
Received 29 June 2022, accepted 12 August 2022, date of publication 22 August 2022, date of current version 30 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3200601

Security Countermeasures Selection Using the
Meta Attack Language and Probabilistic
Attack Graphs
WOJCIECH WIDEŁ , PREETAM MUKHERJEE , AND MATHIAS EKSTEDT
Division of Network and Systems Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

Corresponding author: Mathias Ekstedt (mekstedt@kth.se)

This work was supported in part by the European Union’s H2020 Research and Innovation Programme under Agreement 833481, and in
part by the Swedish Civil Contingencies Agency through the research center Resilient Information and Control Systems (RICS).

ABSTRACT Connecting critical infrastructure assets to the network is absolutely essential for mod-
ern industries. In contrast to the apparent advantages, network connectivity exposes other infrastructure
vulnerabilities that can be exploited by attackers. To protect the infrastructure, precise countermeasure
identification is necessary. In this regard, the objective for the security officers is to identify the optimal
set of countermeasures under a variety of budgetary restrictions. Our approach is based on the Meta
Attack Language framework, which allows for convenient modelling of said infrastructures, as well as for
automatic generation of attack graphs describing attacks against them. We formalize the problem of the
selection of countermeasures in this context. The formalization makes it possible to deal with an arbitrary
number of budgets, expressing available resources of both monetary and time-like nature, and to model
numerous dependencies between countermeasures, including order dependencies, mutual exclusivity, and
interdependent implementation costs. We propose a flexible and scalable algorithm for the problem. The
whole methodology is validated in practice on realistic models.

INDEX TERMS Attack graphs, attack simulations, countermeasure selection, graphical security modeling,
threat modeling.

I. INTRODUCTION
Well-being of today’s organizations highly depends on their
security posture. With more advanced attacking techniques
devised by attackers with every passing day, organizations
need to improve their security regularly. Security community
at this juncture is striving for suitable methods to confi-
dently assess security of a system and to find the actions
which increase the level of security. During the last couple of
decades, attack tree- and attack graph-based security analysis
methods [2], [22], [25], [28], [34], [42] have been gaining
popularity among security practitioners. By using thesemeth-
ods, it is possible to model multi-hop attacks in enterprise
networks. With the help of various attack graph-based secu-
rity metrics, viz. time-to-compromise [12], path length [14],
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attack difficulty [24], weakest adversary security metric [27],
attack resistance [40], probabilistic security metric [39] it is
possible to measure security of the target assets in a network.
These metrics can be further used for suggesting actions by
which security of valuable assets increases [20], [23], [25],
[29], [35], [37].

Before an attack graph relating to an enterprise network
(or an IT infrastructure in general) can be analyzed, it needs
to be generated. Accuracy of the generated attack graphs
depends on the collection of accurate information about the
underlying IT infrastructure and its vulnerabilities. Different
attack graph generation methodologies collect such informa-
tion automatically from standard tools and databases [15],
[26]. These methods are not perfect, and the accuracy and
reusability of generated graphs is problematic [13], [36].
To tackle these issues, the Meta Attack Language (MAL)
has been introduced in [16]. MAL is a model-driven security
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engineering approach to support the development of domain
specific languages (DSLs) for attack graph generation and
attack simulations. With a DSL created by security experts
in a particular domain, e.g., in SCADA systems for power
industry, security non-experts can easily create models of
their systems. From such a model and the security knowledge
encoded in the DSL, attack graphs describing attacks on the
system are generated automatically. With such attack graphs
it is possible to analyze system architectures by for instance
identifying weak spots in the design. However, normally an
architecture features a multitude of weaknesses, more or less
severe. From a design point of view the DSL enables easy, but
trial-and-error-based, analysis. With large IT infrastructures,
however, this approach naturally becomes labor-heavy.

A number of MAL-based DSLs have been already devel-
oped1 for vehicles [18], [19], for energy sector [10], general-
purpose DSL for IT infrastructures [17], etc.

In this work, we consider the problem of selection of
countermeasures for improving security of an IT infrastruc-
ture. We use MAL as the tool for infrastructure modeling,
and rely on MAL-generated attack graphs for assessing the
infrastructure’s security. Within this setting, we make the
following contributions.

1) We formalize the problem of countermeasures selec-
tion, in a way that allows handling multiple budget
constraints of different nature, as well as specifying
various dependencies between the countermeasures.

2) We propose a highly parametrizable iterative algorithm
solving this problem and discuss the algorithm’s vari-
ants.

3) We perform experiments using a prototype implemen-
tation, illustrating the usability and scalability of our
methodology.

In Section II, we discuss the existing works related to
attack modeling and countermeasure selection. In Section III,
we give a brief overview of the MAL framework. The prob-
lem of countermeasures selection is formalized in Section IV.
We present our algorithm in Section V, and discuss its vari-
ants in Section VI. Empirical validation of our framework is
provided in Section VII. Section VIII concludes the paper.

II. RELATED WORK
Suggesting ways of improving security of a system is one
of the basic objectives of risk analysis. The method applied
for its achievement will depend, among other factors, on the
available model of the system and the employed security
metrics. Because of this variability, a vast body of work
tackling this issue exists.

In most of the existing approaches, it is assumed that avail-
able data describes the system and related risks completely.
In such a case, it is possible to model and solve the problem
using standard optimization techniques, such as mixed inte-
ger linear programming [5], [8], [20], [32], [45], stochastic
programming [8], [45] or others. In [23] and [8], such data is

1https://github.com/mal-lang

obtained by extracting all attack paths from a model, which
leads to exponential blow-up already in the case of moder-
ately sized models. In the case of the MAL framework, real-
life–sized models can easily contain hundreds of thousands
of objects, and the attack graphs describing the complete
possible behaviour space of both attacker and defender will
have millions of nodes. Using all the information contained
in the graph, not to mention extracting all attack paths, is thus
not feasible in practice. We manage these difficulties by a
repeated extraction of a reasonable number of optimal attack
paths, which in turn is sufficient for producing beneficial
countermeasures suggestions.

Selection of countermeasures is central to a number
of modelling frameworks, such as attack-countermeasure
trees [30], [31], protection trees [6] or attack-defense
trees [21], to name just a few. Languages for specifying
attack-defense trees are also developed [11]. Interested reader
is referred to the survey [22] for an exhaustive overview of
DAG-based security modelling, where also the aforemen-
tioned frameworks are presented. Recent developments in the
field of attack-defense trees are described in detail in [42].
The main focus of the survey presented in [25] are precisely
methods for optimal selection of countermeasures, including
the ones based on attack trees and attack graphs. In most of
the tree-based frameworks for modelling security (in contrast
to the DAG-based ones) the causal or temporal dependencies
between particular steps are not modelled explicitly, which
makes the models in some sense less expressive than attack
graphs. Furthermore, this fundamental difference makes it
difficult, if not impossible, to adapt methods developed for
such frameworks to the case of attack graphs.

Attack graphs are also being studied extensively and
employed for the purpose of optimal selection of counter-
measures, e.g., in [20], [29], [35], [37]. While the objects
called attack graphs in [37] are essentially the same as the
attack graphs of [1], and a reduced version of the latter, called
vulnerability dependency graphs in [1] is used in [35], in
each of the works [20], [29], [37] attack graphs are defined
differently. Furthermore, each of them having different opti-
mization goals, the optimization methods of [20], [29], [35],
[37] require different input data. Together with the commonly
shared assumption of the input model describing the security
aspects of the system completely, this makes these methods
not applicable in the case of MAL-based attack graphs.

A. DETAILED STUDY OF COUNTERMEASURE SELECTION
METHODOLOGIES
The heuristic approach of countermeasure selection
described in [37] uses the attack graph generation process of
MuLVAL. The concept of pre-condition and post-condition
used for attack steps are reused for mitigation actions,
where post-conditions are the facts getting canceled by the
implemented countermeasures. These countermeasures are
practical techniques for implementing more generic miti-
gation actions. While calculating the risk, the likelihood of
occurrence of an attack is computed from the existence of
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countermeasures and the CVSS access complexity metric.
Finally, a heuristic-based approach is implemented to find
out the set of countermeasures that minimizes the overall risk
without exceeding the given budget.

Cost-Impact Countermeasure Selection is the attack
countermeasure selection approach based on cost impact
analysis [35]. This approach considers the costs of nodes
unavailability, costs of different countermeasures, and recov-
ery costs. Impact assessment graph, created by combining the
attack graph and dependency graph, is used to compute the
impact of an attack or a countermeasure implementation. The
solution includes the dynamic nature of the attacker-defender
game. The selection of countermeasure minimizes the service
loss, countermeasure cost, and recovery cost.

In [29], authors put forward a Bayesian attack graph-based
risk management approach. The local conditional probability
distribution is defined to describe the chance of compromise
of the asset vulnerabilities. Updated knowledge about attack
incidents can be included in the model as the posterior proba-
bility. The issue of selection of the security mitigation plan
is converted to the single and multi-objective optimization
problems. The cost of security control implementation and
expected loss/gain value related to the compromise of asset
vulnerability are the factors involved while working on the
optimization. A genetic algorithm-based solution is proposed
to derive an efficient plan for implementation.

Countermeasure selection problem is described as a multi-
objective min-max optimization problem in [20]. Probabilis-
tic attack graph model is defined to develop the analysis.
Both the attacker’s and defender’s perspectives are taken
into account while formulating the optimization problem.
Attacker wants to maximise the risk by selecting the most
efficient attack path, whereas defender wants to minimize
the risk. The min-max optimization problem for defender
is converted to a single minimization problem by using the
duality in linear programming.

In [45], authors described selecting a security mitigation
techniques portfolio as a maximum vulnerability coverage
problem with various practical constraints. Sets of attack
paths to the target assets are assumed to be provided as
input. Deterministic and stochastic models for mitigation
coverage are proposed corresponding to the certainty (or
uncertainty) of mitigation effectiveness. Group cardinality
models describe the real-life constraints on mitigation imple-
mentation. Finally, different approximation-based algorithms
are proposed to solve the problem of budgeted maximum
multiple coverage and other derivatives.

Probabilistic attack-response trees, including attack steps
(with probability), alerts (indicating attack incidents), and
countermeasures, are defined in [23] to explain the counter-
measure selection problem to stop multi-path attacks. The
probability of an atomic attack is computed depending on
the generated alerts. Suspicious attack paths are identified
from the expected damage potential computed from the prob-
ability of atomic attacks, the CVSS score of the correspond-
ing vulnerabilities, and the importance of the devices with

vulnerabilities. ROI-based countermeasure performance
score is used to find out the utility of the selected countermea-
sure. The proposed algorithm maximizes the response utility
score calculated from the countermeasure-specific security
benefit, deployment cost, and negative impact on service
quality.

Attack–defense tree based formalism is used for select-
ing countermeasures in [8]. A computationally demanding
procedure is employed for extracting rational behavior of
the attacker and the defender from models, resulting in all
possible attacks encoded in the model, as well as in mini-
mal ways of blocking those attacks. The authors formulate
a general integer linear programming program, as well as
its stochastic variant, that employs the knowledge of the
attacks for deriving set of countermeasures that is optimal
in one of many possible senses, e.g., maximizes the number
of countered attacks or prevents the attacks that are the most
appealing for the attacker.

The cost optimization algorithms section described in the
survey of attack graph analysis [44] is also worth mentioning
here.

III. MAL FRAMEWORK
In this section, we provide a brief introduction to the MAL
framework, sufficient for understanding of the remainder of
the paper. We note that MAL constitutes background for the
present work, accepted as is. For a more verbose intuitive
description of MAL the reader is referred to [16] and to a
web repository2 for implementation support.

A. BRIEF INTRODUCTION TO MAL
The goal ofMAL is twofold: to facilitate creation and reusage
of IT infrastructure models, and to automate security analysis
of such models. MAL allows for development of security-
oriented domain specific languages (DSLs). The DSLs cre-
ated with MAL revolve around two basic concepts: that of
assets and associations, which are abstractions of types of
objects and relationships between objects that arise in real-
ity.3 A MAL-created DSL might thus contain assets such
as Computer and Network, as well as an association
Communication, which will represent the ability of com-
puters to communicate over networks. The domain-specific
security knowledge is encoded in aDSL by assigning to assets
attack steps and defense steps, along with a description of
relations between them. The attack steps represent possible
behaviour of an attacker relating to assets, and the defense
steps – ways of hindering the attacker’s actions.
Models consist of instantiations of assets and associations,

called objects and links, respectively. A visualization of a toy
model of an IT infrastructure created using a MAL-based
DSL is given in Figure 1. The model is explained below.

2https://mal-lang.org/
3Similarly to class diagrams, e.g., as in the Unified Modelling Language

(UML).
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FIGURE 1. A toy model of an IT infrastructure.

Example 1:The circular icons in Figure 1 represent objects,
and the line segments connecting them - links. Each object
is labeled with two labels: the name of the object, placed
below the icon, and the name of the asset that the object is an
instance of, placed above the icon. Similarly, links are labeled
with names of associations that they are instances of.

Thus, in themodelled infrastructure there are threeHosts:
Machine 1, Machine 2, and Valuable Machine. There is a
Network object, calledNetwork, to which all three hosts are
connected through a Connection link. Each of the hosts
runs an operating system - the SoftwareProduct objects
called OS 1, OS 2 and OS 3. Finally, the computerMachine 1
contains a Datastore, a part of which is a Keystore on
which credentials allowing for root authorization by UserAc-
count on Valuable Machine are stored.
Security analysis of models within the MAL framework

relies on the concept of Time To Compromise (TTC) and the
effectiveness of defense steps. In a DSL, each of the attack
steps is assigned a probability distribution4 of time needed for
its execution, and each of the defense steps – a Bernoulli dis-
tribution describing the probability of the modelled defense
to be functional. The first step in the analysis is to unfold the
model, by following the attack logic described by relations

4The distributions specified in a DSL can be seen as defaults; to fit the
modelled infrastructure more appropriately, they can be modified on the
model level.

between steps in the DSL, obtaining as a result an attack
graph.

B. MAL-DERIVED ATTACK GRAPHS
An attack graph generated from a model is a directed acyclic
graph. Its nodes correspond to attack and defense steps that
can be performed in the modelled system. The edges model
the attack logic, as encoded in the DSL. An arc from an attack
step v to an attack stepwmeans that execution of v is a prereq-
uisite for execution of w. Furthermore, attack steps are typed:
there are AND attack steps and OR attack steps. An AND
attack step can be performed only if all of its prerequisites
have been executed; an OR attack step can be executed as
soon as one of its prerequisites has been performed. An arc
from a defense step u to an attack step w means that if the
defense u is successfully implemented, then w cannot be
executed, even if its prerequisites have been executed. Finally,
each of the nodes in an attack graph is assigned a probability
distribution originating from the model. With F denoting the
set of all probability distributions, attack graphs considered
in this work are defined as follows.
Definition 1 (Attack Graph):An attack graph is a tupleG =

(V ,E, type, ttc), where

• (V ,E) is a directed acyclic graph,
• type : V → {&, |, #} is a function assigning types to
nodes in V , in such a way that none of the nodes of type
# has a parent,
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FIGURE 2. An attack graph depicting attacks on Valuable Machine in the model from Figure 1.

• ttc : V → F is a function assigning probability distribu-
tions to nodes in V , in such a way that each of the nodes
of type # is assigned a Bernoulli distribution.

The AND attack steps, OR attack steps and defense steps
are assigned types &, | and #, respectively. The defenses in
the current form of the MAL framework are not allowed to
have parents, i.e., the possibility of the attacker countering a
defense step or a defense step being a prerequisite for another
defense step cannot be modelled.5 Furthermore, for technical
reasons, we require the attack steps having no parents to be
assigned type &. The ttc abbreviation stands for Time To
Compromise. Notation ttc(v) = f means that the time needed
for execution of the attack step v follows the distribution f .
For an attack graph G, we let DG = {v ∈ V : type(v) = #}

to be the set of all defense steps inG. Similarly, we set AG :=
V \ DG to be the set of all attack steps in G. If an attack step
has a defense step among its parent nodes, then it is said to
be counterable.

An example of an attack graph is depicted in Figure 2.
Defense nodes are represented with green circles, and attack
nodes –with red circles. The nodes are labeled, with the labels
being of the form ObjectName.StepName, with the names of
objects coming from a model, and the names of steps – from
the DSL used for creating the model. An example fragment
from a DSL, in MAL syntax, aligned with generating this
model is presented below.

5Modelling of the attacker disabling or bypassing defenses is nevertheless
possible, it requires simply introducing appropriate attack steps.

asset Host {
| Compromise
-> \ldots

& PrivilegeEscalation
-> Compromise

| UserAccess
-> PrivilegeEscalation,

accessControl.Access,
\ldots

}

asset AccessControl {
| Access
-> rootAccess.attemptGuessDefualtPw,

rootAccess.attemptGuessPolicyPw,
\ldots

| RootLogin
-> host.PrivilegeEscalation,

\ldots
# NoDefualtPasswords
-> rootUser.attemptGuessDefualtPw,

\ldots
# PasswordPolicyEnforcement
-> rootUser.attemptGuessPolicyPw,

\ldots
}

asset UserAccount {
| Compromise
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-> rootAccess.RootLogin,
\ldots

& attemptGuessDefualtPw
[Bernoulli 0.6] @hidden

-> GuessOnline
& attemptGuessPolicyPw

[Gamma(25, 1)] @hidden
-> GuessOnline

| GuessOnline
-> Compromise

}

associations {
UserAccount [rootUser] *
<-- Root Authorization -->
0..1 [rootAccess] AccessControl

Host [host] *
<-- Authorization -->

* [accessControl] AccessControl
\ldots
}

We note that the precise meaning of the steps is up to the
creators of the DSL to define.

The relation between the graph in Figure 2 and the corre-
sponding model in Figure 1 is more generally explained in
Example 2.
Example 2: In the model from Figure 1, it has been

assumed that the attacker has compromised Machine 2, and
that the goal is to Compromise Valuable Machine. The entry
point of the attacker and the target attack step are marked
yellow in Figure 2. The fact that Machine 2 has been ini-
tially compromised is reflected by an arc connecting the
steps Attacker.EntryPoint and Machine 2.Compromise, and
by setting the TTC of both steps to 0. Note that each of the
paths starting in the entry point ends in the node Valuable
Machine.Compromise.

Two types of attacks can be identified in the graph.
The paths traversing the left-hand side part of the graph
correspond to the attacker exploiting vulnerabilities in a con-
nection between Network and Machine 1 to compromise
the latter, getting access to the credentials (by executing
the attack step Keystore.Read), and using the credentials
for compromising the target machine. The attack paths in
the right-hand side part of the graph represent attacks in
which the attacker exploits possible vulnerabilitites in the
connections between Valuable Machine and Network, and
vulnerabilities of the Valuable Machine itself.6

We note that the graph in Figure 2 consists of a couple of
optimal attack paths against the infrastructure modelled in

6In the DSL used here, the fact that a Host object is not perfectly secured
is modelled by a presence of a service or software that is unknown to the
modeller. This gives rise to attack steps relating to such unknown objects.

Figure 1; it is not the full graph arising from unfolding the
model using the DSL specification.

C. ATTACK SIMULATIONS
An attack graph describes possible behaviour of the attacker
and defender in the modelled infrastructure. The attacks,
that is, ways in which the attacker can reach their target
steps from initial position while respecting the AND and OR
requirements of particular steps, correspond to subgraphs of
the graph. While these subgraphs are not necessarily paths in
the standard meaning of the word, we will call them attack
paths.
Definition 2 (Attack Path): Let G = (V ,E, type, ttc) be

an attack graph and let X ⊆ AG. An attack graph P =
(V ′,E ′, type, ttc) is an attack path in G starting in X if

• (V ′,E ′) is a subgraph of (V ,E) and V ′ ⊆ AG,
• for every v ∈ V ′, there is a node w ∈ X for which there
is a path in G starting in w and ending in v,

• if v ∈ V ′ \ X and type(v) = &, then for every parent of
v in G the edge connecting v with the parent belongs to
E ′,

• if v ∈ V ′ \ X and type(v) = |, then there is a parent of
v in G such that the edge connecting v with the parent
belongs to E ′.

Let Xe,Xt ⊆ AG be disjoint sets of attack steps, repre-
senting attack steps already executed by the attacker, and the
attacker’s target steps, respectively. Furthermore, let Y ⊆
DG be a set of defense steps implemented in the modelled
infrastructure. We say that an attack path P in G starting
in Xe compromises Xt under Y if each of the nodes in Xt
belongs to the path, and none of the nodes in the path has
a parent in Y . Intuitively, such a path describes an attack
that starts with the attacker executing the steps in Xe, and
eventually, respecting the AND/OR dependencies between
the steps, leads to compromising the target attack steps, in the
presence of the set of countermeasures Y .

When selecting countermeasures for increasing security of
a system, one generally prefers securing the system against
the attacks that are most critical in some sense. One way
of determining the most critical attacks would be to extract
all attacks from the model, as done for example in [23]
and [8], and then compare them using a metric of choice.
This approach is not feasible even in the case of models of
moderate size, as the number of attacks might be exponential
in the size of the model.

In this work, we use the following approach.7 For Xe,Xt ⊆
AG and Y ⊆ DG, to obtain a critical attack path in G starting
in Xe and compromising Xt under Y , values are sampled from
the TTC distributions assigned to the nodes. This simulates
a realization of steps in the graph – now the attack steps
are assigned exact, numerical values of time needed for their
executions, and the defense steps are assigned a state (imple-

7It can be noted that the exact calculation of critical paths is not important
for our work. It is considered part of the security definition that we aim to
optimise from a black-box perspective.
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FIGURE 3. An attack path (in yellow) in the IT infrastructure modelled in Figure 1.

mented/not implemented). The attack path that is optimal in
some sense under the sampled values is then obtained in time
polynomial in the size of the graph. Repeating this process
results in two lists: a list of attack paths inG starting in Xe and
compromising Xt under Y , and a list of corresponding TTCs,
which are positive numbers representing times needed for
compromising the nodes in Xt when following the paths (that
is, when executing the attack steps belonging to the paths,
in a specific order). In the case when no attack path exists,
we assume that the simulation returns an empty path with
the corresponding TTC value equal to +∞.
Example 3: Setting Xe = {Attacker.EntryPoint, Machine

2.Compromise}, Xt = {Valuable Machine.Compromise} and
Y = ∅ in the attack graph G from Figure 2 and using
the simulations method described above, among the possible
attack paths we obtain the one marked yellow in Figure 3.
This attack path corresponds to the attack that is in some sense
optimal from the point of view of the attacker – in at least
half of the attack simulations this particular path has been
returned as the one requiring the minimal amount of time.
Put differently, at least half of the entries in the list of attack
paths returned by the simulation method for the Valuable
Machine.Compromise step are occupied by this particular
path, and each of the entries in the bottom half of the list of
TTC values corresponds to the attack following this path.

The goal of attack simulations is to assess the security of
valuable assets in the modelled system and to identify ways in
which they could be compromised. The objective of this work
is to utilize this information for selecting countermeasures

that would increase the security of the system. The suggested
actions should render some of the attack paths no longer
viable and in consequence increase the TTCs of the target
assets.

D. REMAINING NOTATION
We now introduce the notation used in the rest of this paper.

For a list T , we use |T | for the number of elements
of T . If the elements of T are real numbers, then for n ∈
{1, 2, . . . , 100} we denote by Tn the nth percentile of T , that
is, the smallest value in T such that no more than n percent of
the elements of T are strictly less than the value and at least
n percent of the elements of T are less than or equal to that
value. In other words, Tn is the d n

100 · |T |eth element of T .
If the set of vertices of an attack graph G is not explicitly

specified or not obvious from the context, we refer to it as
V (G). IfG is an attack graph andG′ andG′′ are its subgraphs,
i.e., G = (V ,E, type, ttc), G′ = (V ′,E ′, type, ttc) and G′′ =
(V ′′,E ′′, type, ttc) are attack graphs satisfying V ′ ⊆ V , V ′′ ⊆
V , E ′ ⊆ E and E ′′ ⊆ E , then the attack graph

G′ ∪ G′′ := (V ′ ∪ V ′′,E ′ ∪ E ′′, type, ttc)

is the union of G′ and G′′.
Similarly, for two sets X ,Y and relations R ⊆ X × X , S ⊆

Y×Y , we use (X ,R)∪(Y , S) as a shorthand for (X∪Y ,R∪S).
If (D,�) is a partially ordered set,8 then the set {x ∈

D : there is no y ∈ D s.t. x � y} of maximal elements in

8That is, � is a binary relation over D that is reflexive, antisymmetric and
transitive.
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(D,�) is denoted by max(D,�). By H (D,�) we denote the
set

{(x, y) : x � y and there is no z∈D such that x�z and z � y}

of edges of the Hasse diagram of (D,�).
Finally, the expected value of a random variable following

a probability distribution F ∈ F is denoted by E[F].

IV. PROBLEM OF SELECTING COUNTERMEASURES
The problem at hand is the following: given a model of an IT
infrastructure and knowledge of possible defense steps that
could be implemented, we want to suggest a set of defense
steps the implementation of which increases TTC of specified
attack steps, while respecting some constraints.

In Section IV-A we give a mathematical model of this
problem. Due to the possibly non-deterministic nature of the
underlying attack simulationsmethod, we do not specifywhat
an optimal solution to the problem is. Instead, for comparing
the quality of candidate solutions, we use a measure defined
in Section IV-B.

A. MATHEMATICAL MODELLING
We consider three elementary constraints relevant to imple-
mentation of security measures:
• limitations on available resources (e.g., fixed budget for
operating costs or limited time window available for
securing the system),

• order dependencies, specifying that some measures can
be implemented only in a specific order (e.g., to run an
antivirus scan, one needs to install an antivirus before-
hand),

• mutual exclusivity between the measures (e.g., if we
have two accounts for a service we might for business
reasons not be allowed to disable both simultaneously).

The order dependencies are specified using the function

Pre : DG→ 2DG , (1)

which assigns to every defense step its prerequisites, i.e., the
steps that all need to be implemented before the step itself
can be implemented. Similarly, to express that execution of a
step disables possibility of execution of another step, we use
a function

Excl : DG→ 2DG , (2)

with Excl(v) containing all the steps that cannot be imple-
mented along v. The following examples illustrate the usage
of the two functions.
Example 4: Consider again the infrastructure modelled in

Figure 1. Suppose that Datastore is a directory and Keystore
is its subdirectory. In such a case, to secure the Keystore
it suffices to encrypt either the Datastore directory, or the
Keystore itself; encrypting both would mean encrypting Key-
store twice, which introduces computational overhead with-
out increasing security. To avoid this, the modeller can set

Excl(Datastore.Encrypt) = {Keystore.Encrypt},

Excl(Keystore.Encrypt) = {Datastore.Encrypt}.

Example 5: Suppose that the AccessControl in the model
in Figure 1 stands for login prompt when trying to access
ValuableMachine. One way of preventing the attacker from
guessing a user’s password would be to force users not to
use default passwords. However, should the user change their
default password to, say, ‘‘password’’, the overall security
of the system will be decreased. Thus, the modeller might
require that if the default passwords are disabled, then the
users are forced to create strong passwords. This could be
modelled by setting

Pre(AccessControl.NoDefaultPasswords)

= {AccessControl.PasswordPolicyEnforcement}.

We distinguish between two types of cost: monetary-
like and time-like. Intuitively, computations of the overall
monetary-like cost of a solution will be independent of the
ordering of the defensive measures in the solution, while the
overall time-like cost will depend on the ordering. Further-
more, we want to account for implementation of a security
measure incurring possibly multiple costs of the same type.
For example, hiring a security analyst requires monetary-like
investments of two types: buying a computer for them (capital
expenditure) and keeping them on the payroll (operating
expenditure). Finally, we consider costs interdependencies.
An example of such interdependency is the cost of installation
of an antivirus software: the installation cost for a specific
machine will depend on the number of machines for which
the antivirus license has been bought.

Assuming that there are n monetary-like and m time-like
resources, the costs of particular defense steps are specified
using vector functions

Cost : DG × 2DG → Rn
≥0,

Time : DG × 2DG → Rm
≥0, (3)

with Costi(v,D) being the ith monetary cost and Timej(v,D)
being the jth time-like cost of implementation of the defense
step v when v is implemented along all the defense steps in
D. Making costs of steps dependent on sets of defense steps
allows for encoding cost interdependencies, as illustrated by
the following example.
Example 6: Suppose that the creator of the model in

Figure 1 has a preferred antivirus software. Assume that the
software producer offers two licenses: buying the software
for one machine costs e40 per year, and for two machines
the cost is e50 per year. Note that there are two defense
steps corresponding to installing an antivirus software on a
machine in the attack graph in Figure 2, which implies that if a
solution to be implemented involves securing both machines,
the yearly cost of doing so per machine will be e25. Letting
Cost1 represent the operating expenses, the costs of securing
the machines with the antivirus could thus be expressed as

Cost1(Valuable Machine.AntiMalware,D)

=

{
40, if Machine 1.AntiMalware /∈ D,
25, if Machine 1.AntiMalware ∈ D,
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Cost1(Machine 1.AntiMalware,D)

=

{
40, if Valuable Machine.AntiMalware /∈ D,
25, if Valuable Machine.AntiMalware ∈ D,

for D ∈ 2DG .
The available budgets are expressed with a vector

b = (b1, . . . , bn, bn+1, . . . , bn+m) ∈ Rn+m
≥0 ,

with the first n entries corresponding to the monetary costs,
and the remaining ones – to the time-like costs. Intuitively,
the amount of the resource i spent on implementation of a
solution cannot exceed the budget bi. Formally, we need to
yet specify how this amount is computed.

Since the prerequisites function describes temporal depen-
dencies between defense steps, we model solutions as par-
tially ordered sets. For a solution (D,�) and two defense
steps w, v ∈ D, the relation w � v means that w needs to be
implemented before v can be implemented. We assume that
the monetary costs are order-independent, and thus we define
the cost of implementation of a solution (D,�) as

Costi(D,�) :=
∑
v∈D

Costi(v,D),

for i ∈ {1, . . . , n}.
In the case of time-like resources, the total cost of the

solution is computed by propagating the time costs of defense
steps throughout the Hasse diagram of the solution, in a
bottom-up manner. For the jth time-like resource, we use
Time(D,�)j (v) to denote the minimal amount of the resource
needed for implementation of the defense step v when imple-
menting the solution (D,�), defined as

Time(D,�)j (v) := Timej(v,D)+ max
v′∈D :

(v′,v)∈H (D,�)

Time(D,�)j (v′).

Then, the amount of the resource needed for the implemen-
tation of (D,�), denoted by Timej(D,�), is set to be the
maximum among the defense steps that are not prerequisites
for any other steps, i.e.,

Timej(D,�) := max
v∈max(D,�)

Time(D,�)j (v).

The order in a solution originates from the order specified
using the Pre function – if a defense step is a prerequisite
of another one (or a prerequisite of a prerequisite, etc.),
then it will precede the latter in the solution. The usage of
addition and max operator in the above formulæ ensures that
execution times of such dependent steps will be added to each
other (the actions need to be executed in an order), and the
steps that are independent in the sense of Pre relation will be
treated as parallellizable.

The following example illustrates how the total cost of a
solution is computed.
Example 7:Consider the situation when only onemonetary

and one time-like resource are relevant, i.e., let n = 1 and
m = 1. Let

D1 = {Valuable Machine.AntiMalware,

Machine 1.AntiMalware,

AccessControl.PasswordPolicyEnforcement,

AccessControl.NoDefaultPasswords}

and

�:= {(AccessControl.PasswordPolicyEnforcement,

AccessControl.NoDefaultPasswords)},

i.e., the order � specifies that we need to implement
AccessControl.PasswordPolicyEnforcement before Access-
Control.NoDefaultPasswords, and that there are no other
temporal dependencies between the defense steps belonging
to D1.
Let Cost1 be defined for Valuable Machine.AntiMalware

andMachine 1.AntiMalware as in Example 6. For every other
defense step v ∈ D1, setCost1(v,D) = 80 for everyD ∈ 2DG .
Then, we have

Cost1(D1,�) =
∑
v∈D1

Cost1(v,D1)

= 25+ 25+ 80+ 80

= 210.

Letting Time1(v,D) = 20 for every v ∈ D1 and every
D ∈ 2DG , the total time needed for implementing (D1,�)
is computed as

Time1(D1,�)

= max{Time(D1,�)
1 (Valuable Machine.AntiMalware),

Time(D1,�)
1 (Machine 1.AntiMalware),

Time(D1,�)
1 (AccessControl.NoDefaultPasswords)}

= max{20, 20,

Time1(AccessControl.NoDefaultPasswords,D1)

+Time1(AccessControl.PasswordPolicyEnforcement,D1)}

= max{20, 20, 20+ 20} = 40.

We are now in place to formally define the problem of
selection of countermeasures. It is defined by
– Input: an attack graph G, sets Xe,Xt ⊆ AG of executed

and target attack steps, functions Pre,Excl,Cost,Time
satisfying (1)–(3), and a budget vector b =

(b1, . . . , bn+m) ∈ Rn+m
≥0 .

– Output: a partially ordered set (D,�), with D ⊆ DG,
satisfying

v ∈ D ⇒ Pre(v) ⊆ D and w � v for every w

∈ Pre(v),

v ∈ D ⇒ Excl(v) ∩ D = ∅,

Costi(D,�) ≤ bi, for i ∈ {1, . . . , n},

Timej(D,�) ≤ bn+j, for j ∈ {1, . . . ,m}. (4)

B. QUALITY OF SOLUTIONS
The problem posed in the previous section might seem trivial:
the empty partially ordered set (∅,∅) is always a solution!
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Furthermore, the specification does not mention the primary
objective of a solution, which is to increase TTC of particular
attack steps. This is the case, because the very term increase
of TTC is elusive, due to the possibility of the attack simula-
tions method being non-deterministic.

In our algorithms we will adopt the following approach.
An initial run of the attack simulations will take place, result-
ing in TTC values that will serve as a reference point. Once
candidate solutions are constructed, attack simulations will
be run for each of them, and the TTCs obtained for each
of the solutions will be combined with the initial values to
derive an efficiencymetric of the solutions.More specifically,
assuming that S = {S(x) : x ∈ Xt } is the set of initial lists of
TTCs of target attack steps, and that T = {T (x)

: x ∈ Xt } is
the set of lists of TTCs obtained when the implementation of
a solution is simulated, we compute the efficiency score of
this solution as

Efficiency(Xt ,S, T , c)

:=

∑
x∈Xt :

S(x)5 6=+∞,

S(x)50 =+∞

(
1.05−S

(x)
5 ·min(T (x)

5 − S
(x)
5 , c)

)

+

∑
x∈Xt :

S(x)5 6=+∞,

S(x)50 6=+∞

(
1.05−S

(x)
5 ·min(T (x)

5 − S
(x)
5 , c)

+1.05−S
(x)
50 ·min(T (x)

50 − S
(x)
50 , c)

)
. (5)

The above formula can be seen as summing up TTC
improvement scores for particular target attack steps. The
sum is taken over those steps for which the 5th percentile of
initial TTC values is finite – if this value is not finite, then we
assume that a step is initially not reachable by the attacker,
which together with the assumption that implementation of
a security measures cannot decrease security of the system
implies that after any solution is implemented the step is still
not reachable.9

For the steps for which the median of initial TTC values is
infinite, the score computed relies on the change in the value
of the 5th percentile of the TTCs. Intuitively, the greater the
difference T (x)

5 −S
(x)
5 , the higher the score of the step will be.

If one was to rely solely on this difference, then increasing by
the same value the TTC of a step that initially was very dif-
ficult for the attacker to execute (high initial TTC) and a step
that initially was very easy for the attacker to execute (low
initial TTC) would result in the same score. In other words,
securing a weak part of the system and securing a strong part
of the system would be scored the same. To avoid this, the
factor 1.05−S

(x)
5 is introduced, which ensures that the score is a

function decreasing in the initial TTC value. Finally, it might
happen that the implementation of a solution makes the attack
step no longer reachable by the attacker, or reachable in a time

9Recall also that the TTC values are strictly greater than zero.

horizon that makes it practically unreachable. In this case, the
value of T (x)

5 will be either infinite (in the first case), and so
the difference T (x)

5 −S
(x)
5 will also be infinite, or it will be large

(in the second case). In both cases, the score will be equal
to 1.05−S

(x)
5 c, where c is an appropriately selected constant,

depending on what is perceived by the modeller as relevant
time horizon.

For the remaining steps, i.e., for the ones for which neither
the 5th nor the 50th percentile of initial TTC values is infinite,
the score is the sum of differences between the 5th percentiles
and the medians, adjusted in the same manner as in the
previous case.

V. ITERATIVE PROCEDURE FOR COUNTERMEASURES
SELECTION
In this section, we describe an iterative method for selection
of countermeasurse in attack graphs. The method relies on
the notion of criticality measure of an attack step w.r.t. target
steps in an attack graph. Formally, a criticality measure is a
family of functions (including the non-deterministic ones)

CritG : AG × 2AG → R≥0

parameterized over attack graphs. Intuitively, if for a set Xt
of target nodes in an attack graph G the value of CritG(v,Xt )
is high, then the attack step v plays an important role in the
attacker’s reaching of the target nodes.

At each iteration of the method presented further an
attempt will be made to add a set consisting of a defense step
and all of its prerequisites to the solution generated so far.
To refer easily to such a set, for a defense step v ∈ DG we
denote by Pre(v) the minimal, in the sense of inclusion of
both sets and relations, pair (X ,≺) satisfying

1) v ∈ X , ≺⊆ X × X ,
2) if v ∈ X and w ∈ Pre(v), then w ∈ X and w ≺ v.

In other words, X is the minimal set containing the defense
step v, all of its prerequisites, all of the prerequisites of those
prerequisites, etc., and ≺ is an encoding of the precedence
relation.

A. OVERVIEW OF THE CORE PROCEDURE
The algorithm described in this section, Algorithm 1, con-

structs countermeasures suggestions as follows. At every iter-
ation, attack simulations are performed, under the assumption
that the defense steps in the solution generated so far are
implemented in the system (in line 2 in the case of the initial
simulations, and in line 30). The simulations return attack
paths, which describe expected reasonable behaviour of the
attacker, and the corresponding TTC values for the target
attack steps. The attack paths are merged into a single graph,
and a criticality measure is computed for every counterable
attack step in this graph, in lines 5–8.

As long as there are counterable steps in the attack paths,
the most critical of these steps is picked, and the defenses
that counter it are examined. Once a defense step that can be
added to the solution without violating any of the constraints
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Algorithm 1 Simulations-Based Countermeasures Selection in Attack Graphs
Require: an attack graphG, setsXe,Xt ⊆ AG, functionsPre,Excl,Cost satisfying (1)–(3), a budget vector b = (b1, . . . , bn+m),

a criticality measure CritG, efficiency improvement threshold ε, efficiency constant c, bound diter on the number of defense
steps added to solution per iteration

Ensure: a partially ordered set (D,�), with D ⊆ DG, satisfying (4), and its efficiency score
1: (D,�)← (∅,∅), D0← (∅,∅), iteration← 0, partialSolutions← ∅
2: perform attack simulations, obtaining a set S = {S(x) : x ∈ Xt } of lists of TTCs and a set P = {P(x) : x ∈ Xt } of lists of

corresponding attack paths
3: repeat
4: iteration← iteration+1
5: G′←

⋃
x∈Xt

⋃
P∈P(x) P

6: for counterable attack step v ∈ AG′ do
7: compute criticality score CritG(v,Xt )
8: end for
9: counterableSteps← set of counterable attack steps in AG′
10: defenseStepsAdded← 0
11: while counterableSteps 6= ∅ do
12: pick a node v ∈ counterableSteps with the highest criticality score
13: counterableSteps← counterableSteps\{v}
14: for w ∈ DG such that (w, v) ∈ E do
15: (D′,�′)← (D,�) ∪ Pre(w)
16: if (D′,�′) is a partially ordered set, D′ ∩ Excl(x) = ∅ for every x ∈ D′, Costi(D′,�′) ≤ bi and

Timej(D′,�′) ≤ bn+j then
17: (D,�)← (D′,�′)
18: defenseStepsAdded← defenseStepsAdded +|D′ \ D|
19: if defenseStepsAdded ≥ diter then
20: go to line 30
21: else
22: remove defense steps in Pre(w) from G′

23: remove attack steps countered by defense steps in Pre(w) from counterableSteps and from G′

24: recompute criticality scores of attack steps in counterableSteps
25: go to line 12
26: end if
27: end if
28: end for
29: end while
30: perform attack simulations in the model with all the defense steps in D implemented, obtaining a set

T = {T (x)
: x ∈ Xt } of lists of TTCs and a set P = {P(x) : x ∈ Xt } of lists of corresponding attack paths

31: Diteration← (D,�), Eiteration← Efficiency(Xt ,S, T , c)
32: partialSolutions← partialSolutions ∪{(Diteration,Eiteration)}
33: until a stop condition is satisfied or Diteration = Diteration−1

34: k ← minimal i such that (Di,Ei) ∈ partialSolutions and
∣∣∣Eiteration−EiEiteration

∣∣∣ < ε

35: return Dk and Ek

is encountered, this defense step and all of its prerequisites are
added to the solution, in line 17, and the set of counterable
steps is updated. Analysis of the counterable attack steps
stops once all of them have been examined or when the
number of defense steps added to the solution in the current
iteration exceeds the prespecified bound diter . Then, the next
iteration starts. The main loop of the algorithm stops once a
stop condition is met (e.g., a desired improvement in TTC
values has been achieved) or an iteration passed without
altering the solution (in line 33).

The role of the diter parameter is to enable a trade-off
between the quality of the solution produced and the number
of simulations performed. To obtain a high quality solution,
one could run a very high number of iterations of the main
loop of the algorithm, adding to the solution exactly one
defense step per iteration. This can be seen as repeated iden-
tification of the most critical threats and implementation of
the smallest possible change in the system improving the
security against these threats (a change that, given the threats
identified, seems to be optimal in some sense). However,
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while simulations are an effective way of identifying some
of the optimal attack paths even in large attack graphs, they
remain time–consuming. In the case of big models, it might
be preferable to use as the stop condition a limit on the num-
ber of iterations (being at the same time a limit on the number
of performed simulations). Since new elements are added to
the solution per iteration, such a limit indirectly limits the size
of the solution, possibly reducing its effectiveness. To avoid
producing low quality solutions when a limit on the number
of simulations is small, one can increase the value of diter ,
ensuring that, if possible, at least diter defense steps will be
added to the solution in each iteration.

To avoid overinvesting into measures that increase security
only marginally, we keep track of the results of particular
iterations. After each iteration, the efficiency of the solution
generated so far is computed, using formula (5), and both
the solution and the metric are stored (in lines 31-32). Once
the main loop executes, the efficiencies of partial results are
compared against the efficiency of the final solution. This
is done by computing the relative improvement of the final
solution w.r.t. each of the partial solutions, in line 34.10 The
smallest, in the sense of number of defense step it contains,
partial solution for which the relative improvement does not
exceed some specified threshold ε is eventually returned,
along with its efficiency, in line 35.

B. MEASURING CRITICALITY OF ATTACK STEPS
At the heart of the iterative procedure described in the previ-
ous section lies the idea of ranking counterable attack steps by
their criticality.We consider several basic criticality measures
that can be used for deriving criticality scores of attack steps.

1) CRITICALITY MEASURES
Let G = (V ,E, type, ttc) be an attack graph and let P =
{P(x) : x ∈ Xt } be a set of lists of attack paths in G compro-
mising target attack steps in Xt ⊆ AG under Y ⊆ DG. Set
G′ :=

⋃
x∈Xt

⋃
P∈P(x) P. For v ∈ AG′ , let

freq(v) :=
∑
x∈Xt

|{P ∈ P(x) : v ∈ V (P)}|, (6)

outw(v) :=
∑

(v,v′)∈E(G′)

freq(v′), (7)

outANDw (v) :=
∑

(v,v′)∈E(G′),type(v′)=AND

freq(v′), (8)

diste(v) := 1/distG′ (Xe,Y , v). (9)

The frequency function freq defined by (6) returns the
number of attack paths in which the attack step v appears.
In other words, it counts how frequently the attacker used this
step in simulations. If this value is high, then the attack step
contributes to many possible attacks on target assets, and so
the step can be deemed critical.

10Note that in line 34, the value of Eiteration is equal to the efficiency of
the solution obtained in the very last iteration of the main loop.

The function defined by (7) is the weighted outdegree of
v in G′. Intuitively, the more attack steps are enabled by v,
the more critical v is. However, v will be more critical if its
children attack steps have high frequencies. Thus, instead of
simply counting the children, the sum of their frequencies is
computed.

Observe that to render an AND attack step useless it is
enough to disable one of its parents. In other words, disabling
a parent of an AND attack step indirectly disables also that
step. Thus, from the defender’s point of view, it might bemore
worthwile to implement a defense that disables the parent
rather than the AND child itself. Combining this intuition
with the one from the previous paragraph, we arrive at the
weighted outdegree over AND children criticality metric,
defined by (8).

Finally, there might be an incentive to stop the attacker
from penetrating the system as soon as possible. In such a
case, the attack steps considered to be most critical will be
the ones lying ‘‘the closest’’ to the attack steps compromised
so far. Various metrics could be applied as the distG′ function,
but the selected one should take into account the time needed
for execution of particular attack steps aswell as theAND/OR
structure of the attack graphs. We give one example of such
a metric in Appendix A.

2) CRITICALITY SCORES
The criticality measures described in the previous section
can be directly used as the criticality scores in Algorithm 1.
For a finer distinction between the criticality of attack steps,
a number of these measures could be taken into account
simultaneously.

One way of doing this is as so: select any number of
criticality measures and order them by their perceived impor-
tance. For every counterable attack step, create a vector of the
measures, with the vector entries ordered by the importance.
Then, sort the vectors using a variant of the lexicographical
order, thus sorting the steps from the most to the least critical
one.
Example 8: Frequencies and weighted outdegrees of coun-

terable attack steps in the attack graph from Figure 2 are given
in Table 1. The steps in the table are sorted first w.r.t. the
frequency, and then w.r.t. the weighted outdegree.

The criticality scores are computed here as follows. The
most critical step (i.e., the one in the top row of the table)
receives criticality score equal to the number of counterable
attack steps. Then, we iterate over the remaining steps, from
the most critical to the least critical one. For every step, its
criticality score will be equal to the score of the previous one
if their criticality metrics are the same. Otherwise, its score
will be smaller by one.

VI. VARIANTS OF ALGORITHM 1
A. FOCUSING ON ATTACK STEPS WITH ADDITIONAL
PROPERTIES
The process of selection of attack steps to be countered in
Algorithm 1 is driven by the chosen criticality score. While
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TABLE 1. Selected criticality measures of counterable attack steps in attack graph from Figure 2.

this is reasonable, in some cases it might be insufficient for
creating solutions suited for a given situation. For instance,
if the modelled system is currently under attack, it might
be wasteful to implement a countermeasure that prevents
the attacker from performing an attack step that they are
expected to reach in 100 days. In such a case, the analysis
of counterable attack steps should be narrowed to these steps
that, given the current position of the attacker, are likely to be
executed in the near future.

More generally, the algorithm could be adapted so that
the analysis focuses only on the subset of currently counter-
able attack steps (selected in line 11) that satisfy additional
properties.
Example 9: Assume that there is only one time budget,

bn+1, and that the remaining budgets are monetary-like. Sup-
pose that the system is under attack and let ExpG(Xe,Y , v)
denote the expected time needed by the attacker to execute all
of the prerequisites of the attack step v,11 with Y ⊆ DG being
currently implemented countermeasures. To stop the attacker
from progressing through the system as soon as possible, one
could introduce parameter tu, which together with the time
budget would specify the time window [bn+1, tu]. Replacing
line 11 of Algorithm 1 with

counterableSteps← set of counterable attack steps v in AG′

satisfying ExpG(Xe,Y , v) ∈ [bn+1, tu]

will result in the algorithm considering only those attack steps
that the attacker is expected to start executing, approximately,
in a point in time belonging to this time window, and the
countermeasures against which could be implemented within
the specified time budget.

B. SELECTION BASED ON QUALITY OF DEFENSE STEPS
In each iteration, Algorithm 1 focuses on countering the most
critical attack steps. Alternatively, a measure of quality of
defense steps could be used, and the focus could be put
on selecting a (set of) defense step(s) of the highest quality

11One possible way of computing this value is given in Appendix IX.

(as it is done, e.g., in [9], [33], and [23]). In the context of our
framework, it is important to remember that at each iteration
of Algorithm 1 only partial knowledge about the attacks
against the modelled infrastructure is available. In particular,
while it is known which of the attack steps lie on the currently
optimal attack paths, the exact importance of the remaining
attack steps is not known. In consequence, measuring quality
of defense steps countering only the latter attack steps is not
straightforward. Since some of these defense steps might be
prerequisites for the defenses countering attack steps that do
lie on optimal attack paths, the overall gain from adding them
to the solution is difficult to assess.

Let G,Xt ,P and G′ be as defined in the first paragraph
of Section V-B1. For a defense step w ∈ DG′ , we denote by
Counter(w) the set

{v ∈ AG′ : (w
′, v) ∈ E(G′) for some w′ ∈ Pre(w)}

of all attacks steps in the optimal attack paths that are coun-
terable by a defense step in Pre(w). Among the ways of
measuring the quality of w are

q1(w) := |Counter(w)|, (10)

q2(w,CritG) :=
∑

v∈Counter(w)

CritG(v,Xt ), (11)

q3(w,CritG) := max
v∈Counter(w)

CritG(v,Xt ), (12)

q4(w,CritG) :=
q2(w,CritG)

q1(w)
. (13)

The quality measure (10) simply counts the number of attack
steps countered by w and its prerequisites in the optimal
attack paths. The metrics defined by (11) and (12) compute,
respectively, the sum and themaximum of criticality scores of
these attack steps. The last of the four metrics is the average
criticality of attack steps countered by the defense steps in
Pre(w). Each of these measures could be modified further,
for instance, with division by the cost of implementation of
Pre(w) w.r.t. to a specific resource, or by the average cost
over all resources. This would result in a metric assessing the
average improvement in system’s security per unit of resource
invested in implementing Pre(w).

VOLUME 10, 2022 89657



W. Wideł et al.: Security Countermeasures Selection Using the MAL and Probabilistic Attack Graphs

TABLE 2. Selected parameters for Algorithm 1 used in particular experiments.

Should additional information be available to the modeller,
such as expected annual loss incurred by a countermeasure
being not implemented in the system, security-oriented vari-
ants of the return on investment (ROI) metric, like the ones
considered in [9], [31], and [43], could also be employed for
measuring quality of defenses.

VII. EMPIRICAL VALIDATION
To validate the framework described in the previous sections
in practice, we have implemented it in a prototype tool. As the
backend for generating attack graphs and performing attack
simulations, we used the commercial tool securiCAD [7]. The
remaining components of Algorithm 1 are implemented as a
Python script.

We have tested the framework on two realistic models
that we will refer to as the Ukraine model12 and the SEG-
RID model.13 The former consists of 106 objects, and the
latter contains 728 objects. In the DSL used, there are on
average 5.8 steps related to an object, hence the attack
graphs corresponding to the two models are expected to
have approximately 610 and 4220 nodes, respectively. For
the Ukraine model, synthetic constraints have been gen-
erated, including the Excl and Pre functions, as well as
interdependent costs of implementation of defense mea-
sures. No constraints were used in the case of the SEGRID
model.

Several experiments have been performed on the two mod-
els. In each of them, the efficiency improvement threshold ε
has been set to 0.1, the efficiency constant c to 150 ,14 and
the number of simulations performed by securiCAD was set
to 100. The defense step selection rule employed was the
one described in Section VI-B, and the quality metric used
was the metric q3 given by (12). Three variants of the metric

12Model files available at https://github.com/mal-lang/
securicad-coa-generator/tree/master/paper_tests_
ukraine/ukraineTestModel

13Model files available at https://segrid.eu/wp-content/
uploads/2018/01/uc2-sc2_sCADfiles-1.zip.
See [38] for a detailed description of the model.

14The time unit used by securiCAD is day, and so by setting c = 150 we
deem the 150 days increase of the 5th and the 50th percentiles of TTC values
of an attack step to be fully satisfying. Further TTC increase will have no
impact on the efficiency score.

were used, using as the criticality score for attack steps the
frequency, given by (6), weighted outdegree, given by (7),
and the combination of the two described in Section V-B2
and illustrated in Example 8. In the experiments the frequency
parameter was limited to looking at the frequency of the nine
most common attack paths (due to a technical limitation in
the securiCAD tool.) The stop condition used was a limit
on number of executions of the main loop (lines 4-32) of
the algorithm, with earlier stop happening only if the fifth
percentiles of TTC values of all target attack steps attained
the value of +∞, i.e., if T (x)

5 = +∞ for every x ∈ Xt .
A summary of parameters selected for particular experiments
is presented in Table 2. In each of these experiments, there
were three target attack steps.

The Python scripts have been run on a Windows machine
running Intel Core i7-8665U CPU at 1.9 and 2.11 GHz dual
core, with 16 GB of RAM, and the securiCAD instance
employed have been run on a Google Cloud virtual machine
running Ubuntu 16.04, with two virtual CPUs and 7.5 GB of
RAM.

Themain objective of the tests was to verify that our frame-
work is usable in practice. To this end, we have measured
the execution times of the experiments and the quality of the
produced solutions. An extract from the obtained results is
presented in Figure 4, Figure 5 and Figure 6.

Figure 4 illustrates the impact of the size of the model and
the selected criticality metric on the running time. Greater
variance in running times has been observed in the case
of the bigger model. While the SEGRID model contains
almost seven times more objects than the Ukraine model,
the medians of running times for both models are similar –
for the former, they oscilate around 32 minutes, and around
28 minutes for the latter. This suggests that our approach
scales well with the size of the model.

In Figure 5 the computation times for the U5f experiment
with varying number of target attack steps are plotted. It is
expected that the time will grow with the number of target
steps, since the greater the number, the more attack paths
are used for creating the graph in line 5 of Algorithm 1,
and the bigger the graph itself. The median of sizes of the
graph obtained for particular number of target steps are given
in top part of the figure. Starting from four target steps,
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FIGURE 4. Boxplots of computation times. For each experiment setup,
20 runs have been performed. Orange bars correspond to medians, and
the lower and the upper borders of the boxes to first and third quartiles,
respectively. Circles represent outliers.

FIGURE 5. Boxplots of computation times for U5f experiment. For each
experiment setup, 20 runs have been performed. Orange bars correspond
to medians, and the lower and the upper borders of the boxes to first and
third quartiles, respectively. Circles represent outliers.

an increase in both minimal and maximal computation times
can be observed.

Differences in quality of produced results are illustrated
in Figure 6. Both in the case of U5x and U15x experiments,
employing the weighted outdegree criticality metric resulted
in smaller range of efficiency scores of produced results.
Additionally, the median of efficiency scores obtained in
U5o is higher than the medians of U5f and U5fo. The same
tendency has been observed also in the case of the SEGRID
model. This suggests that the weighted outdegree criticality
metric might be preferable to the other two metrics when the
defense steps selection rule employed here is used.

Not surprisingly, results of higher quality are produced
whenmore iterations of the algorithm are executed, and when
less defense steps are selected per iteration – the ranges of

FIGURE 6. Boxplots of efficiency scores. For each experiment setup,
20 runs have been performed. Orange bars correspond to medians, and
the lower and the upper borders of the boxes to first and third quartiles,
respectively. Circles represent outliers.

FIGURE 7. Boxplots of computation times for models of different sizes.
For each model in the scalability experiment, 20 runs have been
performed. Orange bars correspond to medians, and the lower and the
upper borders of the boxes to first and third quartiles, respectively.
Circles represent outliers.

values obtained in U15x experiments are smaller than those
obtained in U5x experiments, and the medians of the former
are higher.

To investigate further the scalability of our framework
we have created synthetic models of different sizes (having
from 400 up to 8000 objects)15 producing different sized
attack graphs. The corresponding running times are plotted
in Figure 7, using logarithmic scale for better visibility. It can
be seen that even for large models the proposed solution is
producing results within a useful and practical time duration,
and that the running time grows linearly with the number of
objects in the model.

15Model files available at https://github.com/
mal-lang/securicad-coa-generator/tree/master/
models-for-scalability-test
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For the scalability tests the latest version of the Python
scripts have been run on aWindowsmachine running Intel(R)
Core(TM) i5-8365UCPU@1.60GHz 1.90 GHz, with 16 GB
of RAM, and the securiCAD instance employed have been
run on a Google Cloud virtual machine running Ubuntu
16.04, with eight virtual CPUs and 16 GB of RAM.

VIII. CONCLUSION
The main goal of the work presented in this paper was
to devise a method for suggesting efficient security coun-
termeasures in IT infrastructures modelled using MAL.
We proposed a scalable and highly tunable algorithm that
constructs sets of countermeasures by repeated analysis of
optimal attack paths in the modelled system. By testing our
framework on realistic models using a prototype implemen-
tation, we demonstrated that it is usable in practice. Fur-
thermore, we have gained some insights into the impact of
several criticality measures on the quality of the produced
results.

Applicability of our methodology relies on the existence of
a DSL suitable for modelling the system of interest. We could
use any of the existing MAL based DSLs depending on the
domain of application.

Themainmotivation for developing the algorithm has been
to support security engineers with a capability to suggest
actionable design decisions given a certain ICT infrastructure,
without having to engage in a trial and error process of
design alternatives. Primarily, this saves time for the secu-
rity engineer. Our tests indicate that the algorithm seem
to deliver results with decent performance. In a scenario
where the security engineer is working with strategic or tac-
tic design decisions, the performance is probably sufficient.
However, in the case where design decisions are taken as a
response to an ongoing attack, calculations could possibly
take too long. Even though the algorithm can be fed with
a time budget representing the available window to react,
the algorithm does not take its own computing time into
consideration. With empirical data on computational perfor-
mance for a given model this time could be introduced as
an additional cost parameter in the algorithm in a future
extension.

In this work, we have not considered optimization w.r.t.
the budget of the defender. A natural, yet not very efficient,
approach towards striking a balance between the defender’s
investment and efficiency of solutions would be to simply
run Algorithm 1 for different values of budgets and compare
the results. Possible future work includes developing more
efficient ways of tackling this problem.

A shortcoming with the prototype is that it assumes a
static attack graph. In practice, activating defense steps is not
the only design alternative available to the security engineer,
introducing changes that mean structural changes in the DSL
instance model is also an option. This however also means
that the resulting attack graph changes. Here we can thus
note that the practical usefulness of the prototype will vary
with the design of the DSL. In cases where the DSL is

encoding defense mechanisms to a large extent as defense
steps the algorithm would be more relevant than in cases
where defenses are captured as assets and asset relations.
For instance, we could imagine one DSL having a defense
step representing two-factor authentication protection while
another would feature credentials as separate assets with
a relation to the protected software asset. Ongoing work
includes adapting the prototype presented here to also encom-
pass structural changes.16

Although Algorithm 1 has been tailored to fit the
MAL-generated attack graphs, we note that it is somewhat
universal. In its formulation, one could replace attack graphs
with another graphical model for security, attack paths with
appropriate notion of an attack, and attack simulations with
a corresponding method of determining optimal attacks in
a model. The resulting algorithm would produce counter-
measures suggestions in such alternative framework. For
instance, the algorithm could be immediately adapted for
attack-defense trees [21] in which basic actions are assigned
probability distributions of time execution (as in [3]), with
attacks being elements of the set semantics [4] of a tree,
and with the method described in Section 4.5 of [41] used
for determining an optimal attack. It seems that this method
could be further adapted to fit attributes other than TTC, e.g.,
attacker’s investment.

IX. APPENDIX A
COMPUTING DISTANCE IN ATTACK GRAPHS
To measure how far is the attacker from executing an attack
step in an attack graph, one can compute the expected time
needed by the attacker for executing all of the prerequisites
of the step. This measure can be formalized as follows. Let
G = (V ,E, type, ttc) be an attack graph, Xe ⊆ AG be a set of
attack steps executed so far by the attacker, and Y ⊆ DG be
a set of defences implemented in G. An attack step v ∈ AG is
reachable by the attacker from Xe under Y if there is an attack
path in G starting in Xe and compromising {v} under Y .

For v ∈ AG, let ExpG(Xe,Y , v) denote the expected time
needed by the attacker to execute all of the prerequisites of
the attack step vwhen starting in Xe and when the defenses in
Y are implemented in the system. If v is not reachable from
Xe under Y , set ExpG(Xe,Y , v) = +∞. For a reachable attack
step v, this value is defined as

ExpG(Xe,Y , v)

:=



0, if v ∈ Xe,
min

v′ : (v′,v)∈E
ExpG(Xe,Y , v′)+ E[ttc(v′)],

if v /∈ Xe and type(v) = |,
max

v′ : (v′,v)∈E
ExpG(Xe,Y , v′)+ E[ttc(v′)],

if v /∈ Xe and type(v) = &.

16Of course, if MAL featured some other underlying formalism for ana-
lyzing the attack graphs, such as a game theoretic calculation engine, also
other approaches, with other properties, would be possible to develop. Such
work, however, has been considered out of scope.
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