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ABSTRACT In order to reduce the computational complexity for nonlinear Active Noise Control (ANC)
systems, we propose a filtered-x set membership with a time-varying error bound (Fx-SM-VEB) algo-
rithm based on the adaptive approximation principle and data-selective update strategy. By introducing
the time-varying error bound (VEB) to replace a pre-specified threshold when nonlinearity exists in the
components of the ANC system, the performance of the proposed algorithm is significantly improved.
Moreover, the VEB is also easily expanded against the impulsive noise that is normally encountered in actual
ANC systems. Based on the impulsive-free estimation, we develop a robust Fx-SM-VEB (RFx-SM-VEB)
algorithm for the ANC system which is corrupted by impulsive noise in the reference input signal. Besides,
we provide analyses of the steady-state behavior, stability conditions, and computational complexity of the
proposed algorithms. Many simulation results in different scenarios of the ANC system have shown that the
proposed algorithms are efficient under the nonlinear environment and impulsive noise.

INDEX TERMS Nonlinear active noise control, set membership, filtered-x least mean square (Fx-LMS)
algorithm, impulsive noise.

I. INTRODUCTION
For the purpose of noise reduction at low frequencies
(f <= 500 Hz), the ANC system has shown many out-
standing advantages such as low cost, and simple implemen-
tation [1], [2], [3]. Its principle is based on the superposition
of two sound wave sources, the primary path (unwanted noise
source) and the secondary path (anti-noise source) to suppress
unwanted noise. The noise cancellation quality of the ANC
system depends not only on the correct coordination between
the audio domain and the electrical domain, but also on the
problem of reducing nonlinear distortion occurring in the
primary path, secondary path, and noise source [4], [5]. Many
studies have shown that the ANC system using a linear con-
troller suffers from performance degradation because it does
not take into account the influence of nonlinear distortion [4],
[5], [6], [7], [8].
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In recent literature [4], [5], many controllers based on
linear-in-the-parameters (LIP) filters have been used to
reduce nonlinear distortion. Prominent among them can be
pointed out as the Functional Link Artificial Neural Networks
(FLANN) [5], Recursive FLANN (RFLANN) [9], Gener-
alized FLANN (GFLANN) [10], [11], Bilinear FLANN
(BLANN) [12], Even Mirror Fourier (EMF) [13], [14],
Volterra [4], [15], [16], etc. To compensate well for nonlinear
distortion in ANC systems, LIP filters need to be chosen with
a large enough order and/or memory length. This leads to a
remarkable increase in computational complexity.

The strategy of updating the filter weights of the
set-membership algorithm is to update only when the mag-
nitude of the priori error exceeds a predefined threshold [17].
Based on this technique, data with no information or insignif-
icant amount of information will be ignored, resulting in
reduced update costs for redundant data. The set membership
algorithm has been developed formany applications to reduce
computational complexity [18], [19], [20], [21], [22], [23],
[24]. In work [18], a nonlinear adaptive filter based on the
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kernel set membership method was introduced for the pur-
pose of reducing complexity and increasing tracking ability.
Many improvements to the set membership NLMS algorithm
for the acoustic echo and sparse channel estimation problem
have been proposed [19], [20], [21], [22]. To reduce power
consumption in wireless sensor networks, solutions based on
SM filtering strategy have also received the attention of many
researchers [23], [24]. Much literature [25], [26], [27] dealing
with identification systems in the set-membership framework
exhibits robust performance in the impulsive noise environ-
ment. In particular, the filtered- x set-membership affine pro-
jection (Fx-SM-AP) algorithms have also been applied in the
linear active noise control system to reduce the computation
for the Fx-AP algorithm [28], [29].

In order to improve the efficiency of nonlinear ANC
systems, in this study, we propose the filtered-x set mem-
bership with time-varying error bound (Fx-SM-VEB) and
robust Fx-SM-VEB (RFx-SM-VEB) algorithms. The pro-
posed Fx-SM-VEB algorithm updates only a small part of
the filter weights, thus it can significantly reduce the compu-
tational complexity. Furthermore, due to using a time-varying
error bound (VEB), the proposed algorithm is more suit-
able for nonlinear ANC systems, resulting in performance
improvement compared to using the predetermined thresh-
old. Besides, by calculating the threshold parameter through
an impulsive-free estimation, the time-varying error bound
can be easily applied to ANC systems containing impulsive
noise. In practice, impulsive noise which often occurs with
low probability, but large amplitude is a challenging prob-
lem for the stability of adaptive algorithms [15]. The pro-
posed RFx-SM-VEB algorithm can against the impulse noise
because the error bound is robust to outliers and achieves a
good convergence performance resulting from a time-varying
error bound. Many simulation studies have been conducted
to evaluate the performance of the proposed algorithms in
different scenarios of ANC systems.

The remainder of the paper is structured as follows.
Section II provides a summary of the ANC system based on
the LIP nonlinear expansion function. Section III proposes
the set membership filter-based algorithms for the nonlinear
ANC system. Sections IV and V give the analysis and the
computational complexity of the algorithm, respectively. Sec-
tions VI discusses simulation results. Section VII concludes
our work.

II. BRIEF OF NONLINEAR ANC SYSTEM
Many linear-in-the-parameters (LIP) nonlinear filters (such
as Volterra, FLANN, EMF, etc.) have been used to replace
neural networks in ANC systems because of their simple
structure and low complexity. Many researchers [4], [5], [9],
[10], [11], [12], [13], [14], [15], [16] have also shown the
effectiveness of the LIP filters for reducing the nonlinear
distortion that exists in the primary path, secondary path,
or reference noise. Fig. 1 illustrates a nonlinear ANC system
based on LIP controller using Fx-LMS algorithm [1], [2],
where X(n) is the reference noise source; y(n) is the output

FIGURE 1. Nonlinear ANC system based on LIP controller using Fx-LMS
algorithm.

of the controller; P(z) is the transfer function of the primary
path from the reference source to the error sensor; S(z) is the
transfer function of the secondary path from the controller
output to the error sensor; Ŝ(z) is an estimate of the secondary
path; d(n) is the main path noise measured at the noise can-
cellation point; d̂(n) is the estimate of d(n); and W (n) is the
filter coefficient of the controller.

Suppose the external input signal vector X(n) at time
instant n is

X(n) = [x(n), x(n− 1), . . . , x(n− N + 1)]T , (1)

where N is the memory length.
The external input signal vector X(n) can be expanded

to the vector S(n) = [[ϕ1{X(n)}]T , [ϕ2{X(n)}]T , . . . ,
[ϕk{X(n)}]T ]T based on subclasses of LIP nonlinear filters
such as FLANN, Volterra, EMF, where ϕk{X(n)} is a set of
linearly independent functions k th of X(n). In other words,
the nonlinear state is generated based on these linearly inde-
pendent functions. Hence, we can write the output of the LIP
nonlinear controller as

y(n) = WT (n)S(n), (2)

whereW (n) denotes the filter coefficient vector.
The trigonometric expansion function based on FLANN

has been described in works [5], which provides a compact
representation for the nonlinear filter. Its linearly independent
functions are expressed as follows:

ϕ1{X(n)} = [x(n), x(n− 1), · · · , x(n− N + 1)], (3)

ϕ2{X(n)} = [sin(πx(n)), sin(πx(n− 1)),

· · · , sin(πx(n− N + 1))], (4)

ϕ3{X(n)} = [cos(πx(n)), cos(πx(n− 1)),

· · · , cos(πx(n− N + 1))], (5)
...

ϕ2P{X(n)} = [sin(2Pπx(n)), sin(2Pπx(n− 1)),

· · · , sin(2Pπx(n− N + 1))], (6)

ϕ2P+1{X(n)} = [cos((2P+1)πx(n)), cos((2P+1)πx(n− 1)),

· · · , cos((2P+1)πx(n− N + 1))], (7)
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where P is the order of the expansion function FLANN, and
M = N (2P + 1) is the memory length of the expansion
function.

For expansion function using a truncated Volterra series,
linearly independent functions can be represented as [4],
ϕk{X(n)} = x(n − nk,1)x(n − nk,2) . . . x(n − nk,Pk ), where
nk,1, nk,2, . . . , nk,P denote an arbitrary integer (0, 1, 2, . . .)
representing delay (note that the maximum value of the
delay is N , which is the memory size of the input vector
X(n)), and P is the order of the nonlinear expansion func-
tion. As shown in [4], the memory length of the expansion
function based on the truncated Volterra series is defined as
M = CN

(N+P) =
(N+P)!
N !P! .

III. THE ALGORITHM BASED ON SET MEMBERSHIP
FILTERING (SMF) FOR NONLINEAR ANC SYSTEM
Many works in [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], and [29] have pointed out the effective-
ness of adaptive algorithms based on the SMF technique in
reducing computational complexity and the effect of impulse
noise. However, only a few works [28], [29] focus on solv-
ing for the ANC framework, and they also only apply to
linear systems. To overcome the problem of nonlinearity in
ANC systems, LIP controllers (Volterra, FLANN. . . ) have
been used. But this remarkably increases the computational
complexity. In this section, we propose filtered-x SM with
a time-varying error bound (Fx-SM-VEB) algorithm for the
nonlinear ANC system to reduce the computational burden.
In addition, we introduce a robust error bound that uses an
impulsive-free estimation, to develop a robust Fx-SM-VEB
(RFx-SM-VEB) algorithm for nonlinear ANC systems con-
taining impulsive noise.

A. PROPOSED FX-SM-VEB ALGORITHM
Based on the least–perturbation property, the constrained cost
function of the algorithm is represented as follows:

min
W (n+1)

‖W (n+ 1)−W (n)‖2

Subject to d(n)− d̂(n) = ξ, (8)

where ξ denotes the pre-specified error bound and must be
chosen appropriately.

The constraint problem can be solved by using the
Lagrange multipliers method, and an unconstrained cost
function is given by

L = ‖W (n+ 1)−W (n)‖2 + λ(d(n)− d̂(n)− ξ ) = 0, (9)

where λ is a Lagrange multiplier. Taking the gradient with
respect toW (n+ 1), then setting it equals to zero, we obtain

h

W (n+1)

= L(W (n+ 1), λ)

= 2(W (n+ 1)−W (n))− λ
∂ d̂(n)

∂W (n+ 1)
= 0. (10)

To achieve a structure for both nonlinear and linear sec-
ondary paths, the virtual secondary path filter [8] is used by

H̃(n) = [h(n, 0), h(n, 1), · · · , h(n,K )]T

= [
∂ d̂(n)
∂y(n)

,
∂ d̂(n)

∂y(n− 1)
, · · · ,

∂ d̂(n)
∂y(n− K )

]T , (11)

where K is the memory size of the secondary path. Note that
the term ∂ d̂(n)

∂W (n+1) in (10) can be written as

∂ d̂(n)
∂W (n+ 1)

=

K∑
k=0

∂ d̂(n)
∂y(n− k)

∂y(n− k)
∂W (n+ 1)

. (12)

Assuming that the step size is small (i.e., theweight taps are
slowly varying), applying the approximation principle, we get

∂y(n− k)
∂W (n+ 1)

≈ S(n− k), (13)

where S(n) is the expanded version of the external input
signal X(n) based on the LIP nonlinear functions (FLANN,
Volterra,. . .).

Substituting (13), (12) into (10), and combining with (11),
we have

W (n+ 1) = W (n)+
λ

2

K∑
k=0

h(n, k)S(n− k). (14)

It is worth noting that the term
∑K

k=0 h(n, k)S(n− k) is the
result of filtering the extended signal S(n) through the virtual
secondary path filter. Thus, we can define the filtered signal
of S(n) as

Sf (n) = S(n) ∗ H̃(n) =
K∑
k=0

h(n, k)S(n− k), (15)

where the asterisk * indicates convolution. Combining (15)
and (14), we get

W (n+ 1) = W (n)+
λ

2
Sf (n). (16)

Taking the gradient with respect to λ, then setting it equals
to zero, we obtain

h

λ

= L(W (n+ 1), λ) = d(n)− d̂(n)− ξ = 0. (17)

To compute (17), we can rewrite the estimate of d(n) as

d̂(n) = H̃(n) ∗ [W (n+ 1)TS(n)]. (18)

Assuming the step size is small,W (n+1) can be considered
as very slowly varying. Thus, (18) can be expressed as

d̂(n) ≈ W (n+ 1)T [H̃(n) ∗ S(n)]. (19)

Substituting (15) and (16) into (19), we have

d̂(n)

≈ {W (n)+
λ

2
[H̃(n) ∗ S(n)]}T [H̃(n) ∗ S(n)]

= W (n)T [H̃(n) ∗ S(n)]+
λ

2
[H̃(n) ∗ S(n)]T [H̃(n) ∗ S(n)]
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= W (n)T [H̃(n) ∗ S(n)]+
λ

2
Sf (n)TSf (n)

≈ H̃(n) ∗ [W (n)TS(n)]+
λ

2
Sf (n)TSf (n). (20)

Substituting (20) in to (17), we get

d(n)− H̃(n) ∗ [W (n)TS(n)]−
λ

2
Sf (n)TSf (n)− ξ = 0.

(21)

Note that

e(n) = d(n)− H̃(n) ∗ [W (n)TS(n)] (22)

and therefore, we have

λ

2
=

e(n)− ξ
Sf (n)TSf (n)

. (23)

Combining (16) and (23), we get the equation to update the
weights as

W (n+ 1) = W (n)+ ψ(n)
e(n)

Sf (n)TSf (n)
Sf (n), (24)

where

ψ(n) =

{
(1− ξ

|e(n)| ) if |e(n)| > ξ,

0 otherwise
(25)

is a time-varying step-size. At the time instant n, if |e(n)|
is larger than a pre-specified error bound ξ , the equation
(24) needs updating the filtering weights. Otherwise, there
is no need to update. In other words, the algorithm used a
data-selection updatemechanism to reduce the computational
complexity. We hereafter call this algorithm the filtered-x set
membership (Fx-SM) algorithm.

The algorithm achieves good convergence performance
and low computational complexity when a pre-specified error
bound ξ is chosen appropriately. However, this is difficult
to achieve since we lack understanding of the environment
of the nonlinearity that exist in the primary path and/or sec-
ondary path, the reference input signal. In order to tackle this
disadvantage, a time-varying error bound (VEB) has been
developed, which can automatically adjust the error bound
in each iteration during the update process.

Referenced byworks [25], [30], a time-varying error bound
can be represented as follows:

ξ (n) =

{
|e(n)| − ρθ (n) if |e(n)| > θ(n),
ξ otherwise,

(26)

where ξ =
√
τδ2v is a pre-specified error bound, δ2υ is

the variance of observation noise υ(n), ρ is usually choose
0 < ρ � 1 to achieve low steady-state misalignments,
θ (n) = 9δ(n) is a threshold parameter, with 9 being a
scalar depending on the nonlinear model of the system;
δ(n) calculated through a residual error estimate as follows:

δ2(n+ 1) = ωδ2(n)+ (1− ω)e2(n), (27)

where 0 < ω 6 1. Therefore, when |e(n)| > θ(n) then the
error bound ξ (n) changes according to residual error, other-
wise it is equal to a pre-specified error bound. To increase
convergence, it is common to set the initial δ2(0) to large
(i.e., |e(n)| will be less than θ (n) during transient states), and
thus the algorithm will work with a pre-specified error bound
ξ (n) = ξ . Fig. 2 illustrates the nonlinear ANC system based
on the proposed algorithm.

Algorithm 1 Fx-SM-VEB Algorithm
Parameters: ρ; τ ;ω;9
Initialization: W (0) = 0; δ2(0) = 1
1: for n = 1 to N do
2: y(n) = WT (n)S(n)
3: d̂(n) = y(n)*H̃(n)
4: e(n) = d(n)− d̂(n)
5: Sf (n) = S(n) ∗ H̃(n)
6: δ2(n+ 1) = ωδ2(n)+(1− ω)e2(n)
7: θ (n) = 9δ(n)
8: if |e(n)| > θ(n) then
9: ξ (n) = |e(n)| − ρθ (n)
10: else
11: ξ (n) =

√
τδ2v

12: end if
13: if |e(n)| > ξ (n)) then
14: W (n+1) = W (n)+ 1

(δ+‖Sf (n)‖2)
(1− ξ (n)

|e(n)| )Sf (n)e(n)
15: else
16: W (n+ 1) = W (n)
17: end if
18: end for

B. ROBURST FX-SM-VEB (RFX-SM-VEB) ALGORITHM
A serious challenge is that the adaptive Fx-SM-VEB algo-
rithm becomes unstable when impulsive noise is present in
the reference input signal. To address this, we extend the
residual noise estimate δ2(n) in (27) to a robust estimate for
impulse noise as

δ2(n+ 1) = ωδ2(n)+ (1− ω)min(φ(n)), (28)

with φ(n) = [e2(n), e2(n− 1), . . . , e2(n−$ + 1)]T , and $
is length of the estimation window.

It is easy to see that the estimate δ2(n) is robust for outliers,
(i.e., when the impulsive noise-corrupted error signals, then
θ (n) = 9δ(n) would not increase). Hence, if the ANC sys-
tem contains impulse noise, it is certain that |e(n)| > θ (n),
and from (26) we use the time-varying error bound ξ (n) =
|e(n)| − ρθ (n). However, due to the impulse noise is very
large, ρθ (n) � |e(n)|, and thus we can deduce the error
bound ξ (n) ≈ |e(n)|. In this case, the step-size in (25) equals
to zero, resulting in the RFx-SM-VEB algorithm stopping
the update process. This also means that the RFx-SM-VEB
algorithm will not be unstable in the presence of the impulse
noise.
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FIGURE 2. Nonlinear ANC system based on proposed algorithm.

IV. ANALYSIS OF THE ALGORITHM
A. THE STEADY-STATE BEHAVIOR ANALYSIS
In this section, analysis of the algorithm based on the SMF
technique for the ANC system have been presented.

From (22) we can represent the residual error in the follow-
ing form:

e(n) = d(n)−WT (n)[H̃(n) ∗ S(n)] = d(n)−WT (n)Sf (n),

(29)

where Sf (n) is the filtered version of the extended signal S(n)
via the secondary path.

We can define the estimation error vector as 4W (n) =
W0 −W (n), whereW0 is the weight vector that needs to be
estimated, then the primary signal d(n) at the noise cancella-
tion point can be represented as

d(n) = WT
0 Sf (n)+ υ(n), (30)

where υ(n) denotes noise measured at the noise cancellation
point, which is assumed to be a zero-mean Gaussian process
and have variance δ2υ .
Substituting (30) into (29), we get

e(n) = υ(n)+4WT (n)Sf (n). (31)

Thus, we can represent the output MSE of e(n) as
follows:

ζ (n)

= E[‖e(n)‖2]

= E{[υ(n)+4WT (n)Sf (n)]T [υ(n)+4WT (n)Sf (n)]}

= E[‖υ(n)‖2]+ E{[4WT (n)Sf (n)]T [4WT (n)Sf (n)]}

= δ2υ + E[S
T
f (n)4W (n)4WT (n)Sf (n)]

= δ2υ + trace{E[Sf (n)S
T
f (n)4W (n)4WT (n)]}. (32)

From (32), the excess MSE can be deduced as

ζex(n) = trace{E[Sf (n)STf (n)4W (n)4WT (n)]}. (33)

On the other hand, the weight update equation of the
SMF-based system can be rewritten by

W (n+ 1) = W (n)+
1
Nδ2s

(
1−

ξ (n)
|e0(n)|

)
e(n)Sf (n), (34)

Algorithm 2 RFx-SM-VEB Algorithm
Parameters: ρ; τ ;ω;9;$ ;
Initialization: W (0) = 0; δ2(0) = 1
1: for n = 1 to N do
2: y(n) = WT (n)S(n)
3: d̂(n) = y(n)*H̃(n)
4: e(n) = d(n)− d̂(n)
5: Sf (n) = S(n) ∗ H̃(n)
6: φ(n) = [e2(n), e2(n− 1), . . . , e2(n−$ + 1)]T

7: δ2(n+ 1) = ωδ2(n)+ (1− ω)min(φ(n))
8: θ (n) = 9δ(n)
9: if |e(n)| > θ(n) then
10: ξ (n) = |e(n)| − ρθ (n)
11: else
12: ξ (n) =

√
τδ2v

13: end if
14: if |e(n)| > ξ (n)) then
15: W (n+1) = W (n)+ 1

(δ+‖Sf (n)‖2)
(1− ξ (n)

|e(n)| )Sf (n)e(n)
16: else
17: W (n+ 1) = W (n)
18: end if
19: end for

with

|e0(n)| =

{
|e(n)| if |e(n)| > ξ (n)
ξ (n) otherwise,

(35)

and δ2s is the variance of the filtered input signal through the
secondary path Sf (n).

Therefore, the updated equation of the estimation error
4W (n) is given by

4W (n+ 1)

= 4W (n)−
1
Nδ2s

(
1−

ξ (n)
|e0(n)|

)
e(n)Sf (n)

= 4W (n)−
1
Nδ2s

e(n)Sf (n)+
1
Nδ2s

ξ (n)
|e0(n)|

e(n)Sf (n).

(36)

Substituting (36) into (33), the output excess MSE can be
expressed by

ζex(n+ 1)

= trace{E[Sf (n)STf (n)4W (n+ 1)4WT (n+ 1)]}

= trace{E[Sf (n)STf (n)(U + V )(U + V )T ]}

= trace{E[Sf (n)STf (n)(UU
T
+ UVT

+VUT
+ VVT )]}, (37)

with U = 4W (n) − 1
Nδ2s

e(n)Sf (n), and V =

1
Nδ2s

ξ (n)
|e0(n)|

e(n)Sf (n). By using calculation given in Appendix,
we derive the output excess MSE in (37) as

ζex(n+ 1) = δ2υ + 2ξ (n)E
(

1
|e0(n)|

)
ζex(n)
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− 2ξ (n)E
(
e2(n)
|e0(n)|

)
+ ξ2(n)E

(
e2(n)
|e0(n)|2

)
.

(38)

Let Pu be the probability of updating in each iteration,
E(|) the conditional expected value, we can write

E
(

1
|e0(n)|

)
= E

(
1
|e(n)|

∣∣∣∣|e(n)| > ξ (n)
)
Pu

+
1
ξ (n)

(1− Pu)

= APu +
1
ξ (n)

(1− Pu), (39)

E
(
e2(n)
|e0(n)|

)
= E(e(n)

∣∣|e(n)| > ξ (n))Pu

+
1
ξ (n)

E(e2(n)
∣∣|e(n)| 6 ξ (n))(1− Pu)

= BPu +
1
ξ (n)

C(1− Pu), (40)

E
(

e2(n)
|e0(n)|2

)
= Pu +

1
ξ2(n)

E(e2(n)
∣∣∣|e(n)| 6 ξ (n))(1− Pu)

= Pu +
1

ξ2(n)
C(1− Pu), (41)

where A = E( 1
|e(n)|

∣∣|e(n)| > ξ (n)), B = E(e(n)
∣∣|e(n)| >

ξ (n)), and C = E(e2(n)
∣∣|e(n)| 6 ξ (n)). Substituting (39-41)

in (38) we have

ζex(n+ 1) = δ2υ + 2ξ (n)[APu +
1
ξ (n)

(1− Pu)]ζex(n)

− 2ξ (n)[BPu +
1
ξ (n)

C(1− Pu)]+ ξ2(n)[Pu

+
1

ξ2(n)
C(1− Pu)]. (42)

When the algorithm reaches the steady state (i.e., ξex(n +
1)→ ξex(n), the output excess MSE becomes (43), as shown
at the bottom of the next page.

B. THE CONVERGENCE AND STABILITY CONDITIONS
ANALYSIS
To establish the convergent behavior of the proposed algo-
rithms, we conduct the behavior analysis of the weight devi-
ation vector (4W (n) = W0-W (n)). The weighted deviation
vector update equation for algorithms (24) and (25) can be
expressed as,

4W (n+ 1) = 4W (n)− ψ(n)
e(n)Sf (n)

STf (n)Sf (n)
, (44)

Substituting (31) into (44), the above expression can be
rewritten as,

4W (n+ 1) =
(
I − ψ(n)

Sf (n)STf (n)

STf (n)Sf (n)

)
4W (n), (45)

where I is the 1 byM identity vector.

The expected coefficient vector error is given by,

E[4W (n+ 1)]

=

[
I − ψ(n)E

Sf (n)STf (n)

STf (n)Sf (n)

]
E[4W (n)]

∼=

[
I − ψ(n)

E[Sf (n)STf (n)]

E[STf (n)Sf (n)]

]
E[4W (n)]

=

[
I − ψ(n)

R
Tr[R]

]
E[4W (n)], (46)

whereR is the correlationmatrix of the signal Sf (n). Equation
(46) can be expressed as,

E[4W (n+ 1)] =
[
I − ψ(n)

R
Tr[R]

](n+1)
E[4W (0)]. (47)

Based on the method of analyzing the convergence behav-
ior of the NLMS algorithm [31], we deduce the stability con-
dition of the proposed algorithm as,

0 < ψ(n) < 2. (48)

On the other hand, from (25) we have 0 < ψ(n) < 1.
Therefore, it can be concluded that the proposed algorithms
are always stable.

V. ANALYSIS OF COMPUTATIONAL COMPLEXITY
Table 1 shows the comparison of computational complexity
in each iteration in terms of multiplication and addition for
Fx-LMS, Fx-SM, and proposed Fx-SM-VEB algorithms. For
the proposed Fx-SM-VEB algorithm, the basic operations are
analyzed specifically as follows:
• Computing the filter output in the equation (2) requires
M multiplicationM − 1 addition, whereM is the mem-
ory length of the extended input signal. For the Volterra
expansion function M = CN

N+P =
(N+P)!
N !P! , for the

FLANN expansion functionM = N (2P+1), where P is
the order of the expansion function, N is the memory
length of the external input signal.

• Computing the term ‖Sf (n)‖22 in the update equa-
tion (24) requires one multiplication and two addi-
tions. (Refer to [32], we can decompose ‖Sf (n)‖22 into
‖Sf (n− 1)‖22+S

2
f (n)−S

2
f (n−N ). Notice that the terms

‖Sf (n− 1)‖22 and S
2
f (n − N ) have been computed from

earlier iterations, and therefore we only need to compute
for term S2f (n)).

• Computing the time-varying error bound ξ (n) in equa-
tions (26,27) requires 4 multiplications, 2 additions, and
1 comparison.

• Computing the weight updateW (n) in the equation (24)
requires PuM+1 multiplication and Pu(M−1) addition,
and 1 comparison, where Pu=UR/100 is the probability
of updating the filter weight in each iteration, and UR
is the update rate which is defined by the percentage
of update numbers of the equation (24) per the total
iterations.
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TABLE 1. Computational complexity in each iteration of the algorithms.

• Computing the filtering of the extended signal S(n) via
the virtual secondary path (15) requires KL multipli-
cation and K (L − 1) addition, where K is the mem-
ory length of S(z) and L is the number of channels of
extended signal. Note that the extended signal S(n) can
be analyzed in a multichannel fashion to exploit the shift
structure in each channel. Instead of having to compute
for all the operations of the extended signal filtering,
we only need to compute the first term in each channel
and then use the shift property to derive the remaining
terms.

VI. SIMULATION
In this section, we apply the proposed algorithms for two non-
linear controllers commonly used in ANC systems, namely
FLANN and Volterra, to evaluate the effectiveness in terms
of reducing computational complexity and impulsive noise.
First, we illustrate the comparison between the conven-
tional Fx-LMS algorithm, Fx-SM algorithm, and the pro-
posed Fx-SM-VEB algorithm for nonlinear controllers in
the Gaussian noise environment. Then, we compare the pro-
posed RFx-SM-VEB algorithm with previous robust algo-
rithms (such as Fx-LogLMS [33], RFx-LMS [34], and
Fx-LogLMP [35]) in an impulsive noise environment.

To compare the performance in the Gaussian noise envi-
ronment, we use the normalized mean-square error (NMSE)
defined by

NMSE = 10 log10{
E(e2(n))

δ2dn
}, (49)

where δ2dn is the variance of the primary path noise and e2(n)
is the residual noise power.

To compare the performance in an impulsive noise envi-
ronment, we use the averaged noise reduction (ANR) defined
by

ANR(n) = 20 log10{
Ae(n))
Ad (n))

}, (50)

where Ad (n) = �Ad (n − 1) + (1 − �)|d(n)| and Ae(n) =
�Ae(n − 1) + (1 − �)|e(n)|. Note that � is very close to 1,
Ad (0) = 0, and Ae(0) = 0.

In all experiments, the controller parameters have chosen
as follows: (i) For Volterra, memory size N = 10 and order
of P = 2; (ii) For FLANN, memory size N = 10 and
order of P = 3; (iii) Signal-to-noise ratio SNR = 30dB; and
(iv) Learning curves were plotted after 100 independent runs
to better discern the behavior of the NMSE or ANR.

A. PERFORMANCE COMPARISON IN THE GAUSSIAN
NOISE ENVIRONMENT
Experiment 1: In this experiment, we assume the scenario of
nonlinearity in the ANC system as referenced in [8]. Here,
the nonlinear models of the primary path and the secondary
path are expressed, respectively, by

d(n) = x(n)+ 0.8x(n− 1)+ 0.3x(n− 2)+ 0.4x(n− 3)

− 0.8x(n)x(n− 1)+ 0.9x(n)x(n− 2)

+ 0.7x(n)x(n− 3), (51)

and

d̂(n) = y(n)+ 0.35y(n− 1)+ 0.09y(n− 2)

− 0.5y(n)y(n− 1)+ 0.4y(n)y(n− 2). (52)

The reference input signal is a white Gaussian noise
process.

1) + CHOICE OF PARAMETERS
To determine the suitable parameters for the proposed algo-
rithm, we conducted many experiments with different values
for each parameter. The values of the parameters are chosen
based on a trade-off between the NMSE performance and
computational complexity (calculated through the update rate
UR). In this section, we only illustrate the experiments for
choosing the 9 and τ parameters for the Fx-SM-VEB algo-
rithm using the Volterra controller.

To determine the parameter 9, we first keep the τ fixed,
then change the 9 in turn to get the best compromise NMSE
and UR values (and vice versa for parameter τ ). Fig. 3a
illustrates the NMSE performance and the UR with different
9 values. Fig. 3b illustrates the NMSE performance and the
UR with different τ values. From Fig. 3a and 3b, it is easy
to see that the parameters 9 = 1.98 and τ = 11 achieves a
good compromise between the NMSE performance and the
UR update rate.

2) + COMPARING PERFORMANCE
The parameters of the proposed Fx-SM-VEB algorithm are
set: δ2(n) = 16, ρ = 0.1, ω = 0.99, τ = 100, 9 = 1.38
for FLANN; and δ2(n) = 1, ρ = 0.1, ω = 0.99, τ = 11,

ζex(n) =
δ2υ − 2ξ (n)[BPu + 1

ξ (n)C(1− Pu)]+ ξ
2(n)[Pu + 1

ξ2(n)
C(1− Pu)]

1− 2ξ (n)[APu + 1
ξ (n) (1− Pu)]

=
δ2υ − 2ξ (n)BPu − C(1− Pu)+ ξ2(n)Pu

2Pu − 2ξ (n)APu − 1
. (43)
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TABLE 2. Summarize the update rate, computational complexity per iteration of the algorithms.

FIGURE 3. NMSE performance versus the parameter 9 (3a), and The
NMSE performance versus the parameter τ (3b).

9 = 1.98 for Volterra. The parameters of Fx-SM are set: ξ =√
3δ2υ for FLANN; and ξ =

√
8δ2υ for Volterra. Step-size for

Fx-NLMS algorithm is set for FLANN by µ1 = 0.003 and
µ2 = 0.003, and for Volterra by µ1 = 0.04 and µ2 = 0.06.
Fig. 4 exhibits the noise cancellation performance of

the ANC systems based on the FLANN and Volterra,
using the Fx-LMS, Fx-SM, and proposed Fx-SM-VEB algo-
rithms. Table 2 summarizes the update rate, and the com-
putation complexity in each iteration of the corresponding
algorithms.

From Table. 2 and Fig. 4, it is easy to see that the proposed
Fx-SM-VEB algorithm reduces the computational complex-
ity significantly compared to the Fx-LMS algorithm while
maintaining the equivalent noise cancellation performance.

FIGURE 4. Performance comparison of FLANN (4a), and Voltera (4b)
controllers using Fx-LMS, Fx-SM and proposed Fx-SM-REB algorithms in
Experiment 1.

The Fx-SM algorithm with a pre-specified error bound is
reduced performance compared to the Fx-LMS and proposed
Fx-SM-VEB algorithms. This is probably due to the pres-
ence of nonlinearity in the primary path and secondary path,
making the Fx-SM algorithm difficult to achieve a suitable
pre-specified error bound.
Experiment 2: In this experiment, we keep the primary

path model as in Experiment 1, but the secondary path is
approximated by the Hammerstein [10] nonlinear model as
follows:

u(n) = tanh{y(n)}

d̂(n) = u(n)+ 0.2u(n− 1)+ 0.05u(n− 2). (53)
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FIGURE 5. Performance comparison of FLANN (5a), and Voltera (5b)
controllers using Fx-LMS, Fx-SM and proposed Fx-SM-REB algorithms in
Experiment 2.

The reference noise source is the color noise generated by
filtering the white Gaussian noise v(n) through the ARMA
(Autoregressive–moving-average) model as

x(n) = 0.04x(n− 1)− 0.034x(n− 2)+ 0.0396x(n− 3)

− 0.07565x(n− 4)− 0.1v(n)− 0.01v(n− 1)

− 0.137v(n− 2)+0.0353v(n− 3)+0.0698v(n− 4).

(54)

Parameters of the proposed Fx-SM-VEB algorithm are
chosen: δ2(0) = 3, ρ = 0.1, ω = 0.999, τ = 100, 9 = 1.38
for FLANN; and δ2(0) = 0.5, ρ = 0.1, ω = 0.999, τ = 8,
9 = 1.68 for Volterra. The parameters of Fx-SM are set:
ξ =

√
10δ2υ for FLANN; and ξ =

√
5δ2υ for Volterra. For

Fx-LMS, the step-size is selected: µ1 = 0.006 and µ2 =

0.006 for FLANN; µ1 = 0.025 and µ2 = 0.025 for Volterra.
Fig. 5 illustrates the performance of the FLANN and

Volterra controllers based on the Fx-LMS, Fx-SM, and
proposed Fx-SM-VEB algorithms. From this Figure, it is
clear that the proposed Fx-SM-VEB algorithm achieves
steady-state performance equivalent to the conventional

FIGURE 6. Reference input signal corrupted by impulsive noise f(n), with
ϒ = 10000 and < = 0.8.

FIGURE 7. Depicts the ANR performance of the algorithms on the FLANN
(7a), and Volterra (7b) controllers.

Fx-LMS algorithm but with lower computational complexity,
thanks to the data-selective update strategy and time-varying
error bound. Specifically, FLANN and Volterra-based ANC
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FIGURE 8. Comparison of ANR in FLANN based-ANC system with a non-minimum phase secondary path for
SαS primary noise: case 1: α = 1.7, case 2: α = 1.8, case 3: α = 1.9 and case 4: α = 2.0.

systems using the proposed Fx-SM-VEB algorithm can
reduce the number of operations to update the weights by
78% and 75%, respectively. The Fx-SM algorithm using pre-
specified error bound suffers from attenuation in nonlinear
environments, in particular, the noise cancellation perfor-
mance is attenuated by 2.5 dB for the FLANN controller, and
2 dB for the Volterra controller.

B. PERFORMANCE COMPARISON IN THE IMPULSIVE
NOISE ENVIRONMENT
Experiment 3: In this experiment, we use the reference input
as an actual noise generated by the fan. This noise source is
recorded at a frequency of 44100 Hz and sampled at 16 bits
per sample. The length of the reference signal is equal to
30 000 samples. In order to evaluate the performance of the
proposed RFx-SM-VEB algorithm, we add impulsive noise
to the reference input signal at iterations 1000, 7000, 15000,
and 25000. The impulsive noise is modeled by f(n) =
σ (n)0(n) [27], where σ (n) is a Bernoulli random sequence,
independent and identically distributed (i.i.d) and σ (n) has an
instantaneous value at time n being either zero or one (occur-
rence probability (P(σ (n) = 1) = <)); and 0(n) is an i.i.d
zero-mean Gaussian sequence, with variance δ20 = ϒδ

2
s , here

ϒ � 1, δ2s is the variance of the reference input signal. Fig. 6
illustrates the reference input signal corrupted by impulsive
noise f(n), with ϒ = 10000 and < = 0.8.
Fig. 7 depicts the ANR learning curves of the algorithms

on the FLANN (7a), and Volterra (7b) controllers. It is

found that the proposed RFx-SM-VEB algorithm is sta-
ble and achieves better convergence performance than the
Fx-LMS, and Fx-LogLMS algorithms for both controllers.
The Fx-LMS algorithm suffer from diverges, while the
RFx-LMS is stable but achieves worse performance than pro-
posed RFx-SM-VEB when applied to the Volterra controller.
Experiment 4: Here we use the input reference noise as an

impulse noise [36] modeled by a standard symmetric α-stable
distribution as

2(t) = exp(−|t|α), (55)

where parameter α denotes a characteristics exponent, 0 <
α < 2. When α is close to 2, we can consider this distribution
as a Gaussian function. For a small value of α, this distribu-
tion can be viewed as a function of strong impulse noise. The
nonlinearity of the primary path noise at the canceling point
is modeled by [15],

d(n) = v(n− 2)+ 0.08v2(n− 2)− 0.04v3(n− 1), (56)

where v(n) = x(n) ∗ p(n), with p(n) is the impulse response
of the function P(n) = z−3−0.3z−4+0.2z−5. The secondary
path is assumed to be a minimum phase transfer function
S(z) = z−2 + 1.5z−3 − z−4.
Four scenarios corresponding to the impulsive noise refer-

ence input have been demonstrated in this experiment: sce-
nario 1: α = 1.7; scenario 2: α = 1.8; scenario 3: α = 1.9;
scenario 4: α = 2.0.
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FIGURE 9. Comparison of ANR in Volterra based-ANC system with a non-minimum phase secondary path for
SαS primary noise: case 1: α = 1.7, case 2: α = 1.8, case 3: α = 1.9 and case 4: α = 2.0.

Fig. 8 and Fig. 9 depict the learning curve of the
Fx-LMS, Fx-LogLMS, Fx-LogLMP, RFx-LMS, and pro-
posed RFx-SM-VEB algorithms for the Volterra and FLANN
based-ANC systems, respectively. As we can see, the
Fx-LMS algorithm diverges in the cases α = 1.7, α = 1.8,
and α = 1.9 which is obvious since this algorithm is only
for assuming the reference noise is a Gaussian process. For
the FLANN based-ANC system, the proposed RFx-SM-VEB
algorithm is equivalent to RFx-LMS and Fx-LogLMP algo-
rithms, and outperforms the Fx-LogLMS algorithm. Notice
that the Fx-LogLMP algorithm needs to know the a priori
information of the reference noise. For the Volterra-based
ANC system, the proposed RFx-SM-VEB algorithm outper-
forms all the above algorithms. It is easy to see that this
superiority is more obvious in the case of strong impulsive
noise.

VII. CONCLUSION
In this paper, we proposed two Fx-SM-VEB and
RFx-SM-VEB algorithms for nonlinear ANC systems. The
Fx-SM-VEB algorithm greatly reduces the computational
complexity and avoids the difficult problem of choosing a
predetermined threshold thanks to the data-selection update
strategy and the time-varying error bound. Our study also
shows that the algorithm based on the SMF technique using
the time-varying bound outperforms that of using a pre-
specified bound, especially in a nonlinear environment. The
proposed RFx-SM-VEB algorithm can combat the impulse

noise that occurs in a nonlinear ANC system, which is imple-
mented by introducing an impulsive-free estimation into the
time-varying error bound to ensure the stability of the algo-
rithm. Analysis of the computational complexity and the
steady-state output MSE has also been derived. Comparison
results between the Fx-LMS, Fx-SM, and proposed Fx-SM-
VEB algorithms in the Gaussian environment; as well as
between the Fx-LogLMS, Fx-LogLMP, RFx-LMS, and pro-
posed RFx-SM-VEB algorithms in the impulsive noise envi-
ronment have demonstrated the efficiency of the proposed
algorithms for nonlinear ANC system. In addition, we believe
that the proposed algorithms will be highly efficient when
applied to the multichannel ANC system. A study on devel-
oping these algorithms for the multichannel ANC systemwill
be conducted in the near future.

APPENDIX
From (37), we can deduce that

ζex(n+ 1)

= trace{E[Sf (n)STf (n)(UU
T
+ UVT

+ VUT
+ VVT )]}

= trace{E[Sf (n)STf (n)UU
T ]}

+ trace{E[Sf (n)STf (n)UV
T ]}

+ trace{E[Sf (n)STf (n)VU
T ]}

+ trace{E[Sf (n)STf (n)VV
T ]}

= β1 + β2 + β3 + β4. (57)
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For calculating β1, we have:

β1 = trace{E[Sf (n)STf (n)UU
T ]}

= trace{E[Sf (n)STf (n)[4W (n)−
1
Nδ2s

e(n)Sf (n)]

× [4W (n)−
1
Nδ2s

e(n)Sf (n)]T ]}

= trace{E[Sf (n)STf (n)4W (n)4W (n)T ]}

− 2trace{E[Sf (n)STf (n)
1
Nδ2s

e(n)Sf (n)4W (n)T ]}

+
1

N 2δ4s
trace{E[Sf (n)STf (n)e

2(n)Sf (n)STf (n)]}

= β11 + β12 + β13, (58)

β11 = trace{E[Sf (n)STf (n)4W (n)4W (n)T ]} = ζex(n),

(59)

β12 = 2trace{E[Sf (n)STf (n)
1
Nδ2s

e(n)Sf (n)4W (n)T ]}

= 2trace{E[Sf (n)STf (n)
1
Nδ2s

Sf (n)[υ(n)

+STf (n)4W (n)]4W (n)T ]}

= 2
1
Nδ2s

Nδ2s trace{E[Sf (n)S
T
f (n)4W (n)4W (n)T ]}

= 2ζex(n), (60)

β13 =
1

N 2δ4s
trace{E[Sf (n)STf (n)e

2(n)Sf (n)STf (n)]}

=
1

N 2δ4s
trace{E[Sf (n)STf (n)[υ(n)+ S

T
f (n)4W (n)]T

× [υ(n)+ STf (n)4W (n)]Sf (n)STf (n)]} = δ
2
υ +

1
N 2δ4s

× trace{E[Sf (n)STf (n)4W (n)TSf (n)STf (n)4W (n)

×Sf (n)STf (n)]} = δ
2
υ +

1
N 2δ4s

trace{E[Sf (n)STf (n)

×Sf (n)STf (n)4W (n)4W (n)TSf (n)STf (n)]}

= δ2υ + trace{E[Sf (n)S
T
f (n)4W (n)4W (n)T ]}

= δ2υ + ζex(n). (61)

For calculating β2, we have:

β2 = trace{E[Sf (n)STf (n)UV
T ]}

= trace{E[[Sf (n)STf (n)][4W (n)−
1
Nδ2s

e(n)Sf (n)]

× [
1
Nδ2s

ξ (n)
|e0(n)|

e(n)Sf (n)]T ]} =
ξ (n)
Nδ2s

E
(

1
|e0(n)|

)
× trace{E[Sf (n)STf (n)4W (n)e(n)STf (n)]}

−
ξ (n)
N 2δ4s

E
(
e2(n)
|e0(n)|

)
trace{E[Sf (n)STf (n)Sf (n)S

T
f (n)]}

= β21 − β22, (62)

β21 =
ξ (n)
Nδ2s

E
(

1
|e0(n)|

)
× trace{E[Sf (n)STf (n)4W (n)e(n)STf (n)]}

=
ξ (n)
Nδ2s

E
(

1
|e0(n)|

)
trace{E[Sf (n)STf (n)4W (n)[υ(n)

+4W (n)TSf (n)]STf (n)]} =
ξ (n)
Nδ2s

E
(

1
|e0(n)|

)
× trace{E[Sf (n)STf (n)4W (n)4W (n)TSf (n)STf (n)]}

= ξ (n)E
(

1
|e0(n)|

)
ζex(n), (63)

β22 =
ξ (n)
N 2δ4s

E
(
e2(n)
|e0(n)|

)
× trace{E[Sf (n)STf (n)Sf (n)S

T
f (n)]}

= ξ (n)E
(
e2(n)
|e0(n)|

)
. (64)

For calculating β3, we have:

β3 = trace{E[Sf (n)STf (n)VU
T ]}

= trace{E[Sf (n)STf (n)[
1
Nδ2s

ξ (n)
|e0(n)|

e(n)Sf (n)]

× [4W (n)−
1
Nδ2s

e(n)Sf (n)]T ]}

=
ξ (n)
Nδ2s

E
(

1
|e0(n)|

)
× trace{E[Sf (n)STf (n)4W (n)e(n)STf (n)]}

−
ξ (n)
N 2δ4s

E
(
e2(n)
|e0(n)|

)
trace{E[Sf (n)STf (n)Sf (n)S

T
f (n)]}

= β2. (65)

For calculating β4, we have:

β4 = trace{E[Sf (n)STf (n)VV
T ]}

= trace{E[Sf (n)STf (n)[
1
Nδ2s

ξ (n)
|e0(n)|

e(n)Sf (n)]

× [
1
Nδ2s

ξ (n)
|e0(n)|

e(n)Sf (n)]T ]}

=
ξ2(n)
N 2δ4s

E
(
e2(n)
|e0(n)|

)
trace{E[Sf (n)STf (n)Sf (n)S

T
f (n)]}

= ξ2(n)E
(
e2(n)
|e0(n)|

)
. (66)
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