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ABSTRACT In this paper, a novel variable impedance control method is proposed in bilateral tele-operation
systems. Inspired by adaptability and stability of the human arm in unstructured environments, the varied
parameters of the impedance state for the operator’s arm are transferred to the slave robot to inherit the
compliance profile of the human arm in this paper. Firstly, the impedance state of the arm is classified
with the naïve Bayes classifier, based on the surface electromyogram signals measured by the MYO arm
band. Secondly, during teleoperation tasks, the operator can intuitively regulate the impedance of the arm
based on attributes of the remote environment with the help of a haptic device, and a variable impedance
control scheme is employed. The target impedance parameters of the impedance controller can change in real
time according to the received impedance information of the operator’s arm, so as to realize the simulation
of the compliance profile of the slave robot to the human arm, and make the system maintain different
compliance in different environments. The comparative experiments, with fixed impedance parameters and
variable impedance parameters, are carried out to verify the effectiveness and the feasibility of the proposed
method. The experimental results show that the method proposed in this paper has higher flexibility and
environmental adaptability than the fixed impedance teleoperation method.

INDEX TERMS Tele-operation, variable impedance control, stiffness estimation, surface electromyogram,
naïve Bayes classification.

I. INTRODUCTION
In tele-operations such as plant decommissioning, astrospace
exploration and remote surgery [1], the exchange between
position instructions from the master side and the haptic feed-
back from the slave side allows an operator to realistically
conduct complicated tasks through a slave robot in a remote
environment [2].

However, a force-reflecting tele-operation control approach,
which sends position instructions and receives haptic feed-
back from the slave side, cannot satisfy the compliance
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profile of the operator [3]. For the slave robot, the con-
ventional position or force control method cannot meet the
demands of robotics tasks in various unstructured environ-
ments in terms of safety and flexibility. Furthermore, it has
been discovered that motion stability of the human arm can
be achieved by suitably adjusting the mechanical impedance,
i.e., resistance to imposed motion, which is largely con-
tributed by the spring-damper-like property of human mus-
cles [2]. Hence, transferring the compliance profile of the
operator’s arm to the slave robot is a major concern in
tele-robotics systems [4].

It is unavoidable to contact remote objects on the slave side
of the tele-operation system. To guarantee safety and stability
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when the slave-side robot interacts with the environment,
impedance control, which can be described as a virtual mass-
spring-damper model, should be considered [5], [6], [7].
However, the compliant performance cannot be ensured
according to the impedance controller with fixed parame-
ters [8]. Furthermore, an unstructured environment makes the
performance even worse.

To enhance the capability of impedance control against
these uncertainties, Seraji et al. modified the reference tra-
jectory of the manipulator on the basis of stiffness esti-
mation of the environment [6]. Unfortunately, in practical
applications, exact values of stiffness of the environment
in real time cannot be easily obtained. For different tele-
operation tasks, the parameters of the impedance controller
should be dynamically adjusted according to the character-
istics of the external environment [9], [10], [11]. More nat-
urally, transferring a human operator’s compliance profile,
which includes mechanical impedance to the slave robot, has
attracted researchers’ attention recently [12]. The operator at
the master side can feel the contact force and trajectory of the
slave robot and intuitively adjust the muscular activities of
humans [13]. Once the compliance profile of the operator’s
arm changes, this profile is delivered to the impedance con-
troller of the slave robot. In addition to position instructions,
variable impedance control should be widely utilized for
improving the flexibility of slave robots while completing
tasks in unstructured environments [14].

To obtain the human intention force, the surface electro-
myogram (sEMG) is widely employed as a controller input
for robots, prosthetic devices and exoskeletons [15], [16].
Based on sEMG, impedance control in tele-operation was
introduced to transfer human variable stiffness to the slave
robot for more flexible operation [17]. Endpoint impedance
adjustments can be regarded as internal force regulations
exerted by groups of extensor and flexor muscles [18]. For
instance, simultaneous increasing tension of the flexor and
extensormusclesmodifies the impedance at the joint and end-
point levels of the human arm. The endpoint force fluctuation
and impedance adjustment of the human arm were related to
sEMG signals, which can be regarded as a linear mapping
model for the stiffness of the human arm. Several studies
have been conducted in recent years. M. Kim proposed a
new regression strategy to enable continuous and propor-
tional measurements and transmission of the grasping force
by using sEMG signals in transient and steady states [19].
R. Meattini targeted a solution that mimicked the human
ability to manage multi-finger grasping and finely modu-
lated grasp impedance through pattern recognition of sEMG
signals [20]. However, all these works lacked haptic feed-
back for the operator and reduced interaction safety and
transparency to some degree [21]. Only position feedback
is not sufficient for a tele-operated system to complete
complicated and flexible tasks. Hence, interactive forces
also need to be felt and regulated precisely in scenarios
where robots will inevitably contact the external environment
physically [22].

To estimate the compliance characteristics of the human
arm, numerous techniques have been utilized. Ajoudani
established a nonlinear model for muscular activities and
took advantage of a linearization method to map EMG sig-
nals to the endpoint impedance of the human arm [23].
Yang designed an interface to transfer human impedance
adaptive skill with sEMG signals, and achieved good perfor-
mance [13]. It is hard to build an accurate model for mapping.
Several regression algorithms have been researched [24] to
estimate optimal linear and nonlinear regression models with
artificial neural networks (ANN) [25], locally weighted pro-
jection regression (LWPR) [26], and other regression tech-
niques [27]. These regression techniques provide satisfac-
tory performance [19], and the estimated results of these
techniques are continuous. It may deteriorate the compliant
performance or even undermine system stability to simply use
this estimated stiffness as the property of the virtual spring
within the impedance model [28]. It is not practical to adjust
only one parameter to change the impedance characteristics
because the mass, damper and spring properties couple with
each other [29].

This problem can be transformed into a classification
problem, in which we can pre-tune the mass-damper-spring
parameters to guarantee the stability of the tele-operation
system. The naïve Bayes classification is a widely used tool
for machine learning tasks where features of datasets are
continuous [30]. There is no need to develop an accurate
mapping model between sEMG signals and stiffness with the
naïve Bayes classifier [31]. We also aim to improve the safety
and flexibility of slave robots in various environments and to
enhance tele-presence for operators. In our work, the slave
robot works with impedance control under varied parameters.

There are two main contributions in the paper, which are
listed as follows. Firstly, based on the sEMG signal, the
NB classifier is used to identify and classify the different
impedance states of the arm to visualize the arm strength.
This method does not need to establish a mathematical model
between the sEMG signal and the mechanical impedance,
which can reduce the problem of reduced identification accu-
racy caused by inaccuratemodel. Secondly, during the teleop-
eration task, the slave robot can actively adjust the parameters
of the impedance controller according to the impedance state
of the operator’s arm for different remote environments, so as
to realize the simulation of the compliance characteristics of
the robot to the arm, so that the slave robot can be externally
better environmental adaptability and flexibility.

The rest of this paper is structured as follows. Section II
presents the implementation of the proposed tele-operation
system. Section III describes the problems that need to be
addressed in this paper. An impedance control algorithm with
variable parameters is introduced in detail, and the stability of
the algorithm is demonstrated. In addition, the naive Bayes
classifier, including feature extraction of sEMG signals and
the design of the classifier, is introduced in this section. The
experimental setup and results for the fixed impedance and
the proposed variable impedance tele-operation system are
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introduced in section IV. Finally, section V addresses the
conclusions.

II. SYSTEM IMPLEMENTATION
In this section, the framework of the proposed tele-operation
system is explained. As shown in Figure 1, there are hap-
tic devices (Omega.6) and MYO armbands on the master
side, while a UR3 robot arm with an F/T sensor serves as
the slave manipulator. Omega.6 is employed as the master
device in this system. The position of the end effector of
Omega.6 can be read from the controller and converted into
(X, Y, Z) coordinates, which are expressed in metric units.
An MYO armband consists of 8 EMG electrodes that can
detect muscle bio-electricity with a default sampling fre-
quency of 200 Hz.

The human operator manipulates Omega.6 while sampling
its endpoint coordinate. The coordinate is mapped to the
workspace of the slave robot. The contact force between UR3
and the environment is detected by an F/T sensor. This signal
serves as an input of the impedance controller to obtain tra-
jectory deviations. Position instructions for the UR controller
can be obtained by combining the mapped coordinate and
trajectory deviation. Moreover, the operator can intuitively
regulate the arm impedance state based on haptic feedback in
the system. AnMYO armband that can measure the muscular
activities of the arm is worn on the operator’s forearm. The
impedance of the operator’s arm can be estimated from the
sEMG feature vector with the trained classifier. Furthermore,
this estimated compliance profile is transferred to the slave
robot to achieve more flexible and safer performance.

FIGURE 1. Tele-operation system with EMG-based human compliance
profile transfer for impedance control with varied parameters.

In addition, preliminary works that include workspace
mapping between Omega.6 and the UR3 robot, sample acqui-
sition and feature extraction of sEMG signals are discussed as
well.

A. WORKSPACE MAPPING
In contrast to Omega.6, which is based on parallel architec-
ture, UR3 is a serial robot, and it is necessary to transform the
coordinate system of the master device to the slave’s. We take
advantage of the linear transformation method summarized

in (1), which can map the master’s workspace to the slave’s. xsys
zs

 =
 kx 0 0

0 ky 0
0 0 kz

 xmym
zm

+
 bxby
bz

 (1)

where the subscript s represents the coordinates from the
slave robot, the subscript m denotes the coordinate of
the master device, k is the mapping coefficient and b denotes
the offset. The Monte Carlo method is utilized to generate
point clouds that contain every accessible cartesian position
of the endpoint of Omega.6 and UR3 within the angle limita-
tion of each joint [19]. After calculating the limit coordinate
values along the x-y-z axes for the master and slave, respec-
tively, parameters for workspace mapping are obtained as

diag
{
kx ky kz

}
= diag

{
3.94 2.25 3.31

}
diag

{
bx by bz

}
= diag

{
0.3165 0.35 0.3962

}
(2)

Figure 2 shows the point cloud of workspace mapping (the
red area is the workspace of the robot arm, and the blue area
is the workspace of Omega.6). What we desire is that the two
main workspace overlap with each other as much as possible
and that the slave’s workspace includes the master’s, which
can ensure that every position in the master’s workspace has
only one corresponding point in the slave’s workspace [32].

FIGURE 2. Workspace mapping.

B. DATA ACQUISITION
The relationship between the sEMG signals and the
impedance of the human arm is not linear [23], which means
it is not simple to develop a precise model to map the sEMG
signals of 8 channels to the impedance. However, with the
help of the machine learning method, it is not necessary to
build a mapping model. The relationship can be obtained by
the training set; furthermore, the impedance can be estimated
by the trained relationship. Hence, it is crucial to collect the
training set because it plays an important role in the classi-
fication performance. Figure 3 shows an image from the data
acquisition experiments.

Fe =
[
fx fy fz

]
An F/T sensor held in the hand of the human operator

measures the grasp force along the x, y, and z directions.
A pressure transducer is employed to measure the pressing
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FIGURE 3. Data acquisition experiments.

force Fk of the arm. Fe = [fx fy fz] and Fk are the most direc-
tive indicators of stiffness of the human arm [2]. Hence, the
label for one data sample can be obtained by the following:

ci = dλFe + δFke (3)

where ci is the classification label for one sample and
where λ and δ are weight factors.

C. FEATURE EXTRACTION OF sEMG SIGNALS
Since sEMG signals are significant, they can reveal the under-
lying patterns in impedance estimation. It is essential to filter
out irrelevant information in sEMG signals and extract the
keymessage for classification. The basic flow chart for sEMG
signal processing is shown in Figure 4.

FIGURE 4. sEMG signal processing.

The process based on the sEMG signal mainly includes
denoising of sEMG signals, feature extraction and classi-
fication. The sEMG signals provided by the MYO armband
have already been preprocessed with an algorithm embedded
in MYO. Therefore, this paper mainly focuses on feature
extraction, which is employed for impedance estimation of
the human arm. To recognize different states of impedance,
it is necessary to extract features of sEMG signals under
different impedance conditions. Classification mainly aims at
matching the extracted features of raw signals [33].

Several different types of features of sEMG signals are
used in this paper. They are listed as follows.

1) Absolute Mean Value (MAV): The MAV of sEMG
signals reflects the intensity of muscle movements and the
average intensity of the signals.

MAV =
1
N

N∑
i=1

|xi| (4)

2) Root Mean Square (RMS): The RMS feature reflects
a distribution of limb movement between muscles and the

muscle strength of each muscle group in the process of limb
movement.

RMS =

√√√√ 1
N

N∑
i=1

x2i (5)

3) Average Amplitude Change (AAC): The AAC reflects
the fluctuation of the signal and can characterize the intensity
of arm muscle activity

AAC =
1
N

N∑
i=1

|xi+1 − xi| (6)

Each group of sample data can be transformed into a
feature vector that consists of these three types of features
extracted from raw sEMG signals in 8 channels. Feature vec-
tors with a label are used to form the training set for training
the classifier. During the tele-operation tasks, sEMG signals
are sampled and transformed to a feature vector, which is used
for classification in real time.

III. CONTROL STRATEGY
A. IMPEDANCE CONTROL
The impedance model is written as follows [34]:

M (ẍ − ẍd )+ B(ẋ − ẋd )+ K (x − xd ) = F (7)

where M , B and K are inertia, damping and stiffness param-
eters of impedance control, respectively. x denotes the real
trajectory, and xd is the desired trajectory of the robot. Con-
sider M , B and K as variables based on the mechanical state
of the operators’ arm in this paper. Let 1x represent xd − x.
The impedance control in this paper was inspired by [35].
F denotes the real contact force. The impedance control law
is shown as

K (t) = (kpEf + kd Ėf + ki

∫ t

0
Ef (τ )dτ )x

−1
dc + k0

M (t)1ẍ + B (t)1ẋ + K (t)1x = F
xd = x0 − η1x

(8)

where k0 and x0 denote the modified stiffness and the initial
position for the tele-operation tasks, respectively. Ef is the
force tracking error, which is defined by Ef = Fref − F ,
where Fref is the reference force, and kp, kd , and ki are the
proportional, derivative and integral control gains, respec-
tively. η is the coefficient used to reflect that the trajectory
may change due to the unstructured environment.

The control law consists of variable parameters as well as
a reference position correction, and the target stiffness can be
adapted by a PID controller with the force tracking error [36].
Let the parameters in (8) be defined by the impedance state
of the operator’s arm. (7) becomes

M (t)1ẍ + B(t)1ẋ + k(t)1x = F

= Fref − (1+ kp)Ef − kd Ėf − ki

∫ t

0
Ef (τ )dτ (9)
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Since 1x = xd − x = x0 − η1x − x and the initial refer-
ence position x0 is constant, the first-order and second-order
derivatives of the trajectory correction are given by

1ẋ = −
ẋ

1+ η
and 1ẍ = −

ẍ
1+ η

(10)

Substituting (10) into (9) provides

M (t)ẍ + B(t)ẋ + k0x − k0x0 + (1+ η)Fref

= (1+ η)
{
(1+ kp)Ef + kd Ėf + ki

∫ t

0
Ef (τ )dτ

}
(11)

For simplicity, assume that the slave robot works in a
pure rigid environment, which means F can be expressed
by F = ke (x − xe), where ke takes different values at
different stages and indicates the unknown stiffness of the
environment; x and xe are the trajectories of the robot and
environment, respectively. As a result, the force tracking error
can be written as

Ef = Fref − F = Fref − ke (x − xe) (12)

Here, (12) implies that the real trajectory of the end effector
of the robot can be approximated by

x = xe +
Fref − Ef

ke
(13)

Note that the trajectory xe and stiffness ke of environment
are unknown and that xe is variable so that ẍe 6= 0 and ẋe 6= 0
Hence, we can obtain:

ẋ = ẋe +
Ḟref − Ėf

ke
and ẍ = ẍe +

F̈ref − Ëf
ke

(14)

Substitute (14) into (11), and consider δx, which denotes
the position tracking error of the inner-loop controller.

M (t)(ẍe +
F̈ref − Ëf

ke
+ δẍ)+ B(t)(ẋe +

Ḟref − Ėf
ke

+ δẋ)

+ k0(xe +
Fref − Ef

ke
+ δx) = (1+ η){(1+ kp)Ef

+ kd Ėf + ki

∫ t

0
Ef (τ )dτ } + k0x0 − (1− η)Fref (15)

Supposing that the first- and second-order derivatives of
the position error of the inner-loop controller are smaller
than those of the trajectory of the environment, define x̄e by
x̄e = xe + δx, which enables the controller to address
both the varying trajectory of the environment and the unde-
sired position tracking error simultaneously. Equation (15)
becomes (16) by substituting x̄e.

M (t) ¨̄xe + B(t) ˙̄xe + k0x̄e +
1
ke
[M (t)F̈ref + B(t)Ḟref

+ (k0 + ke + ηke)Fref ] =
1
ke
(M (t)Ëf + B(t)Ėf + k0Ef )

+ (1+ η){(1+ kp)Ef + kd Ėf + ki

∫ t

0
Ef (τ )dτ } + k0x0

(16)

Taking the Laplace transforms of the trajectory of the
environment, the position error, force tracking error, initial
reference trajectory and reference force can be rewritten as
L{x̄e}= Xe(s), L{Ef }= Ef (s), L{X0}= X0(s) and L{Fref }=
Fref (s), respectively. Equation (16) can be rewritten with the
Laplace form.

(Ms2 + Bs+ k0)Xe(s)+
1
ke
[Ms2 + Bs+ k0(k0 + ke

+ ηke)]Fref (s) =
1
ke
(Ms2 + Bs+ k0)Ef (s)

+ k0X0(s)+ (1+ η)(1+ kp + kd s+
ki
s
)Ef (s) (17)

Rearranging each term in (17), (18) is obtained.

Ef (s) =
kes(Ms2 + Bs+ k0)

λ(s)
Xe(s)

+
s[Ms2 + Bs+ (k0 + ke + ηke)]

λ(s)
Fref (s)

−
k0kes
λ(s)

X0(s) (18)

where λ(s) corresponds to the characteristic equation of the
transfer function and λ(s) = Ms3 + a0s2 + a1s + a2.
In addition, a0 = B+ke (1+η) kd , a1 = k0+ke (1+kp) (1+η),
a2 = ke (1 + η) ki. The block diagram of the impedance
control scheme is shown in Figure 5, where the real contact
force is obtained by an F/T sensor mounted at the endpoint
of UR3. Note that in the proposed impedance control scheme,
the reference trajectory and the inertia, damping and stiffness
parameters are simultaneously updated. These parameters
change based on the impedance state of the operator’s arm.

FIGURE 5. Block diagram of position-based impedance control.

B. STABILITY ANALYSIS
To analyse the stability condition for the proposed imped-
ance control scheme, the Routh-Hurwitz array is constructed
as follows.

s3 1 a1
s2 a0 a2
s1 (a0a1 − a2)/a0 0
s0 a2 0

In the Routh-Hurwitz array, a0 > 0, a2 > 0, and (a0a1 −
a2)/a0 > 0 should be satisfied to guarantee the stability
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of the proposed impedance control scheme. Noting that the
proportional, derivative and integral control gains kp, kd , and
ki as well as the trajectory modification gain η are all positive,
naturally the conditions αi > 0, i = 0, 1, 2 are ensured.
Hence, expanding a0a1 − a2 > 0, we have

a0a1 − a2 = (B+ ke(1+ η)kd )× (k0 + ke(1+ ke)(1+ η))

− ke(1+ η)ki > ke(1+ η)kd × ke(1+ kp)

× (1+ η)− ke(1+ η)ki = k2e (1+ η)
2

×{(1+ kp)kd −
ki

ke(1+ η)
} > 0 (19)

If the environmental trajectory is considered to satisfy the
unit step function, that is, Xe (s) = 1/s. Then for a fixed
reference force Fref (s) = Fref /s, the force tracking error of
the system in steady state Ef can be analyzed by the following
formula.

lim
t→∞

Ef = lim
s→∞

Ef (s) = lim
s→∞

s{
kes(Ms2 + Bs+ k0)

λ(s)
1
s

+
s[Ms2 + Bs+ (k0 + ke + ηke)]

λ(s)
Fref
s

−
k0kes
λ(s)

x0
s
} = 0 (20)

Based on the stability condition (19), six groups of param-
eters of M , B, k0 that guarantee system stability can be
tuned in advance. Different parameters would show different
compliance performance [37]. Equation (20) shows that the
proposed method can achieve that the force tracking error
will not change abruptly even if the environment changes
suddenly in the steady state. In addition, the parameters are
determined by the compliance profile of the operator’s arm.
Hence, the impedance control scheme enables the robot to be
adaptive to environmental changes in the steady state.

C. NAïVE BAYES CLASSIFICATION
The naive Bayes classifier is an efficient classifier in data
mining [30]. This useful classifier is widely used in many
applications, such as data stream classification. Naive Bayes
is a generative model-based classifier [30] with fast learning
and testing processes. Bayes’ theorem is given as (21).

p(c |y ) =
p(y, c)
p(y)

=
p(c)p(y |c )

p(y)
(21)

where c is the class label and y denote one sample. p(c) is
the prior probability, while p(y |c ) is the class-conditional
probability. There are N possible class labels for each sample,
and to minimize the overall conditional risk, we must select
the class label that can maximize the posteriori probability
p(c |y ). In such cases, our mission is to estimate human arm
impedance as accurately as possible based on sEMG signals
from eight tunnels. For every single sample y, the feature
vectors extracted from the raw sEMG signals are all continu-
ous; therefore, a Gaussian distribution should be applied as
the a priori probability for better classification performance.

The naïve Bayes classifier is a simplified version of Baye-
sian classifiers that uses two assumptions. The former is that

the attributes of each sample are conditionally independent,
and the latter is that there are no latent attribute effects on the
label prediction process [30].

The vector (y1, . . . , yn |c ) represents the n attributes of
sample x. In this work, there are eight sEMG channels,
and each channel has three attributes, so n = 24. The
class-conditional probability of x can be computed by (22)
and is supported by the above assumptions.

p(y1, . . . , yn |c ) =
n∏
i=1

p(yi |c ) (22)

To predict the class label of sample x, the probability of
sample x in each class label is computed. The class with
the maximum probability is identified as the class label of
sample y. Equation (23) defines the label estimation process
of sample x.

C(y)NB = argmax︸ ︷︷ ︸
c

p(c)
n∏
i=1

p(yi |c ) (23)

The Gaussian naïve Bayes classification is a special case
of the naïve Bayes method with an assumption of a Gaussian
distribution on attribute values. For example, suppose that
the ith attribute is continuous and that its mean value and
variance are represented byµc,i and σ 2

c,i, respectively. Hence,
the probability of observing the value yi in the ith attribute
with the class label c is computed by (24), which is also called
a normal distribution.

p(yi |c ) =
1√

2πσ 2
c,i

e
(−

(yi−µc,i)
2

2σ2c,i
)

(24)

where the mean value µc,i and variance σ 2
c,i are obtained

by (25). 
µ̂c =

1
|Dc|

∑
y∈Dc

y

σ̂ 2
c =

1
Dc

∑
y∈Dc

(y− µ̂c)(y− µ̂c)T
(25)

In this paper, we aim to complete multi-classification tasks
to estimate six different impedance states of the human arm.
The labels for these 6 classes are 0, 1, 2, 3, 4, 5, corresponding
to the increasing impedance of the human arm.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
The experimental setup is shown in Figure 6. TheUR3 robotic
arm is employed as a slave robot with a Robotiq F/T sensor
mounted at its end. Omega.6 serves as a haptic device on
the master side, and the operator wears a MYO armband
on the forearm that measures sEMG signals. The PC-side
software communicates with the UR3 controller via Ethernet,
and receives the sEMG signal measured by MYO via Blue-
tooth, which can display the operator’s arm impedance state
identification results and feedback information from the slave
in real time.
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FIGURE 6. Experimental environment setup.

B. EXPERIMENTS
To verify the effectiveness of transferring the compliance
profile of the human arm to the slave robot, a teleopera-
tion comparison experiment of fixed impedance and variable
impedance is carried out. The difference is that for different
remote environments, the parameters of the variable imped-
ance controller varywith the impedance state of the operator’s
arm, while the parameters of the fixed impedance controller
are unchanged. The impedance state of the operator’s arm is
sampled and estimated through the MYO armband worn on
the forearm.

In our experiments, six types of material with different
attributes are employed to simulate different working envi-
ronments for UR3. These materials include steel, rubber, hard
plastics, hard Styrofoam, soft Styrofoam and sponge. These
materials have different properties, especially in stiffness, and
they range from very hard to soft. The experimental environ-
ment with different contact materials is shown in Figure 7.

FIGURE 7. Different materials employed in experiments.

The motion trajectory of UR3 follows instructions from
Omega.6. Omega.6 is also capable of providing haptics based
on force feedback measured by an F/T sensor. UR3 interacts
with the outer environment, while the contact force and tra-
jectories of the endpoint are sent back to the master side. The
feedback force is not only the basis of haptic feedback for
the operator but also the input for the impedance controller.
Based on the contact force feedback fromUR3, the positional
deviation can be obtained by the position-based impedance
controller. Motion instructions that combine coordinates of

Omega.6 and the position deviation are transferred to the UR3
robot controller through TCP transport.

As mentioned in Section III, the classifier is capable of
distinguishing six impedance states of the operator’s arm.
Hence, at the pre-experiment stage, six groups of parameters
were tuned for the impedance controller. All these parame-
ters can guarantee the stability of the tele-operation system.
In addition, the impedance parameters are variable and range
between six groups of pre-tuned parameters in real time,
and different parameters can make the robot exhibit different
degrees of flexibility. The classification result determines
which group of parameters to be employed in the impedance
controller of the slave robot. For example, if the external
environment is extremely hard, a very small displacement
on the contact surface would produce a tremendous contact
force between the slave robot and environment. Under this
circumstance, it is necessary to instruct the robot to work
very delicately for safety. In contrast, if the environment
is very soft, the slave robot may need to work under very
high stiffness for better performance. In this work, classi-
fication results are labelled with 0, 1, 2, 3, 4, 5. As the
number increases, the parameters under a higher impedance
are chosen.

At the beginning of each experiment, UR3 is tele-operated
by the operator with Omega.6; hence, the trajectory of the
slave device almost coincides with the trajectory of themaster
device. Then, the operator tele-operates UR3 to contact the
environment gently. Once UR3 contacts the external environ-
ment, e.g., steel, rubber, hard plastics, hard Styrofoam, soft
Styrofoam and sponge, the contact force is no longer zero
and triggers the impedance controller. The controller outputs
position deviations that combine with the endpoint coordi-
nate of Omega.6 to provide motion instructions for UR3.
During the fixed impedance experiments, the parameters in
the impedance controller of the UR3 are all the same val-
ues in different remote environments. However, during the
variable impedance experiments, the operator can evaluate
the characteristics of the external environment and intuitively
regulate the impedance of his/her arm according to the force
feedback and position feedback of UR3. The impedance state
of the arm can be classified with the trained classifier based
on the sEMG signals measured by the MYO arm band. The
classification result determines which group of parameters
are employed in the impedance controller. Different classifi-
cation results in different environments are shown in Figure 8.

The force and trajectories at both the master side and the
slave side of fixed impedance and variable impedance are
recorded in Figure 9 and Figure 10. All experiments focused
on forces and trajectories along the z axis. In Figure 9 and
Figure 10, Fs denotes the contact force at the slave side, and
Fm is the force feedback at the master side. Zm denotes the
trajectory of the master device Omega.6 along the Z axis,
while Zs denotes the trajectory of UR3. Fm = 3Fs, where
3 is the force feedback coefficient. The specific position
deviations under impedance control with variable parameters
are also shown in TABLE 1.
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FIGURE 8. Classification results in different environments.

TABLE 1. Position deviations under impedance control.

FIGURE 9. Force and trajectories under fixed parameters.

C. DATA ANALYSIS
In the experiments above, observing the Figure 9 and Table 1,
it can be seen that the working performances of the UR3
with the fixed impedance method are almost the same

FIGURE 10. Force and trajectories under varied parameters.

regardless of the remote environment, and the corresponding
positional deviations are similar. Meanwhile, through analyz-
ing Figure 10 and Table 1, it can be seen that that the UR3
shows different flexibility for different remote environments
and the corresponding positional deviations are also different
under the variable impedance control method proposed in this
paper.

Specifically, for variable impedance teleoparation experi-
ments, if the environment is evaluated as a material with
high stiffness, e.g., steel or rubber, the operator relaxes
his/her muscles to make his/her arm fairly ‘‘soft’’. The
state of the arm is estimated as ‘‘0’’ or ‘‘1’’ by the clas-
sifier. This compliance profile is transferred to UR3. From
Figure 10 a), b), it is obvious that the contact force would
cause large deviation outputs in the impedance controller
because the slave robot shows flexible characteristics with
low stiffness. There are tremendous deviations between Zm
and Zs When Fs maintains 0, UR3 follows the instructions
from Omega.6. As the stiffness of the external environment
decreases, the impedance of UR3 is adjusted to be higher.
Additionally, deviations between Zm and Zs decrease. For
example, if UR3 interacts with quite soft materials, e.g., soft
Styrofoam or sponge (in Figure. 10 e), f)), the impedance
of the slave robot is rather high as if it is purely position-
controlled. The deviations between the master trajectory and
slave trajectory are quite small. Figure 10 c), d) shows the
performance in the environment of hard plastics and hard
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Styrofoam. It is obvious that the trajectory deviations are
smaller than those under steel or rubber. According to the
force and trajectories in different environments, the working
performance of tele-operated robots with variable impedance
control can be intuitively regulated by the operator. The
sEMG-based compliance profile of the human arm is trans-
ferred to the slave robot. In addition, all the chosen parameters
guarantee the stability and safety of the tele-operated system.
In short, the variable impedance control method proposed in
this paper has higher flexibility and environmental adaptabil-
ity than the fixed impedance method.

V. CONCLUSION
In this paper, a compliant control method with variable
parameters is proposed for the tele-operation system. With
the impedance state classification of the human arm and
impedance control with variable parameters for the slave
robot, the proposed method enables the slave robot to show
flexibility in an unstructured environment. The comparison
experiments of fixed impedance and variable impedance have
been carried out to verify the feasibility and effectiveness
of the proposed method. The results show that impedance
control with varied parameters shows better flexibility in an
unstructured environment than impedance control with fixed
parameters. Thus, it can be seen that the proposed varied
parameters control method enables the slave robot to shows
flexibility, and has the potential to complete complicated
tasks in an unstructured environment.

In future works, we plan to introduce neuroadaptive control
algorithms into the proposed method to obtain more detailed
model information and improve the accuracy of impedance
control. In addition, due to the close distance between master
and slave, the influence of bilateral delay on the system is not
considered in this paper. In the follow-up study, we plan to
focus on a predictive control scheme to deal with the bilateral
delay problem.
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