to determine the
optimal ratings for the power converters.

The optimization starts by selecting a set of trial power
converter ratings. For each converter rating, an optimal set
of battery power utilizations is obtained via a set of samples
from the statistical distribution of the battery supply. These
battery power utilizations are calculated from the optimal
power flow by applying linear programming to each sample

max
p(1)i , p

(2)
k , p

bat
j , pbusj

∑
1≤j≤N

pbusj (8)

subject to − (P̄j + δPj) ≤ pbatj ≤ (P̄j + δPj), (9)

pbatj =
∑

i∈K (1)
j
∗

p(1)i +
∑
k∈K (2)

j

p(2)k + p
bus
j , (10)

pbusj = IstringV bat
j , j = 1, 2, . . . , N , (11)

p(2)k ≤ p
(2)
max, k = 1, 2, . . . , N − 1, (12)

p(1)i ≤ p
(1)
i
∗

, i = 1, . . . ,M , (13)

where K (2)
j is the index set of the Layer 2 converters whose

inputs are connected to the jth battery. In this optimization
problem, the decision variables are the power processed by
the N − 1 Layer 2 converters, represented by p(2)1 . . . p(2)N−1.
The optimization objective (8) maximizes the total power
transferred to the bus. Constraint (9) are the battery input
and output power limits. δPj represents the power uncertainty
of the jth battery. Constraint (10) is the power conservation
law for each battery. Constraint (11) expresses the direct
power transfer from the jth battery to the bus. Constraint (12)
indicates that the power ratings for all Layer 2 converters
are identically equal to p(2)max. Constraint (13) suggests that
the Layer 1 converter ratings are kept fixed during the layer
2 power processing design.

E. ALLOCATION IN AND PRODUCTION OF 2-BESS UNITS
In allocation, both Layer 1 and Layer 2 converters are pur-
chased production quantities, which are determined by the
prediction of the 2-BESS product demand. Both Layer 1
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FIGURE 4. The design flow of the power ratings of Layer 1 converters. The expected set of batteries is derived from the Distribution Flattening of the
battery supply set. We enumerate the interconnections of expected batteries set with Layer 1 converters. For every interconnection, the optimal power
flow is found using linear programming. At the maximum utilization, the converters will have optimal interconnection and power flow.

FIGURE 5. Relationship between expected battery utilization and Layer 2 power processing. Layer 2 power processing is chosen after the
design of the Layer 1 converter ratings and interconnection. In the linear programming formulation for power capability, the ratings for
the Layer 2 converters are constraints. From Monte Carlo trials, the expected battery utilization for the 2-BESS can be obtained.

FIGURE 6. Production flow of a 2-BESS unit: (i) Layer 1 and 2 converter ratings are predetermined and purchased in volume; (ii) The batteries are tested
and ordered in the series string; (iii) Layer 1 interconnections are optimized; (iv) Layer 2 is connected; and (v) Power flow is optimized. 2-BESS units are
optimized for heterogeneity using power converters that are purchased at economies of scale.

and Layer 2 power converters are connected according to
Section II-D3.a and II-D3.b, respectively.

The production flow of a 2-BESS unit is illustrated in
Fig. 6. A battery set for a particular 2-BESS unit is acquired
from the battery supply. For a power-intensive application,
the batteries are then tested and evaluated for power capa-
bility. The assembly of the 2-BESS unit proceeds by sorting
and then connecting the batteries so they are ordered from
the lowest to highest capability. Using the battery capabil-
ity information from testing, the interconnection of Layer 1

converters (pre-purchased with a specified rating) is deter-
mined using the method outlined in Section II-D3.a. Both
Layer 1 and 2 converters are then connected to the batteries
and power is optimized for the application. Then, the 2-BESS
unit is tested and validated for performance and safety before
being delivered to the customer.

The optimal power flows are recalculated using linear pro-
gramming during operation with the actual battery power
capabilities in the 2-BESS unit and the output load as con-
straints. As we show in Section III, the design method for
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LS-HiPPP results in a better cost-performance tradeoff as
it relates to battery power utilization and aggregate con-
verter rating compared to the state-of-the-art approaches. The
LS-HiPPP architecture performs well with a sparse set of
Layer 1 converters at moderate power ratings and a dense set
of Layer 2 converters at lower power ratings.

III. RESULTS AND DISCUSSION
LS-HiPPP enables tradeoffs in performance and price not pre-
viously possible using conventional methods. The LS-HiPPP
design methods have tractable complexity in the optimiza-
tion on the order of 104 linear programming iterations with
200 variables for nine batteries and three Layer 1 convert-
ers, which can be performed on a small computing cluster.
The specific LS-HiPPP realization is illustrated in Fig. 2,
which consists of nine heterogeneous batteries connected in
series with three Layer 1 power converters and nine Layer 2
converters.

The battery power capability was modeled as a Gaussian
distribution with a normalized expected power µ̂p = 1 with
the power heterogeneity represented by the standard deviation
σ̂p normalized to the expected power. The aggregate converter
rating R̂p is normalized to the average aggregate intrinsic
battery power P̄I ,

R̂p =

M∑
i=1

p(1)i
∗

+

N−1∑
i=1

p(2)max

P̄I
, (14)

P̄I ,
N∑
i=1

P̄i. (15)

With a constant $/kW presupposition, aggregate converter
rating is a proxy for converter cost.

1) PARTIAL POWER PROCESSING VS. FULL POWER
PROCESSING
A tradeoff between the expected battery power utilization and
the normalized aggregate converter rating was investigated
using Monte Carlo simulations. We compare LS-HiPPP with
two state-of-the-art approaches for heterogeneous batteries in
a 2-BESS: FPP and C-PPP.

We can observe from Fig. 7 that partial power process-
ing architectures perform significantly better even at higher
heterogeneity (20%) and low converter ratings (20%). The
battery utilization for full processing is very nearly linear to
the converter rating; this is the case because all of the bat-
tery power must be processed by the power converter, hence
making the power converter rating the limiting factor.

Fig. 7 shows the results for heterogeneity in the battery
power capability with a standard deviation of 20% of the
mean. Because the maximum output power is equal to the
aggregate power converter rating for FPP, the utilization curve
increases linearly with converter rating, resulting in the most
costly option for converter cost per unit power capability for
2-BESS.One-layer or C-PPP shows a better tradeoff than FPP
because only the mismatch power is processed.

FIGURE 7. Comparison of battery utilization as a function of aggregate
converter rating R̂p for full power processing vs. partial power
processing: LS-HiPPP and C-PPP. Partial power processing architectures
perform significantly better than FPP.

2) LS-HiPPP VS. C-PPP
LS-HiPPP shows the best tradeoff for battery power utiliza-
tion and converter cost. This particular LS-HiPPP design,
shown in Fig. 2, uses only three Layer 1 power converters
with interconnections and ratings that are optimal for the
structure of the statistical distribution of the battery supply.
The Layer 2 converters are low power and are designed to
accommodate the deviations from the statistical distribution.
As a point of comparison in Fig. 8, LS-HiPPP has an expected
battery power utilization of 95% with only 15% of the output
power processed as opposed to 81% for conventional PPP and
15% for full processing. For the same utilization, LS-HiPPP
requires approximately one-fifth of the power converter
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FIGURE 8. Comparison of battery utilization as a function of aggregate
converter rating for two partial power processing architectures: LS-HiPPP
and C-PPP. LS-HiPPP performs significantly better than C-PPP, needing
much lower converter ratings for the same performance. At R̂p = 15%
converter rating and 20% heterogeneity, LS-HiPPP has an battery power
utilization of over 95% as opposed to 81% for C-PPP.

rating of FPPwith the same corresponding reduction in power
converter cost, assuming constant $/kW.

3) EFFECT OF HETEROGENEITY ON BATTERY UTILIZATION
Heterogeneity decreases battery utilization in all second-use
BESSs. This is because power converter ratings are selected
for a particular design point and pre-allocated with a direc-
tive towards economies of scale. We have observed from
Section III-1 that partial power processing architectures offer
the best tradeoff between battery utilization and converter
cost.

In this section, we compare the battery utilization for
LS-HiPPP with C-PPP as battery heterogeneity increases.

FIGURE 9. Comparison of battery utilization between LS-HiPPP and
C-PPP for R̂p = 20%.

As illustrated in Fig. 9(a) and Fig. 9(b), for R̂p = 20%,
LS-HiPPP always performs better than C-PPP in the expected
value and standard deviation of battery power utilization.
Lower standard deviation in the 2-BESS battery power uti-
lization means that the sensitivity to individual battery varia-
tion is less. The performance of C-PPP falls more drastically
at higher battery heterogeneity. In other words, not only is the
expected battery power utilization, but also the variation from
BESS unit to BESS unit across production is significantly
lower for LS-HiPPP.

A. SYSTEM EFFICIENCY
The system efficiency is the ratio of the power delivered by
the output of the 2-BESS to the sum of the power delivered
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FIGURE 10. 3-d plot of system efficiency vs. normalized processed power
vs. power converter efficiency. Smaller processed power can result in high
system efficiency despite lower power converter efficiency (lower cost
power converters).

by each individual battery within the 2-BESS,6 [46], such as
cooling and control.

ηsys =
Pout − Ploss

Pout
= 1−

Ploss
Pout

= 1−
Pproc
Pout

(1− ηconv), (16)

where Ploss represents the converter loss, Pproc represents the
processed power by the converters, and ηconv is the efficiency
of the converters. High system efficiency means lower overall
power losses which also means a lower cost of cooling and
thermal management. However, high efficiency converters
have higher cost. If high system efficiency can be achieved by
processing less power or compromising output power capa-
bility, then lower cost converters can be used without increas-
ing the cost of cooling. It can be observed from Fig. 10 that as
processed power is reduced, system efficiency increases and
is less sensitive to converter efficiency.

Compared to FPP and C-PPP, which are the state-of-the-art
architectures, LS-HiPPP processes the least amount of power.
From Fig. 7, for the same power output (e.g. 95% of the
battery power), LS-HiPPP processes only 14% of the battery
power. C-PPP processes 46% and FPP processes 100% of
the battery power. Based on (16) and Fig. 10, the electrical
system efficiency is 98% for LS-HiPPP, 93% for C-PPP, and
85% for FPP..7 Therefore, LS-HiPPP shows the best efficiency
compared to C-PPP and FPP.

1) LS-HiPPP VS. C-PPP
In comparing the system efficiency when using low-cost con-
verters with a meager efficiency of 85%, Fig. 11 shows that at
R̂p = 15% converter power rating, LS-HiPPP has a system
efficiency of 98.8%, while C-PPP has 97.8% and FPP only
85% (not shown in the figure) because 100% of the power is
processed by the converters.

6The system efficiency refers to the electrical system efficiency and does
not include the auxiliary power consumption.

7A typical efficiency of low-cost converters is 85%.

FIGURE 11. Comparison of system efficiency as a function of aggregate
converter power rating R̂p for two partial power processing
architectures: LS-HiPPP and C-PPP. LS-HiPPP has a higher system
efficiency for all cases of heterogeneity and converter rating R̂p. System
efficiency is especially impactful in reducing thermal management and
cooling costs.

System efficiency has a significant impact on the cost of
thermal management. At high efficiencies even a single digit
improvement in efficiency is impactful, e.g. at 99%, a 1%
decrease in efficiency doubles the requirement for cooling.
For example, in a 500 kW BESS operating at 99% efficiency,
a 1% decrease in efficiency corresponds to an increase in
required heat removal from 5 kW to 10 kW.

2) EFFECT OF HETEROGENEITY ON SYSTEM EFFICIENCY
Battery heterogeneity decreases system efficiency in par-
tial power processing systems. Partial power processing sys-
tems are designed to mainly process the mismatch power;
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FIGURE 12. Comparison of system power efficiency as a function of
battery heterogeneity between LS-HiPPP and C-PPP for R̂p = 20%.
LS-HiPPP has a higher system efficiency for all cases of heterogeneity.
System efficiency is especially impactful in reducing thermal
management and cooling costs.

heterogeneity increases this mismatch power that the power
converters need to process. Fig. 11 shows that as battery
heterogeneity becomes higher, the system power efficiency
decreases. From Figs. 11 and 12, LS-HiPPP has higher sys-
tem efficiency than C-PPP in all cases. Fig. 12 illustrates
the specific case for R̂p = 20%; as battery heterogeneity is
greater, the system efficiency decreases.

B. BENEFITS OF LOWER PROCESSED POWER FOR
LS-HiPPP
Processed power is the aggregate power flow through the
power converters and is normalized by the aggregate intrinsic
battery power P̄I

P̂proc =
Pproc
P̄I

. (17)

The normalized output power is

P̂out =
Pout
P̄I

, (18)

where Pout is the output power and P̄I is the aggregate intrin-
sic battery power.

There are several consequences to having an architec-
ture with low processed power, as illustrated in Fig. 13. The
first is lower requirements and subsequently lower cost for
cooling. Second, lower processed power means that convert-
ers with lower ratings and hence lower costs are required.
In comparing the two partial power processing architec-
tures, LS-HiPPP and C-PPP, with FPP in Fig. 14, LS-HiPPP
offers the lowest processed power for any choice of converter
rating.

In comparing partial power processing architectures in
Fig. 15, LS-HiPPP delivers significantly high battery utiliza-
tion at low processed power. Not only does LS-HiPPP have

FIGURE 13. 3-d plot of normalized power loss vs. normalized processed
power vs. power converter efficiency. Lower processed power results in
lower power loss despite lower efficiency (lower cost) power converters.
Lower power loss means lower cost of thermal management and cooling.

FIGURE 14. Converter rating R̂p vs. processed power at 20%
heterogeneity. LS-HiPPP has lower processed power because the Layer
1 sparse converters are optimally placed and allow for a better overall
power flow optimization.

higher battery utilization, but it can also do so at high system
efficiency as illustrated in Fig. 16.

C. POWER DERATING
The power derating in the context of this paper is the power
capability of a particular 2-BESS within a 99.85% confi-
dence level when the batteries are drawn from a statistically
distributed supply. Given a 2-BESS with a power capability
distribution described by expected value µ2b and standard
deviation σ2b, the 3σ power derating can be calculated by

Df =
µ2b − 3σ2b

µ2b
. (19)

We compare the power derating for LS-HiPPP with C-PPP
as battery heterogeneity increases. As illustrated in Fig. 17,
for R̂p = 20%, LS-HiPPP outperforms C-PPP. The power
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FIGURE 15. Tradeoff frontier of battery power utilization and converter
processed power. Even at 100% battery utilization, the processed power
for LS-HiPPP does not exceed 13%; the caveat is that converter rating R̂p
increases with battery utilization although not as steeply as FPP and
C-PPP.

FIGURE 16. Tradeoff frontier of battery power utilization and system
efficiency. At high battery power utilization, LS-HiPPP maintains high
system power efficiency despite using 85% efficient power converters.
Comparatively, C-PPP has a higher penalty in system power efficiency at
high battery power utilization. System efficiency is especially impactful in
reducing thermal management and cooling costs.

derating of C-PPP decreases more significantly at greater
battery heterogeneity.

As R̂p becomes higher, the power derating increases.
LS-HiPPP has higher power derating than C-PPP in all cases.
The power derating of LS-HiPPP increases more drastically
with R̂p than C-PPP. In other words, to confidently obtain
100 kW from a production 2-BESS, one must purchase a
2-BESS rated at 129.87 kW for C-PPP, but a lower rated
113.64 kW 2-BESS at a lower cost for LS-HiPPP.

D. POWER CAPTURED VALUE
The expected financial value of a 2-BESS capability is deter-
mined by both derating factor Df and power utilization UP.
The power captured value is defined as

Cv , Df UP, (20)

where Cv is in the unit of kW per kW-intrinsic.
We compare the power captured value for LS-HiPPP with

C-PPP as battery heterogeneity increases. For R̂p = 20%,
LS-HiPPP outperforms C-PPP, as illustrated in Fig. 19. The
performance of C-PPP decreases more significantly at greater
battery heterogeneity.

Fig. 20 is the true tradeoff curve between the risk value
pricing of second-use batteries and the cost of power con-
verters. As R̂p becomes higher, the power captured value
increases. LS-HiPPP has higher power captured value than

FIGURE 17. Comparison of 3σ power derating as the function of battery
power heterogeneity between LS-HiPPP and C-PPP at 20% normalized
aggregate power converter rating.

FIGURE 18. Comparison of 3σ power derating as the function of
normalized aggregate power converter rating between LS-HiPPP and
C-PPP at 20% battery power heterogeneity.

C-PPP in all cases. The power captured value of LS-HiPPP
increases more drastically with R̂p than C-PPP.

E. DISCUSSION
1) MICROGRID APPLICATIONS
2-BESS is useful for stabilizing the voltages of micro-
grids. Compared to other power processing architectures,
LS-HiPPP is lower in cost and higher in power capability.
The LS-HiPPP can provide energy to the grid quickly when
the voltage droops. The bus voltage regulator can quickly
match the output of 2-BESS with that required for the grid
voltage.

2-BESS using LS-HiPPP can operate as a grid-forming
unit and support an island microgrid [51] when the bus volt-
age regulator is controlled to make the BESS output behave
as a stiff voltage source together with an inverter.

VOLUME 10, 2022 90773



X. Cui et al.: LS-HiPPP for 2-BESS

FIGURE 19. Comparison of captured value as the function of battery
power heterogeneity between LS-HiPPP and C-PPP at 20% normalized
aggregate power converter rating.

FIGURE 20. Comparison of captured value as the function of normalized
aggregate power converter rating between LS-HiPPP and C-PPP at 20%
battery power heterogeneity.

2) SENSOR INACCURACY
A practical challenge of the proposed method is sensor inac-
curacy. Measurement and random errors typically follow a
Gaussian distribution. Typically, the current of each battery
is usually measured to within 0.1% accuracy. The voltage of
each battery is usually measured to within 0.025% accuracy.
The current and voltage measurement accuracy results in the
power error measured at the terminal of each battery to be
approximately 0.1%. The power and energy metering accu-
racy for billing is within 2% [52]. We use this utility meter-
ing accuracy standard to compare with the 2-BESS accuracy.
Given a 2-BESS with N batteries, the power capability per-
centage error of the 2-BESS e2Bess can be bounded over the
range of individual battery power capabilities as

0.1%×
1
√
N
≤ e2Bess ≤ 0.1%. (21)

This error e2Bess is better than the utility metering accuracy.

TABLE 2. Cost comparison of three power processing architectures using
expected utilization.

3) PRACTICAL CHALLENGES
A potential challenge of the proposed method is that plenty of
data is needed to acquire adequate statistics. Machine learn-
ing and artificial intelligence (AI) can assist in solving the
practical challenges [30], [31].

4) COST ANALYSIS
Power converters and second-use batteries dominate the cost
of 2-BESS [3]. We denote the per kW cost of power convert-
ers by a constant cconv and the per kWh cost of second-use
batteries by a constant cbatt .

a: COST ANALYSIS BASED ON EXPECTED UTILIZATION
Wefirst show a simple analysis based on expected utilization.
In this case, to build a 2-BESS with 100 kW (at 1C Rate)
power output capability, the cost of 2-BESS c2Bess is

c2Bess =
100 kW

UP(R̂p)
cbatt +

100 kWh

UP(R̂p)
R̂pcconv , (22)

where UP is the power utilization of the batteries. The cost of
2-BESS c2Bess varies with the power converter rating R̂p. The
minimal cost is obtained if the marginal cost of power con-
verters equals the negative of the marginal cost of second-use
batteries

cbatt
∂UP
∂R̂p

∣∣∣∣
R̂∗p
= cconv

(
U∗P −

∂UP
∂R̂p

∣∣∣∣
R̂∗p

R̂∗p

)
, (23)

where U∗P is the optimal power utilization of the batteries and
R̂∗p is optimal power converter rating. For example, if the cost
of batteries cbatt and power converters cconv are both equal to
ch, by using Fig. 7 and solving (22) and (23), we can compare
the optimal cost of different power processing architectures as
shown in Table 2.
The optimal power converter rating R̂∗p for C-PPP is 14.9%

while R̂∗p for LS-HiPPP is 14.2%. At the optimal point,
LS-HiPPP can achieve the battery power utilization U∗P of
95.2%, however, C-PPP can only achieve U∗P of 80.5%. The
optimal cost of 2-BESS using LS-HiPPP is 119.2 ch and
C-PPP is 139.2 ch. Therefore, the total cost of C-PPP is 16.8%
more expensive than that of LS-HiPPP.

b: COST ANALYSIS BASED ON UTILIZATION INCLUDING
DERATING
Derating and captured value ensure that the power capabil-
ity of a particular 2-BESS is within a 99.85% confidence
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TABLE 3. Cost comparison of three power processing architectures
including the derating.

level when the batteries are drawn from a statistically dis-
tributed supply. In this case, to build a 2-BESS with 100 kW
(at 1 C Rate) power output capability, the cost of 2-BESS
c2Bess is

c2Bess =
100 kW

Cv(R̂p)
cbatt +

100 kWh

Cv(R̂p)
R̂pcconv , (24)

where Cv is the power captured value of the batteries. The
cost of 2-BESS c2Bess varies with the cost of power converters
R̂p. The minimal cost is obtained if the marginal cost of
power converters equals to the negative of the marginal cost
of second-use batteries

cbatt
∂Cv
∂R̂p

∣∣∣∣
R̂∗p
= cconv

(
U∗P −

∂Cv
∂R̂p

∣∣∣∣
R̂∗p

R̂∗p

)
, (25)

where C∗v is the optimal captured value of the batteries and R̂∗p
is optimal power converter rating. For example, if the cost of
batteries cbatt and power converters cconv are both equal to ch,
by using Fig. 20 and solving (24) and (25), we can compare
the optimal cost of different power processing architectures
as show in Table 3.

We simplified the captured value analysis of FPP by
assuming that we can access all the capabilities of the bat-
teries. This provides a favorable bound on the derating of
FPP. Given N batteries sampled from a Gaussian battery sup-
ply with 20% heterogeneity, the resulting 2-BESS follows a
Gaussian distribution with heterogeneity

σ2b

µ2b
= 20%×

1
√
N
. (26)

The 3σ power derating of FPP is

Df = 1− 20%×
1
√
N
× 3. (27)

The optimal power converter rating R̂∗p for C-PPP is 44.5%
while R̂∗p for LS-HiPPP is 26.9%. At the optimal point,
LS-HiPPP can achieve the battery power utilization U∗P
of 93.6%, however, C-PPP can only achieve U∗P of
82.3%. The optimal cost of 2-BESS using LS-HiPPP is
135.5 ch and C-PPP is 175.6 ch. Therefore, the total
cost of C-PPP is 29.6% more expensive than that of
LS-HiPPP.

In summary, the cost of LS-HiPPP is lower than the other
two state-of-the-art power processing architectures. Accord-
ing to [3], the cost of second-use batteries is comparable to the

cost of power converters, but as batteries become cheaper than
power converters, we need to reduce the amount of power
processing for 2-BESS to be competitive.

IV. CONCLUSION AND FUTURE WORK
By utilizing a new hierarchical power processing architec-
ture, LS-HiPPP achieves better battery utilization and higher
system efficiency for the same converter ratings in compar-
ison to FPP and C-PPP. By incorporating the heterogeneity
statistics of the second-use battery supply, LS-HiPPP is less
sensitive to the individual battery variation and has higher
power derating as well as power captured value in comparison
to FPP and C-PPP. At 95% battery utilization, only one-fifth
of the power converter rating is needed for LS-HiPPP in
comparison to FPP. With the cost of power converters that
scale as $/kW, this corresponds to one-fifth of the cost.
Additionally, for the same converter power rating, LS-HiPPP
has the highest efficiency when compared to C-PPP and
FPP.

In the future, we can (1) include more advanced battery
modeling and prognostics techniques in the BESS design;
(2) use machine learning/AI to extend the strategies described
in this paper.
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