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ABSTRACT Social identity theory and self-classification theory provide theoretical supports for explaining
the formation and action of the technological divisive faultlines. The purpose of this study is to explore
the effects of technological divisive faultlines on a clique’s innovation performance and the moderating
effects of geographical proximity and closeness centrality. The data of 119 firm alliance and 351 firms
in cliques are collected in China’s biomedical industry from 2010-2017. Then, we perform the negative
binomial regression by STATA software with these data as samples. The results show that there is an inverted
U-shaped relationship between the technological divisive faultlines and clique’s innovation performance;
geographical proximity has no moderating effect on the inverted U-shaped relationship; closeness centrality
has a significant negative moderating effect on the inverted U-shaped relationship between them. Besides,
it suggests that the clique’s innovation performance under high closeness centrality is higher than that under
low closeness centrality, which provides a new perspective for the previous research that forming cliques
could break the relational redundancy.

INDEX TERMS Innovation network, cliques, technological divisive faultlines, innovation performance.

I. INTRODUCTION
The innovative development of the biomedical industry pro-
vides an important guarantee for people’s life safety [1], [2].
Since the outbreak of COVID-19, countries around the world
have started to develop related vaccines, such as inacti-
vated vaccines, subunit vaccines, adenovirus vector vaccines,
and mRNA vaccines, which greatly challenge the biological
medicine technology of a country. According to reality, devel-
oped countries such as the United States, Europe, and Japan
are dominant in the biomedical industry, while developing
countries like China are far behind [3], [4]. As a result, a large
number of ‘‘life-saving drugs’’ in the biomedical industry in
developing countries have to rely on imports. The biomedical
industry in developing countries needs further innovated and
developed.
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At present, China’s biomedical industry is in the dilemma
of ‘‘strong production and weak innovation’’. To improve
firm innovation ability and international competitiveness [5],
Chinese biomedical firms have acquired knowledge and tech-
nology from developed countries through traditional means,
including acquisitions, mergers and acquisitions, and joint
ventures [6]. However, after the Section 301 investigation in
2017 and the China-US trade war in 2018, such alliances in
which Chinese firms pay cash for foreign patents have been
constrained. In this context, the establishment of multilateral
alliances under the government’s guidance has become the
mainstream way to improve Chinese biomedical firms’ inno-
vation capability and competitiveness [7]. Such multilateral
alliances correspond to the clique structures in innovation
networks, i.e., fully connected subgraphs of at least three
nodes [8].

There is technology similarity between the firms within
a clique, but the similarity between each ‘‘firm pair’’
is discrepant. According to social identity theory and
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self-classification theory [9], this phenomenon will result in
the difference in knowledge and technology sharing among
various ‘‘firm pairs’’ and lead to the uneven distribution of
the inter-firm relationship strength among the firms within
the cliques. In this case, the clique’s technological divisive
faultlines occur, which promotes the clique to split into mul-
tiple sub-cliques or even disband completely [10]. Generally
speaking, the firms within a clique prefer to carry out inno-
vation activities within the sub-clique that they have a strong
sense of belonging to, but this tendency will usually exac-
erbate the technical communication barriers between sub-
cliques [11]. However, the effect of technological divisive
faultlines within a clique on the clique’s innovation has been
a largely under-explored domain.

In addition, in the field of innovation network research,
previous scholars have conducted richer studies on geograph-
ical distance and network distance, but fewer scholars have
conducted comparative studies on the two. This paper also
plans to explore in this area. To this end, the purpose of this
paper is to analyze the influence of technological divisive
faultlines (TDF) on a clique’s innovation performance (CIP)
and explore the moderating effects of geographical proximity
(GP) and closeness centrality (CC). In this study, the net-
work density (ND), average clustering coefficient (ACC), and
patent accumulation (PA) are used as control variables. Our
work extends fault theory to the domain of innovation net-
works of firm alliances, which enriches the research frame-
work of fault theory and clique theory. Moreover, our work
provides theoretical references in firms joining cliques and
clique governance.

A. FAULTLINES
The term ‘‘fault’’, which originally refers to the faults caused
by the force of the earth’s crust, was introduced into the
team level of organization management and defined as the
invisible dividing line that divides a group into various
groups according to the differences ofmember attributes [12].
Subsequently, Lawrence and Zyphur brought the concept of
fault to the organizational level and defined organizational
fault as the aggregation of attributes among members in a
large population [9]. Over the years, some scholars in the field
of organizational research have developed the fault theory
from the perspective of individual attributes based on the
organizational background such as executive team, board of
directors, and others, which has extended the fault theory
from the team level to the organizational level [13], [14].
Recent research by Chung et al. investigated the impact of
innovation leaders’ network behavior on organizational inno-
vation. They conceptualized faults as cross-job demographic
dislocations and used data from a sample of 55 work units in a
U.S. high-tech company to support a mediation model. In this
model, the network behavior of senior leaders influenced
innovativeness at the unit level through the network behavior
of junior leaders [15].

In recent years, the focus of studies on fault has gradually
shifted to the inter-organizational level, and the concept of

divisive faultlines has been proposed accordingly. A consid-
erable literature has put forward that it is of great significance
to carry out research and exploration of fault theory in the
fields of the alliance, innovation network, and so on [16].
For instance, from the perspective of relationship embedding,
Heidl et al. found that the divisive faultlines of multilateral
alliances were caused by the difference in the degree of
shared experience among firms [17]. Cheng et al. extended
the theory of divisive faultlines to the technological innova-
tion network constructed by joint patent applications. Their
work proved that divisive faultlines within subgroups would
lead to network polarization. Besides, there is an inverted u-
shaped relationship between divisive faultlines and knowl-
edge search breadth in technology innovation networks [18].
Accordingly, Cheng et al. took agricultural technology joint
patent application and new energy vehicle patent construction
cooperation network as samples. confirming that the location
embedding had a significant positive moderating effect on
the relationship between divisive faultlines and agricultural
technological innovation, while the divisive faultlines nega-
tively moderated the promoting effect between technological
agglomeration and innovation [19]. Some scholars examined
the relationship among divisive faultlines, knowledge stock,
knowledge transfer efficiency, and situational embeddedness
in firm alliances based on the questionnaire data provided
by firm alliances [20]. Subsequently, Yu et al. collected
data through questionnaires and found that relational divisive
faultlines and innovation divisive faultlines partiallymediated
the negative correlation between psychological distance and
intra-subgroup reciprocity [21].

However, subgroups proposed in these studies are broader
than cliques, which exacerbates the difficulty of putting for-
ward specific suggestions and strategies for the development
of firms. Besides, a major problem with these questionnaires
is that it has little consideration for network indicators. Above
all, there are relatively few studies devoted to exploring the
relationship between the TDF and the CIP, and our study fills
the gap in the literature by empirical research.

B. CLIQUE’S TECHNOLOGICAL DIVISIVE FAULTLINES
The clique is a common structure in networks whose nodes
are connected and closely related to each other. Various
structures, including cliques in complex networks, were first
presented in 2004 [22]. Subsequently, Palla et al. defined the
clique as a fully connected subgraph composed of three or
more nodes [8].

Previous scholars classified the divisive faultlines as orga-
nizational divisive faultlines, institutional divisive faultlines,
and psychological divisive faultlines based on the degree of
differences in organizational, institutional, and psychological
factors between individual pairs within a community. In this
paper, the TDF is defined as the invisible dividing lines that
divide a clique into two ormore sub-cliques due to differences
in the technological similarity between firms that lead to
uneven strength of inter-firm relationships. It characterizes
the differences of all the firm pairs’ technological similarities
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within a clique, and its value is defined as the intensity of the
TDF [17], [18].

It has been suggested that the difference in technology
similarity among clique members determines the intensity
of the TDF. Specifically, the differences in the technological
similarity between ‘‘firm pairs’’ within a clique promote
the formation of cohesive sub-cliques. At the same time,
the greater the difference in technology similarity between
‘‘firm pairs’’, the more obvious the differences in technology
overlap between them, and the stronger the intensity of the
clique’s TDF. However, if all the firms within a clique are
completely similar or different in technology, the possibility
of TDF is immensely reduced because there is no obvious
similarity distinction [23].

To sum up, several attempts have been made to explore the
scale, trend, external firms, and the degree of cliques in the
innovation network [24], [25], [26]. However, less attention
has been paid to the TDF within a clique, which needs further
exploration. In addition, from the fact perspective, the node-
set divided by TDF within a clique is still a fully connected
structure, and it is defined as a sub-clique.

C. GEOGRAPHICAL PROXIMITY AND
CLOSENESS CENTRALITY
The geographical proximity (GP) and the closeness central-
ity (CC) are important indicators to measure the core posi-
tion of a firm at the geographic and network levels [27],
[28]. A short geographical distance between firms can pro-
mote the flow of knowledge and facilitate the cooperation
between firms, but it may also accentuate the problem of
knowledge homogenization and thus inhibit the firm’s inno-
vation performance [29]. The proximity was summarized
into five dimensions, including cognitive proximity, organi-
zational proximity, social proximity, institutional proximity,
and GP [30]. Among them, GP, as a measure of the geo-
graphical distance between the focal firm and its partners, has
received great attention in innovation networks. For exam-
ple, Buchmann and Pyka analyzed the cooperation behaviors
of German automobile firms based on GP using the R&D
project data from 1998 to 2007 and proved that firms with
a closer geographical distance had a stronger willingness
to cooperate [30]. Reuer and Lahiri addressed that a long
geographical distance would hinder the formation of R& D
cooperation among firms, but the negative effect of geograph-
ical distancewould be significantly attenuated if the firms had
historical cooperation experience in the same product market
or had similar technical resources [31].

As for network distance research, a considerable amount
of literature has been published on the position of a firm in
the network. Several studies have documented that a firm
with a core position in the network has more control over
the resources [32]. It is worth mentioning that CC is an
indicator to measure the network distance between the focal
firm and partners in the network and calculates the reciprocal
of the sum of the shortest paths from the focal node to all
other nodes in the network. Existing research has found that

organizations with higher CC have more channels for imi-
tation learning and knowledge absorbing [33]. In addition,
some scholars also studied network distance from the per-
spective of embeddedness. For example, Cao et al. docu-
mented that proper network embedding is fast becoming a key
instrument for firms to obtain network resources and promote
innovation capacity [34]. Nevertheless, when a firm is over-
embedded in the network, problems such as over-emphasis
on network relationship maintenance will harm technology
innovation.

In conclusion, previous research has recognized the critical
role distance plays in the research of innovation networks
[32], [33]. However, questions have been raised when there
is TDF within a clique. The influence of TDF on CIP and the
moderating effect of GP and CC on this effect have become
urgent scientific issues to be explored, which also are the
main research questions of this paper. Therefore, two research
questions are proposed in this paper:

Q1: What is the impact of the TDF on CIP?
Q2: What are the moderating effects of GP and CC on the

relationships between them?

II. THEORY AND HYPOTHESES
A. TECHNOLOGICAL DIVISIVE FAULTLINES AND CLIQUES’
INNOVATION PERFORMANCE
The intensification of TDF within a clique tends to fos-
ter the formation of cohesive sub-cliques, which will cause
ownership issues for firms such as within the sub-clique or
outside the sub-clique [17]. Social identity theory believes
that similarity can promote knowledge flow between firms,
and self-categorization theory presents that firms tend to
develop closer alliances with similar firms [13], [14], which
is the basis of the fault theory. When there are TDF within
a clique, it will lead to the division of multiple sub-cliques
within the clique. Firms within the clique are more willing to
communicate with others with similar technologies to pursue
greater knowledge flow [24] so that firms can solve their
innovation problems within the sub-clique with a stronger
sense of belonging. Therefore, it can be inferred that the TDF
will make firms tend to complete innovation activities in the
sub-clique with more technical similarity, weaken the unity
of the clique and hinder the knowledge flow among the sub-
cliques [18], [21].

Specifically speaking, when the intensity of TDF within
the clique is inferior, firms can keep their innovation activities
within the sub-clique they belong to and maintain communi-
cation with firms outside the sub-clique [17]. Firms are less
embedded in the sub-clique where they are good at and trust
while maintaining knowledge flows with firms outside the
sub-clique [23]. As the intensity of TDF increases, clique
members devote more energy to innovation activities in the
sub-cliques to which they belong and reduce the maintenance
of non-essential relationships with members outside the sub-
cliques. Clique members develop innovations within sub-
cliques where they feel a stronger sense of belonging, thus
promoting CIP.
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However, when the intensity of the TDF within the clique
is high, the greater technological differences between the
sub-cliques make firms with similar technology types form
a closer sub-clique [17]. The sub-clique also becomes more
closed and firms prefer to solve their innovation problems
within the sub-clique and no longer engage in knowledge
flow with firms outside the sub-clique, causing a decrease in
clique knowledge flow and technology exchange [23]. As the
intensity of the TDF increase, the closure of the sub-cliques
is higher, and firms are more inclined to perform innovation
activities within their own sub-clique instead of communi-
cating with firms outside the sub-clique. This phenomenon
results in the reduction of knowledge flow and technology
exchange within the cliques, and adversely affects the CIP.
Based on the above discussion, Hypothesis 1 is proposed:

Hypothesis 1: There is an inverted U-shaped relationship
between the intensity of TDF and CIP.

B. THE MODERATING EFFECT OF
GEOGRAPHICAL PROXIMITY
GP measures the geographic distance between the target firm
and other firms in the network. A high GP of the target firm
means that the sum of the geographic distances between the
target firm and all firms in the network is low, indicating this
firm is geographically close to other firms. This can be benefi-
cial to the knowledge flow and technology exchange between
the target firm and other firms in the network, but it can
also lead to the problem of knowledge homogenization [35].
Therefore, the inverted U-shaped relationship between TDF
and CIP could be moderated by GP.

In particular, if the firms belong to a clique with low inten-
sity of TDF, they can conduct innovation activities within
their sub-cliques and maintain the relationships with firms
outside the sub-cliques simultaneously. As the intensity of
TDF increase, firms within the clique can devote more effort
to the inner part of the sub-cliques that they belong to, while
appropriately reducing the knowledge flow with members
outside the sub-cliques, which promotes CIP. This implies
that there is a positive correlation between TDF and CIP [17].
Considering themoderating effect of GP, a short geographical
distance between the firms within a clique and other firms
contributes to the knowledge flow between them [37], [38].
At this point, as the intensity of TDF increases, the firms in
the clique can devote more energy to conducting innovation
in the sub-clique and share knowledge with clique partners
outside the sub-clique. But this good situation is destroyed
by GP because firms in cliques have to divert some of their
efforts to maintain relationships with geographically proxi-
mate firms, which may result in relationship redundancy and
even local knowledge homogenization [38], [39], thus imped-
ing innovation. After all, GP weakens the positive correlation
between low TDF and CIP. In other words, GP weakens the
contribution of the low intensity of TDF to CIP. Therefore,
the left tail of the inverted U-shaped curve that reflects the
relationship between the intensity of TDF and CIP becomes
flatter.

When the intensity of TDF within a clique is high, firms
within the clique focus on confining their innovation activ-
ities to the sub-cliques they belong to and are less likely to
communicate with other firms outside the sub-cliques, which
is harmful to CIP [40]. As the intensity of TDF increases, the
sub-clique becomes more closed and there is less knowledge
flowwithin the clique, which is negative for innovation. It can
be inferred that there is a negative correlation between the
intensity of TDF and CIP [37], [38]. In combination with the
influence of GP, the geographical closeness between firms
within a clique and other firms reduces the cost of cooperation
and promotes the flow of knowledge. At this point, as the
intensity of TDF increases, the sub-cliques within the clique
become more closed and the intra-clique knowledge flow
becomes less, but this poor situation is ameliorated by GP.
GP alleviates the situation where firms can only confine
their innovation activities to be accomplished within sub-
clique, and although it may cause knowledge homogeniza-
tion [38], [39], it provides new knowledge intake paths for
cliques and weakens the negative correlation between high
intensity of TDF and CIP. In other words, GP weakens the
inhibitory effect of high intensity of TDF on CIP. Compared
with the previous, the right tail of the inverted U-shaped curve
becomes flatter. Hypothesis 2 is proposed based on the above
discussion:

Hypothesis 2: GP negatively moderates the inverted
U-shaped relationship between the intensity of TDF and CIP.

C. THE MODERATING EFFECT OF CLOSENESS CENTRALITY
CC measures the network distance between the target firm
and other firms in the network. A high CC of the target firm
means that the target firm occupies a more central position
in the network, and the network distance between the target
firm and other firms is close [41]. This facilitates the flow
of knowledge between it and the network members and the
application of resources in the network [42]. CC has a mod-
erating effect on the inverted U-shaped relationship between
TDF and CIP.

Specifically, in the case that the intensity of TDF within a
clique is low, firms within the clique can maintain relation-
ships with other firms within the clique while carrying out
innovation activities within the sub-cliques, which helps to
improve the CIP. As the intensity of TDF increases, firms
within the clique can devote more effort to the sub-cliques
they belong to while appropriately reducing the knowledge
flow with firms outside the sub-cliques, which contributes
to CIP. We can speculate that there is a positive correlation
between the intensity of TDF and CIP [17]. Combined with
the influence of CC, firms within cliques are more centrally
located in the network, which facilitates the flow of knowl-
edge between them and other firms in the network [42], [43].
From the perspective of embeddedness, the firms within the
clique belong to both the sub-clique caused by TDF and
the existing clique. Moreover, they are also located in the
center of the network. This leads to a situation where firms
in the cliques are over-embedded and have to be distracted
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TABLE 1. Descriptive statistics of samples.

from maintaining relationships with other firms rather than
focusing on knowledge flow and R& D with clique partners,
thus doing harm to innovation [44], [45]. CC weakens the
positive correlation between the low intensity of TDF and
CIP. That is to say, CC weakens the contribution of the low
intensity of TDF to CIP. Compared to before, the left tail
of the inverted U-shaped curve that reflects the relationship
between the intensity of TDF and CIP becomes flatter.

In the other case that the intensity of TDF within a
clique is high, firms within the clique can only confine their
innovation activities to the sub-cliques they belong to and
have less knowledge flow with other firms outside the sub-
cliques, which is negative for the CIP. As the intensity of
TDF increases, sub-cliques become more closed and there is
less knowledge flow within the clique, going against inno-
vation [23]. We can further infer that there is a negative
correlation between TDF and CIP. Combined with the influ-
ence of CC, firms within a clique can carry out innovative
activities within the sub-cliques to which they belong and
develop collaborative relationships with other firms in the
network, which promote the flow of knowledge [42], [43].
At this point, as the intensity of TDF increases, CC improves
the situation where the objects of knowledge flow within
the clique are limited to the sub-cliques. The sub-cliques
within the clique become more closed and more detrimental
to innovation, leading to the over-embedding of firms within
cliques, but CC provides new ways of knowledge intake for
cliques at the same time [42], from which CIP can benefit.
CC weakens the negative correlation between the low inten-
sity of TDF and CIP, namely CCweakens the inhibition effect
of the high intensity of TDF to CIP. Compared to before,
the right tail of the inverted U-shaped curve that reflects the
relationship between the intensity of TDF and CIP becomes
flatter. Hypothesis 3 is proposed accordingly:

Hypothesis 3: CC negatively moderates the inverted
U-shaped relationship between the intensity of TDF and CIP.

According to these hypotheses mentioned above, the pro-
posed research model of our study is as shown in FIGURE 1.

III. METHODOLOGY
A. DATA
The biomedical industry is a typical knowledge-intensive
industry with high input, high risk, and high yields. As one

FIGURE 1. Research hypothesis framework.

FIGURE 2. 2011-2013 alliance innovation network.

of the seven strategic emerging industries, the overall size
of the biomedical market in China increased from RMB
183.6 billion to RMB 317.2 billion from 2016 to 2019, at a
CAGR of 20%, much higher than other high-tech indus-
tries such as telecommunications equipment manufacturing,
automobiles, and semiconductor industry (National Bureau
of Statistic of China [NBSC] 2020) [4], [46]. As an emerg-
ing country committed to independent innovation, China is
constantly confronted with trade and technical barriers with
developed countries in the process of innovation and devel-
opment. Especially after the trade war between China and
the United States, this greatly restricted the development
of China’s biomedical industry. The study of the TDF in
the innovation network of China’s biomedical industry can
provide a good reference for countries that are committed to
independent innovation when facing the problem of techno-
logical matching within the alliance. Therefore, we chose the
Chinese biomedical industry innovation network to conduct
our study.
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FIGURE 3. 2011-2013 cliques in the innovation network.

Firstly, we combined the biomedical industry with the
alliance types to generate a combination of keywords, which
in turn generated the search formula, i.e., ‘‘biomedical indus-
try’’ and (‘‘cooperative R& D’’ or ‘‘joint venture’’ or ‘‘coop-
erative production’’ or ‘‘cooperative marketing’’). Then, the
Octoparse 8.1 software was applied for information crawling
from Baidu News (https://news.baidu.com/).

Secondly, our study defined China’s biomedical alliance
according to the following criteria: (1) At least one firm in the
alliance belongs to the biomedical industry. (2) The alliance
formed should engage in R& D, production, marketing, and
other activities in the biomedical industry. When an alliance
meets either of the two criteria and onlywhen there are at least
one or more Chinese firms in the alliance, can it be identified
as an alliance of China’s biomedical industry [26]. In this way,
119 pieces of China’s biomedical firm alliance information
were collected from 2010 to 2017.

Finally, in line with previous studies [46], the period from
2010 to 2017 was divided into six time windows according to
the span of 3 years as one time window (e.g., 2010–2012,
2011–2013, 2012–2014, 2013–2015, 2014-2016, and
2015-2017), which were used as 6 observation periods
of panel data. In addition, there are 620 organizations in
the six time windows including firms, universities, hospi-
tals, research institutes, government departments, and med-
ical associations. After clique percolation, 73 cliques and
473 cliquememberswere extracted from innovation networks
by the UCINET 12.0 software (Network–> Subgroups–>
Cliques). By eliminating other organizations besides the firm,
351 firms obtained under six time windows were taken as the
research samples of this paper. (TABLE 1)

To better understand the innovation network of firm
alliances and cliques in the innovation network, Ucinet
software was applied to draw the figure of the innova-
tion network (FIGURE 2) and the cliques in the innovation
network (FIGURE 3).

In addition, the number of patent applications, the number
of invention patents granted, and corporate IPC breakdown
data were obtained by PatSnap (https://www.zhihuiya.com).
Besides, the longitude and latitude of the corporate head-
quarters were obtained from Google Earth (https://earth.
google.com).

B. MEASUREMENTS
1) DEPENDENT VARIABLES
A clique’s innovation performance (CIP) is an index to mea-
sure the output of the clique’s innovation. The patent is the
most appropriate indicator of innovation performance in the
high-tech industry; also it is a tool to measure innovation
direction and innovation focus [47]. And it has been recog-
nized by most scholars that the number of patents is used
to measure the innovation performance of firms [48], [49].
Based on this, it could be concluded that the more firms’
patent applications within a clique, the higher the CIP is.
As far as the biomedical industry is concerned, the firms
usually apply for patents while the generic drug is under
clinical trial. Before this, other steps need to be completed
including drug target discovery and confirmation, screening
and synthesis of compounds, validation and optimization
of active compounds, pharmacological studies, toxicological
studies, and development of formulations. This process will
take 2.5-3.5 years [50]. The above-mentioned studies provide
data to support the patent application and help the patent
application pass the examination. Therefore, CIP could be
represented by the total number of patents (invention patents,
utility model patents, appearance patents) applied by firms in
the third year after participating in the clique.

2) INDEPENDENT VARIABLES
Technological divisive faultlines (TDF) measure the degree
of internal differentiation caused by the difference in technol-
ogy sharing among a clique. Previous studies have suggested
that the difference in the technological overlap between ‘‘firm
pairs’’ within cliques is the key to the generation of TDF [17].
Fortunately, patent technology classification can precisely
represent the technological difference between firms. Thus,
we followed the research method to calculate the degree of
technical overlap [51]. Firstly, the technical overlap degree
between all ‘‘firm pairs’’ is calculated as formula (1):

Technical overlap degree =
FiFj′√

(FiFi′)
(
FjFj′

) (1)

where Fi =
(
F1
i · · ·F

s
i

)
,F si is the number of patents of firm

i under patent IPC category s, Fj =
(
F1
j · · ·F

s
j

)
,F sj is the

number of patents of firm j under patent IPC category s, i 6= j.
The degree of technical overlap range is from 0 to 1. When
the value is closer to 1, means that the similarity of the firm
pair’s technology is higher. Then, the standard deviation of
the technology overlap degree of all ‘‘firm pairs’’ within the
clique is calculated as the intensity of TDF in the clique.

3) MODERATOR VARIABLE
Geographical proximity (GP) refers to the geographical dis-
tance between the focal firm and other firms in the network.
In this paper, the longitude and latitude of the office address of
the firms’ headquarters can be queried through Google Earth,
and the geographical distance between the two firms can be
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calculated according to formula (2):

Dij = C
{
arcCos[Sin(lati)Sin(latj)

+Cos(lati)Cos(latj)Cos(
∣∣longi − longj∣∣ )]} (2)

where j is a firm other than firm i in the innovation network,
Dij is the geographical distance between firm i and firm j,
and C=3437 is a constant value between miles and latitude
and longitude on earth. Then, the GP of focal firm i in t
time window can be calculated by the formula (3). When
the value is larger, it implies that the sum of geographical
distances between the focal firm and other firms in the net-
work is smaller, and the distance is closer. It is calculated as
formula (3):

GPit =
∑

j

1(
1+ Dij

) (3)

where GPit is the GP of firm i in the t time window, and Dij
is the geographical distance between firm i and firm j [52].
Closeness centrality (CC) describes the network distance

between the focal firm and other firms in the network, and
it is the reciprocal of the sum of the shortest paths between
them. The larger the value is, the closer the network distance
between the focal node and other nodes is, which also means
the focal node is in a relatively central position in the net-
work [42]. It is calculated as formula (4):

CC it = 1/(
∑

i 6=j

n
j
dij) (4)

where CCit is the CC of firm i in time window t , and dij is
the shortest path length between firm i and firm j, and n is the
size of the network.

4) CONTROL VARIABLES
Network density (ND) is an indicator to measure the close-
ness of connections among members in a network, which
describes the ratio of the actual number of connections in a
network to the number of theoretical connections. Its value
is from 0 and 1, and the closer it is to 1, the greater the ND
is [42]. The calculation method is as formula (5):

Density =
2L

N (N − 1)
(5)

where Density is the ND, N is the network size, and L is the
number of lines in the network.

The average clustering coefficient (ACC) reflects the clus-
tering degree of network nodes, which is the proportion of
closed triples to triples. Three nodes connected in a network
are defined as closed triples, which is the basic structure of
the network. The more closed triples are in the network, the
higher the clustering degree of the network is [53]. And the
calculation method is as formula (6):

ACC = 3N1/N3 (6)

where N1 =
∑

k>j>i aijaikaik is the number of closed triples
and N3 =

∑
k>j>i (aijaik + ajiajk + akiakj) is the number of

triples in the network.

FIGURE 4. Moderating effect of closeness centrality (2D).

Patent accumulation (PA) can effectively measure the cur-
rent technological reserve of the firms and is often used in the
study of a firm’s innovation performance [54]. In addition,
the more technology patents a firm has, the higher innovation
performance it is likely to create. In this paper, the total num-
ber of patents granted in the first five years of the observation
period is used to measure the PA.

C. DESCRIPTIVE STATISTICS AND
CORRELATIONS ANALYSIS
In this paper, the collected data of Chinese biomedical indus-
try cliques were transferred into panel data, and descriptive
statistics, correlation analysis, and negative binomial regres-
sion analysis were performed on 351 samples by STATA
software. TABLE 2 shows the descriptive statistics and corre-
lation analysis results of variables from where the correlation
between variables is relatively low (the absolute value of the
correlation coefficient is less than 0.7), meaning that there is
no multicollinearity problem.

IV. RESULTS AND ROBUST ANALYSIS
A. RESULTS
The verification of themoderating effect is one of the research
issues in this paper. To reduce the nonessential multicollinear-
ity problem and ensure that the intercept of each variable
has economic significance, the independent variables, mod-
erating variables, and control variables in the research model
were centralized. Moreover, according to the Hausmann test,
Prob> Chi2 = 0.00, indicating the model estimator of fixed
effects is more effective. Considering that the patent data used
to measure the CIP is the counting variable and relatively
discrete, the panel negative binomial regression model with
fixed effects was selected for analysis [55].

For Model 1 in TABLE 3, it can be seen that the control
variables’ coefficients are significant. Then, it can be con-
cluded that the control variables are reasonable, and play a
good control role in our research. Model 2 shows that the pri-
mary term of the TDF within a clique is positively significant
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TABLE 2. Descriptive statistics and correlations analysis of variables.

TABLE 3. Results of panel negative binomial regression models (obs=351).

(β=2.73, Z=3.22), meaning the main effect is significant
and lays a foundation for the following test. For Model 3 in
TABLE 3, it can be concluded the primary term of the TDF
within a clique is positively significant (β=9.29, Z=3.36),
and the quadratic term coefficient is negatively significant
(β = − 16.10, Z=-2.25). Thus, hypothesis 1 is verified
and there is an inverted U-shaped relationship between the
intensity of TDF and CIP [56].

As for Model 5, the primary term coefficient (β = 10.87,
Z=0.85) and primary interaction term coefficient (β=-40.19,
Z=-1.28) of GP in Model 5 are not significant. Besides, the
GP’s coefficient (β=-0.50, Z=-0.45), the primary interac-
tion term coefficient (β=10.87, Z=0.85), and the quadratic
interaction term coefficient (β=-40.19, Z=-1.28) are also not
significant. It indicates that GP has no moderating effect on

the inverted U-shaped relationship between TDF and CIP, and
hypothesis 2 has not been verified [56].
Model 7 shows the primary term coefficient of TDF is

positively significant (β=-43.03, Z=3.94), and the quadratic
term coefficient is negatively significant (β=-61.50,
Z=-2.37). The CC’s coefficient is positively significant
(β=9.21, Z=11.12) while the primary interaction term coef-
ficient is negatively significant (β=-33.30, Z=-3.52), and the
quadratic interaction term coefficient is positive and signifi-
cant (β=45.88, Z=2.04). Referring to the research of Haans
et al., testing for flattening or steepening does not depend
on any other coefficient than the coefficient of the quadratic
interaction term. That is, testing for flattening or steepening
is equivalent to testing whether the quadratic interaction term
coefficient is significant. If the quadratic interaction term
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FIGURE 5. Moderating effect of closeness centrality (3D).

TABLE 4. Obust test of panel negative binomial regression models (obs=351).

coefficient is positive and significant, a flattening occurs for
inverted U-shaped relationships. It can be concluded that the
negative moderating effect of the inverted U-shaped relation-
ship holds, and the moderating variable makes the opening
of the previous inverted U-shaped curve larger or even the
ends flip upward to form a U-shape. Model 7 indicates that
the quadratic interaction term coefficient is 45.88, and it is
significant as Z = 2.04, p < 0.05. Therefore, it can be con-
cluded that CC negatively moderates the inverted U-shaped
relationship between TDF and CIP, and hypothesis 3 is
verified. In addition, comparing the regression coefficients
of Model 8 with the previous models, it can be found that

the significance and positive and negative coefficients of
the same index are basically consistent, indicating that the
obtained results are consistent [56].

According to Model 7, we used EXCEL and MATLAB
to draw 2D and 3D moderating effect diagrams (FIGURE 4
and FIGURE 5). In the case of low centrality, there is
an inverted U-shaped relationship between TDF and CIP.
With the increase of CC, the inverted U-shaped relationship
between them goes from steepening to flattening, and the left
and right tails become upward gradually. Finally, the curve
the curve flips and becomes U-shaped. Thus, hypothesis 3 is
verified again.
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B. ROBUST ANALYSIS
To ensure the reliability of the empirical results, we changed
the measurement method of dependent variables and used
the total number of invention patent applications of all firms
in the clique within the lag observation period of 3 years
to measure the CIP [47]. As shown in Table 4, the robust
test results are basically consistent with the above results
(Table 3), which means the above results are robust.

V. DISCUSSION AND CONCLUSION
A. DISCUSSION
Based on the real data of China’s biomedical industry, the
impacts of TDF on CIP are explored. Specifically, in the
biomedical industry in China, when the intensity of TDF is
low, firms within the clique can conduct innovation activities
within their sub-cliques while maintaining good relations
with partners outside the sub-cliques. For this point, the coor-
dination of cliques is beneficial to their innovation perfor-
mance. On the other hand, when the intensity of TDF is high,
intra-clique firms can only limit their innovation activities
within sub-cliques. The relatively closed sub-cliques within a
clique are detrimental to the overall innovation performance
of the clique.

When choosing to participate in a clique, China’s biomed-
ical firms should take the clique’s innovation ability into
account and consider the technical similarity between them-
selves and their clique partners to achieve a harmonious
relationship with the clique members. It is not advisable to
simply pursue participating in a clique with strong innovation
capability. The lack of consideration of technology similarity
will often lead to rejection due to TDF, thus failing to solve
their innovation problems effectively and even resulting in a
decline in the innovation performance of the clique.

It is necessary to further explore the similarity problems
at the technical level of firms and carefully select appro-
priate clique partners for biomedical cliques, only through
which the TDF can be controlled. Based on the results of the
study, we found no moderating effect of GP on the inverted
U-shaped relationship between TDF and CIP. We believe
this is because the strong development of communication
industry and transportation industry has weakened the role of
geographical factors. If we choose to use data from 20 years
ago for our study, we believe that the role of GPwill be signif-
icant. If the intensity of the TDF within a formed clique is too
high, the network position of the clique should be considered,
and some effective strategies can be adopted. For example,
the cooperation and communication within the clique should
be guided to weaken the inter-group bias and the inhibitory
effect of the TDF on the CIP. Furthermore, cliques can absorb
firms in a relatively core position in the network. With the
help of these core firms, the network distance between clique
members and other members in the network can be shortened,
and the core position of clique members in the network can
be improved. Such a practice will compensate for the high-
intensity TDF within the clique and decrease its inhibitory
effect on the CIP.

FIGURE 6. Results of research hypotheses test.

B. CONCLUSIONS
Based on China’s Biomedical Industry Alliance data from
2010 to 2017, this paper explored the relationship between
the TDF and the CIP. Further, it analyzed the moderating
effect of GP and CC on the relationship. Our findings lead
us to conclude that there is an inverted U-shaped relationship
between the TDF and CIP. On this basis, the GP has no mod-
erating effect on the invertedU-shaped relationship, while CC
has a negative moderating effect on the inverted U-shaped
relationship (FIGURE 6).

C. CONTRIBUTIONS
Based on the above conclusions, this paper also makes some
contributions. Firstly, this paper sheds new light on the
research framework of fault theory in the inter-organizational
field. Existing studies on divisive faultlines mainly focus on
subgroups in technology innovation networks constructed
with patent co-applicants [18], [21]. As Cheng et al. proved
that there is a positive correlation between split fault lines and
the depth of knowledge search in technology innovation net-
works. Similarly, Yu et al. used a questionnaire to construct
a technological innovation network, and their study found
that faultlines partially mediated the relationship between
psychological distance and intra-subgroup reciprocity.
However, only a few works have been devoted to the relation-
ship between divisive faultlines and innovation performance
in the firm alliance innovation network. Our study examines
the nonlinear relationship between TDF and CIP, filling a
gap in the literature on innovation network fault theory, and
providing new insights into the development of cliques in the
biomedical industry.

Secondly, this study makes a major contribution to the
research framework of cliques in innovation networks. Some
studies focus on the individual innovation of clique mem-
bers from the individual perspective [26], [58]. For example,
Zhao et al. investigated the relationship between knowledge
and firm innovation within factions, and it was found that
there was an inverted U-shaped relationship between knowl-
edge diversity and firm innovation in their study. However,
the research on integral clique innovation has been a largely
underexplored domain. In this context, our study provides a
theoretical reference for the effective development of cliques
by probing into the CIP.
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Finally, geographical distance (GP) and network distance
(CC) are taken as moderating variables in this study, and
the mechanism of TDF within cliques on their innovation
performance under the moderating effects of two kinds of
distance are deeply revealed. It is beneficial to provide the-
oretical guidance for cliques’ governance and further expand
the study of fault theory on the innovation network.

According to Figure 4, the relationship between TDF and
CIP showed an inverted U-shaped curve under low CC, while
the relationship between TDF and CIP showed a U-shaped
curve under high CC. This proves again that H3: CC nega-
tively moderates the inverted U-shaped relationship between
the intensity of TDF and CIP. Negative moderation is not a
negative effect; the fact that a moderating variable displays a
negative moderating effect does not mean that it is harmful
to the dependent variable. In addition, an interesting finding
of this paper is that the innovation performance of cliques
under high CC is generally higher than that under low CC
(FIGURE 4), which provides a new perspective for the
study on the innovation network. At present, scholars in
related fields have generally agreed that when an indi-
vidual firm occupies an appropriate center position in the
network, it is conducive to improving its innovation perfor-
mance. But excessive closing to the center of the network
is detrimental to its innovation performance (mainly due
to information overload, relationship redundancy, excessive
homogeneity, etc.) [43], [44], [58]. Broekel and Boschma
suggested that a firm’s excessive embedding in innovation
networks may harm its innovation performance. Jiao et al.
found an inverted U-shaped relationship between the number
of a firm’s alliance partners and its innovation performance.
However, from the results, one can conclude that the feature
of over-embedding will be weakened once the firm partici-
pates in a clique, and striving for occupying a more central
position will help improve the innovation performance of
the clique. Therefore, firms that join a clique can abandon
the concerns of over-embedding to a considerable extent,
and the cliques can actively carry out alliance activities to
improve their network center position, which can promote
the optimization of CIP. That is, forming cliques could break
relational redundancy.

D. LIMITATIONS
There are some limitations in this paper. Firstly, the conclu-
sion of this paper is based on the data from China’s biomed-
ical industry. Whether it can be applied to other industries
such as the new energy industry, semiconductor industry,
and communication equipment industry needs further explo-
ration. Secondly, given that the paper is conceived in 2021,
and the control variable PA is measured by the number of
patents authorized within the five years before the formation
of the cliques and the dependent variable CIP is measured
by the number of patents applied in the third year after the
formation of the clique. In order to ensure the integrity of data
acquisition, the alliance data is selected from 2010 to 2017,

and the data from 2017 onwards will be followed up in
the future. Finally, this paper is based on the TDF, and the
positional divisive faultlines, organizational divisive fault-
lines and institutional divisive faultlines caused by other fac-
tors, such as the position, organization, and institution, need
to be further explored, which can become the future research
directions.

In addition, through literature review, we find that most
existing studies focus on individual innovation performance
and seldom consider the upstream and downstream relation-
ship between alliance members. However, the cost of inno-
vation is so high for individuals that they have to rely on
alliances. The innovation performance of an alliance is a vital
guarantee for the existence of the alliance and the sustainable
innovation of enterprises. Therefore, we call on scholars to
pay more attention to the overall innovation performance and
the upstream and downstream matching of members within
the alliance.
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