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ABSTRACT Medical image analysis is a critical job for clinicians and radiologists to attain minute insights
for proper diagnosis. The presence of complementary details of the region of interest (ROI) from multiple
medical imaging modalities instigates the researchers to integrate or combine the pathological details for
the ease of clinical diagnosis. In this paper, the objective is to obtain a comprehensive image that presents
composite image details from the two multimodal images of the same ROI. The basic idea is to generate
robust fusion weights in the form of individually weighted matrices that could potentially superintend the
fused outcome from the input image matrices. The extraction of texture features comes into play with the
employment of the fast gray level co-occurrence matrix-mean technique. The feature maps of the source
images are derived from the convolution layers on which the texture analysis is done to evaluate a weight
map. Linear weights-based spatial domain fusion is employed using the weight map. Post auditioning several
relevant fusion strategies and baseline hyper-parameter tuning, the obtained sets of outputs are validated via
objective analysis in terms of standard metrics and compared with other fusion methods.

INDEX TERMS Feature map, GLCM, medical image fusion, texture map, deep learning.

I. INTRODUCTION
Multimodal medical image fusion, being an auxiliary
approach, assists doctors to diagnose smoothly by leveraging
information enhancement from multiple imaging modalities.
The objective of image fusion is to integrate details from
different parent images of the ROI to derive a comprehen-
sive image that provides composite visual details from the
multimodal images [1], [2]. When compared with the parent
images, the visual information contained in the fused image
is found to be much more detailed. It has the capacity to
enhance the amount of visual information which will reduce
the redundancy of information present in two or more images.
Image fusion is predominantly employed in medical image
diagnosis, remote sensing, agriculture, surveillance, and
navigation.

The pathological analysis of ROI for disease diagnosis is
possible by inspecting multimodal medical images such as
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Computed Tomography (CT) image, Magnetic Resonance
Imaging (MRI), X-ray, Positron Emission of Tomography
(PET), and Single Photon Emission Computed Tomography
(SPECT) [3]. The fusion of CT and MRI presents anatomical
and functional information in the composite image that makes
the diagnosis less laborious for the clinicians. Image fusion
methods are classified into pixel level fusion, feature level
fusion, and decision level fusion [4]. In the first category,
we tend to process raw pixel values with the parent image
details and optimally retain a good chunk of original infor-
mation. The method of feature level fusion operates at the
point, angle, edge, texture, and other features extracted from
the source images. The decision level fusion is carried out on
the information extracted via low and mid-level image pro-
cessing. In decision level fusion, both redundancy and uncer-
tain information can be reduced while retaining the useful
information present in the source images to serve image anal-
ysis better. This paper focuses on obtaining a single image,
which presents better information by fusing two multimodal
medical images. Themedical modality known asMRI reveals
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the functional abnormalities of organs/tissues, whereas CT
exposes them on an anatomical level. Thus, for more detailing
in one go, the proposed image fusion technique stands apart
and can be performed in vivid variants.

The exploration of the robust capability of a Deep Learn-
ing (DL) network helps to extract informative features and
data representation. DL has been leading the state-of-the-
art results in several computer vision and image processing
operations [5]. The standard fusion practices follow step-wise
max fusion strategy to club individual fused feature maps
at the end. On the other hand, we are going with the for-
mation of individual textural matrices with the aid of fast
Gray Level Co-occurrence Matrix (GLCM)-mean technique
followed by the genesis of individual weight matrices con-
taining the fusion weights [6]. The feature maps of MRI and
CT are derived using two levels of convolution layers. The
average of feature maps is obtained concerning individual
modality and then the fast-GLCM is applied to extract the
texture feature maps of MRI and CT. Upon applying specific
criteria, a weight map is obtained from the two fast-GLCM
feature maps. This weight map is used to carry out spatial
domain fusion for the source images. The performance of
the proposed fusion method is compared with other fusion
methods using the standard fusion metrics.

This paper is organized into different sections explaining
the vivid angles of the proposition, starting with the literature
review. In the literature review, a study of multimodal image
fusion strategies using deep learning is conducted. Three
types of decision functions are presented in section 3. Upon
dataset acquisition, the intuitive interpretation is backed by
the implementation and the results are attested in Section 4.
This is followed by a conclusion in section 5.

A. LITERATURE SURVEY
Fayez and Sabine et al. proposed a novel image fusion model
which is based on the Visual Geometry Group (VGG)-19 and
softmax operator [7]. The proposed fusion model uses the
weighted fusion technique. VGG-19 is used to extract feature
maps from CT and MRI images, which are then processed by
the softmax operator to generate weights needed for weighted
fusion.

The most primitive setup with which we commenced our
fusion algorithm is the Zero Learning Medical Image Fusion
(ZLMIF) technique [7]. As discussed above, the fundamental
idea is to provide individual deep feature maps in terms of
numeric vectors as potential inputs to the softmax operator,
which then would convert them into a vector of probabilities.
The normalized numerics can be employed as fusion weights
for individual feature maps, respectively, which would give
rise to probable weight maps followed by clubbing them all
to attain a final fused image.

Zhang et al. published a method that revolves around the
proposition of a general fusion framework for varied forms of
datasets which include infrared and visible images, multifo-
cus images, MRI/CT images of the brain and multi-exposure
images [4]. They used different fusion strategies for each

type of input dataset. For performing a comprehensive fusion
of infrared, multifocus, and medical images, max fusion
is employed whereas for the multi-exposure images, mean
fusion is used.

Inspired by this framework which is solely based on
transform-domain image fusion algorithms, we moved ahead
with a convolutional neural network, which would consist of
feature extraction module, feature fusion module, and image
regeneration module [4].

Fu et al. proposed a fusion model that uses a rolling
guidance filter and VGG-16 convolutional network [8]. The
rolling guidance filter produces a base image and a detail
image. The convolutional neural network (CNN) produces
a perceptual image. MRI and CT images are given as input
to a rolling guidance filter and CNN to produce altogether
three pairs of images. Base images are fused by local energy
maximum fusion rule, detail images by local variance max
fusion rule and perceptual images using summodified Lapla-
cian maximum fusion rule. At last, all the three fused images
are bundled to get the final fused output.

Nishant et al. presented an unsupervised CNN model
for the fusion of high and low-frequency components of
MRI-PET source image pairs by exploiting structural simi-
larity index (SSIM) as the loss function during training [9].
The authors suggested an application of color coding to
visualize the outcome upon respective quantification of
each input image in terms of the partial derivatives of the
fused image.

Zhang et al. proposed a medical image fusion model that
is specifically based on DenseNet, which aspires for feature
reuse by interconnecting the features over channels. This
enables the algorithm to perform better than conventional
models with fewer parameters and calculation costs [10].
Nasrin and Ahmad proposed a method using VGG19, a pre-
trained network, for the fusion of MRI and PET scans. The
weights for the fusion were extracted from the features of
pretrained CNN layers [11].

B. DECISION FUNCTIONS
Based on the analysis of existing fusion methods, it is decided
to specifically focus on the fusion module of the architecture
and hence, went on to scrutinize the three different fusion
strategies. Their respective intuitions can be briefly illustrated
as follows:

1) GLCM ENERGY- BASED DECISION FUNCTION
The features are extracted from the source images using two
convolutional layers. The depth of the first convolution layer
is 64. Hence, 64 feature maps are generated for the MRI and
CT images. For each feature map, energy is evaluated. E i1
and E i2 are the energy of the feature maps, where ’i’ changes
from 1 to 64. The feature fusion is governed by the following
criteria.

• if E i1 > E i2
Append CT feature map
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else
Append MRI feature map

end

2) GLCM ENERGY AND CONTRAST-BASED DECISION
FUNCTION
For each feature map, energy and contract values are evalu-
ated. C i

1 and C i
2 are the contrast of the feature maps of CT

and MRI source images respectively. where ’i’ represents the
number of feature maps changing from 1 to 64. Similarly E i1
and E i2 are the energy of the feature maps. The fusion strategy
is presented as follows.

• Let a, b, c, and d be the variables initialized to zero. The
count of the variables will be increased according to the
stated criteria.

• if C i
1 > C i

2
a = a+1

else C i
1 < C i

2
b = b+1

end
if E i1 > E i2
c = c+1

else E i1 < E i2
d = d+1

end
• if (a− b) < (c− d)

if E i1 > E i2
Append CT feature map
else
Append MRI feature map
end

else if C i
1 > C i

2
Append CT feature map

else
Append MRI feature map

end
end

C. SSIM-BASED DECISION FUNCTION
SSIM is evaluated between the fused and ground truth
images, thus returning a numeric oscillating in the range
of 0 to 1. The score can be computed each time by tak-
ing a specific ground truth image as a reference image
and one of the medical modalities in the form of a fea-
ture map of the same scene as the processed image [12].
Thus, the basic idea is to exploit this concept to accumu-
late robust local feature maps with ground truth images.
The fusion decision function based on the SSIM score is
stated below

• if SSIM i
1 > SSIM i

2
Append CT feature map

else
Append MRI feature map

end

FIGURE 1. Block diagram of feature level fusion.

In the above-said decision functions for fusion, it is
observed that the feature map selection is carried out using
GLCM and SSIM. From the selected feature maps of the
source medical images, the fused image is reconstructed
using a reconstruction module. Lastly, we tried to explore the
technicalities in the regeneration phase of the setup, and as a
result, we moved to the FunFuseAn framework. The post fea-
ture extraction in which the fusion of high and low-frequency
components of MRI-CT grayscale image pairs can be done
separately by exploiting SSIM as the loss function during
training [8]. The idea of separately handling the frequency
components is executed to avoid loss as well as the mismatch
of information contained in the fused outcome.

II. PROPOSED METHODOLOGY
In the DL-based fusion networks, the features are extracted
by the convolution layers and fused using specific fusion
criteria, as shown in Fig. 1. Then, the reconstruction module
delivers the fused image from the fused features. In this paper,
we proposed a Texture aware Deep Feature map-based linear
weighted Image Fusion model (TDFIF). The model tends to
work in two primed phases, namely the training phase and
the fusion phase. Themedical imagingmodalities as potential
inputs are primarily fed into the proposed network followed
by the training procedure being done on it. In the fusion
phase, a single pair of MRI and CT images is given as input
to the trained model to get the fused output.

The basic idea is to generate robust fusion weights in the
form of a weight matrix that could potentially superintend the
fusion outcome upon encountering the input image matrices.
To be precise, three specific decision rules can be decided
based on the probable inequalities between the correspond-
ing pixels of two texture matrices. It is for the generation
of robust fusion weights in the form of individual weight
matrices. Finally, upon respective encounter with the input
image matrices followed by a linear weighted addition, the
final fused image can be obtained which might be potentially
vouched for its composite image details, unlike the source
images.

A. FEATURE EXTRACTION MODULE
In this module, there are two convolution layers; the first
convolution layer has a kernel of size 3 × 3 with one input
as well as 64 output channels, whereas the second layer
consists of a kernel of size 3 × 3 with both the input as
well as output channels having frequency 64. Moreover, the
padding and stride are fixed as unity to make sure that the
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FIGURE 2. Block diagram of a feature extraction module.

FIGURE 3. Block diagram of a training phase.

size of the feature map doesn’t slip. Upon feature extraction
of individual modalities, the obtained respective feature maps
are summed up independently to produce two summed-up
maps. The detailed block diagram of the feature extraction
module is shown in Fig. 2.

B. LOSS FUNCTION
The subjective analysis of the fusion outcome depends on
the local luminance, contrast, and structural properties of the
image. That’s the reason for considering SSIM [13] as a loss
function that is solely based on human perception. The fusion
method with loss function is presented in Fig. 3.

SSIM requires two images, a reference image and a pro-
cessed image, and returns a numeric oscillating in the range
of 0 to 1. The score can be computed each time by taking
a specific ground truth image as a reference image and one
of the medical modalities (in the form of a feature map)
of the same ROI as a processed image. The mathematical
interpretation for the same is mentioned below.

SSIM (I1, I2) =
1
N

∑
ik ,jkε

[l(ik , jk )]α · [c(ik , jk )]β · [s(ik , jk )]γ

(1)

Here, I1 and I2 are the two potential inputs (medical imag-
ing modalities), N is the number of local windows in I1 and
I2, ik and jk are k th local image contents of images, I1 and
I2, respectively. We have assumed the values of α, β and γ
as unity stating the clear message that all the three primed
properties, namely; structural, contrast, and luminance are
given the same weightage.

l(ik , jk ) =
2µikµjk + Cl
µ2
ikµ

2
jk + Cl

(2a)

c(ik , jk ) =
2σikσjk + Cc
σ 2
ikσ

2
jk + Cc

(2b)

s(ik , jk ) =
2σik jk + Cs
σik + σjk + Cs

(2c)

The above equations 2a, 2b, 2c describe the luminance,
contrast and structural properties of local image contents ik
and jk .µik andµjk are mean; σik and σjk are the standard devi-
ations of the image pixel values; σg is the standard deviation
of the Gaussian filter, and σik jk is the correlation coefficient.

The pixel loss, L2 which tends to preserve better lumi-
nance, is experimented in addition to SSIM The steerable
total loss function is expressed as:

Ltotal = λ ∗ LSSIM + (1− λ) ∗ L2 (3)

where,

LSSIM = (1− SSIM (I1,F))+ (1− SSIM (I2,F)) (4a)

L2 = ‖(F − I1)‖2 + ‖(F − I2)‖2 (4b)

where I1 and I2 are the two source images and F is the final
fused image.

C. FEATURE FUSION MODULE
After feature extraction from the individual modalities, the
obtained respective feature maps are summed up indepen-
dently to produce two summed-up maps. The feature map
sum is then divided by the number of feature maps to get a
feature map average Favg. Here, Fsum is the feature map sum,
Fi is ith feature map. The normalization of grey levels is done
to adjust the numeric in the feature map sum to a common
scale, without distorting differences in the range of values
and hence, we attain the average of all the feature maps as
depicted in the equations below.

Fsum =
64∑
i=1

Fi (5)

Favg = Fsum/64 (6)

Then, texture feature extraction is employed with the use
of fast GLCM-Mean technique assisted by pre-computed
numerical value in the form of Favg. In this way, the two
independent textural matrices for individual modalities are
obtained.

We have employed GLCM texture features based deci-
sion rule for the fusion of decided modalities [6]. Specif-
ically, we used the fast GLCM-Mean technique to extract
the second-order statistical texture features from the brain
image. The texture in an image is all about how one level
is co-occurring with the other. GLCM is a matrix contain-
ing all the probable frequencies of co-occurrences of each
neighbouring level. The numerics in the GLCM signify the
frequency of occurrences of a specific pair of pixels with
a particular value concerning a specific spatial relationship.
Preserving texture in the fused image obtained from the
source modalities is alarmingly essential in the case of medi-
cal image fusion, as texture details help in classifyingwhether
the image contains abnormalities or not. The equation for
calculating GLCM mean for k th local image content is

µk =

N−1∑
i=0

N−1∑
j=0

i · (Pk (i, j)) (7)
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FIGURE 4. Block diagram of feature fusion module.

where, µk is the GLCMmean of k th local image content, P is
the GLCMmatrix of k th image, and i being the reference pixel
value. Here, Pk (i, j) represents the probability of pixel value i
and j occurring side by side in the k th local image. A new
texture feature map is formed by assigning the numerical
value µk at the center of the local image window in the form
of TA : MRI and TB : CT .

The fused image is obtained through the weights that are
derived from the three fusion rules based on the probable
inequalities between the corresponding pixels of two textural
matrices. It is done for the generation of robust fusion weights
in the form of individual weight matrices.

WA(i, j) =


0 if TA(i, j) < TB(i, j)
0.5 if TA(i, j) = TB(i, j)
1 if TA(i, j) > TB(i, j)

WB(i, j) =


0 if TA(i, j) > TB(i, j)
0.5 if TA(i, j) = TB(i, j)
1 if TA(i, j) < TB(i, j)

where WA and WB are weight maps of MRI and CT respec-
tively. TA and TB are textural matrices of MRI and CT
respectively.

Finally, upon respective encounters with I1 and I2, the
source image matrices, followed by linear addition, the final
fused image matrix is attained, as mentioned in equation 8,
shown in Fig. 4 & Fig. 5. This output image seems to be a
potential candidate of possessing comprehensive richness for
pathological analysis.

Ffused = I1 ×WA + I2 ×WB (8)

III. RESULTS AND ANALYSIS
The performance of the proposed method is validated by
the set of images and analyzed with other fusion meth-
ods. Dense shift invariant transform (DSIFT), sparse rep-
resentation (SR) fusion, ZLMIF, image fusion framework
based on CNN (IFCNN) FunFuseAn, and VGG19 [7] are the
methods used for comparison. The first experiment among
the three experiments is about analyzing the fusion metrics
for the four image pairs in the dataset. The source image
pairs and fusion outputs are presented in Fig. 6, 7, 8 & 9.

FIGURE 5. Weight Calculation using GLCM feature maps of MRI and CT.
Where a and b are the mean values in the feature map according to the
pixel coordinates.

Algorithm 1 Fusion of Extracted Feature Map Average FA
and FB
Input Extracted mean feature maps FA and FB.
Steps
1) Extract GLCM mean feature map from FA and

FB. PA and PB are GLCM matrices of FA and FB
respectively.

TAk = µAk =
N−1∑
i=0

N−1∑
j=0

i · (PAk (i, j))

TBk = µBk =
N−1∑
i=0

N−1∑
j=0

i · (PBk (i, j))

2) Using the SSIM- based decision functions, generate
weight maps WA and WB

WA(i, j) =


0 if TA(i, j) < TB(i, j)
0.5 if TA(i, j) = TB(i, j)
1 if TA(i, j) > TB(i, j)

WB(i, j) =


0 if TA(i, j) > TB(i, j)
0.5 if TA(i, j) = TB(i, j)
1 if TA(i, j) < TB(i, j)

3) Generate fused image by multiplying WA and WB
with A and B and then adding the products, where
A and B are MRI and CT images respectively.

Ffused = A×WA + B×WB

The metrics used for performance analysis are quality met-
ric (Qmi) [6], [14], and feature mutual information (FMI)-
pixel [6], [14]. The second experiment is about edge preser-
vation analysis using detect correct similarity (DCS) [14]
metric, contrast based metric based on local similarity (QY ),
Contrast based quality metric(Qcb) [15], and SSIM [9]. The
proposed method is tested on all the image pairs and the
mean values of the standard metrics are evaluated in the
third experiment.
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FIGURE 6. 1st set of output for the fusion methods.

A. DATA ACQUISITION
A total of 268 pairs of MRI-CT human brain images are
acquired. The split-up is random and made in such a way that
204 pairs are devoted to the training phase and the remaining
64 image pairs are employed for checking the robustness of

FIGURE 7. 2nd set of output for the fusion methods.

the proposed fusion model. The Whole Brain Atlas, an open
resource for central nervous system imaging, has made the
MRI-CT images public for research purpose. Axial acquisi-
tion plane is used to prepare the dataset, and the acquisition
Type is two-dimensional. MRI-T1,MRI-T2, andMRI-PD are
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FIGURE 8. 3rd set of output for the fusion methods.

the MRI sequences that are solely considered for the training
purpose.

The images are registered brain images of different modal-
ities. In some cases, the multimodal brain images are offered
with fused ground truth images. The complete fusion dataset

FIGURE 9. Obtained 4th set of output for the fusion methods.

for multimodal images is not available, and hence the reg-
istered multimodal brain images are selectively taken with
appropriate preregistration. The 268 source image pairs are
obtained similarly. The fusion dataset derived from the web-
site is used for training and testing. The ground truth images
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are derived from the well-known fusion strategies and subse-
quently used for training and testing.

B. PERFORMANCE METRICS
The performance evaluation metrics adhere to the category
of non-reference-based metrics. Qmi and FMI-pixel deliver
the metric score based on mutual statistical information.
DCS metric tends to extract the edge similarity between
parent modalities and the fused outcome. SSIM and Qcb are
quality assessment metrics based on Human Visual System
(HVS), which employs structural similarity to compute the
metric score.We have chosen three deep learning-basedmod-
els, namely, ZLMIF, IFCNN, and FunfuseAn, for a relative
assessment report concerning our proposed framework.

1) QUALITY METRIC
Qmi is a qualitymeasurementmetric that evaluates the amount
of information transferred between the source images and
the fused image. H (I1), H (I2) and H (IF ) are the marginal
entropies of source images I1, I2, and fused image IF respec-
tively. H (I1, IF ) and H (I2, IF ) are the joint entropies.

Qmi = 2× [
MI (I1, IF )

H (I1)+ H (IF )
+

MI (I2, IF )
H (I2)+ H (IF )

] (9)

2) DETECT CORRECT SIMILARITY
It is the ratio of edge pixels present in both I1 & I2 and edge
pixels present in I1 but not in I2. DCS reveals the similarity
between two images based on edge pixels. Higher the value
of DCS, better the similarity between two images [16].

DCS =
Edge pixels present in both I1 and I2
Edge pixels present in I1 but not in I2

(10)

3) STRUCTURAL SIMILARITY INDEX
SSIM is a quality evaluation metric that considers contrast,
variance and luminance to measure the structural similar-
ity between images [17]. SSIM takes the values ranging
from 0 to 1. Values of SSIM close to 0 reveal less similarity
whereas values close to 1 reveal the high similarity between
the images.

4) QUALITY METRIC BASED ON LOCAL SIMILARITY
QY is a metric that employs local structural similarity
between source images as a measure. The local struc-
tural similarities of a window w are calculated which are
SSIM(x, yw),SSIM(x, fw) and SSIM(y, fw) where x and y are
source images and f is fused image.

Q(Iw1 , I
w
2 , I

w
F ) =



λ(w)× SSIM (I1, IwF )
+(1− λ(w)) SSIM(I2, IwF )

for SSIM(I1, Iw2 ) > 0.75
max{SSIM(I1, IwF ),SSIM(I2, IwF }
for SSIM(I1, Iw2 ) < 0.75

where, λ(w) =
s(Iw1 )

s(Iw1 )+ s(I
w
2 )

is the local weight

s(Iw1 ) and s(I
w
2 ) are local variances of window w.

5) FEATURE MUTUAL INFORMATION
FMI_Pixel is mutual information-basedmetric that calculates
the mutual information and entropies regionally.

I (x, y) =
∑
xy

p(x, y)
p(x, y)

p(x) · p(y)

FMIABF =
1
n

n∑
i=1

(
Ii(CT ;F)

Hi(CT )+ Hi(F)
+

Ii(MRI ;F)
Hi(MRI )+ Hi(F)

)
where Hi(CT ), Hi(MRI ), and Hi(F) are the entropies evalu-
ated locally of the source images CT,MRI, and fused image
F respectively. p(x, y) is the joint probability distribution of
random variables x and y. p(x) and p(y) are probability distri-
bution functions of random variables x and y respectively. Ii
is mutual information. n is the number of local regions.

6) CONTRAST- BASED QUALITY METRIC
Qcb employs the major features in the human visual system
model which is a perceptual quality measure. It uses the
contrast sensitivity function to describe human sensitivity to
contrast.

QAF (x, y) =


C ′A(x, y)
C ′F (x, y)

if C ′A(x, y) < C ′F

C ′F (x, y)
C ′A(x, y)

otherwise.

λA(x, y) =
C2
A(x, y)

C2
A(x, y)+ C

2
B(x, y)

.

Qcb(x, y) = λA(x, y)QAF (x, y)+ λB(x, y)QBF (x, y)

where CA, CB, and CF are contrast maps of source images
A,B, and fused image F respectively.

C. FUSION PERFORMANCE ANALYSIS
The fusion methods are employed on the four sets of source
image pairs and the metrics are presented below.

1) MUTUAL INFORMATION-BASED METRICS
It is observed from the metrics that the TDFIF delivers good
information transfer from the source images to the fused
image. This could be observed by analyzing Qmi. The TDFIF
delivers superior results compared to all other methods. This
metric is evaluated considering a complete source and fused
images. But, FMI−pixel is the metric evaluated based on the
mutual information of local regions. Due to the contributions
of the few local regions, the average information is high
for the other methods. The performance of the proposed
method for all the image pairs in the dataset is presented
in Table 1 & 2.

D. QUALITATIVE PERFORMANCE ASSESSMENT
The qualitative performance analysis of TDFIF is carried out
using edge preservation, contrast, variance, and the structural
similarity between the fused image and source images.
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TABLE 1. Performance analysis: Qmi for the four sets of source images.

TABLE 2. Performance analysis: FMI − pixel for the four sets of source
images.

TABLE 3. Performance analysis: DCS for the four sets of source images.

1) EDGE PRESERVATION ANALYSIS
The edge preservation capability of the proposed method
is analyzed by DCS using two edge operators. The edge
similarity is evaluated and the mean value is observed for
analysis [16]. The DCS metric for four sets of images is
presented in Table 3. It could be observed from the tabulated
values that the proposed method preserves edges better than
deep learning-based fusion methods. The other two methods,
DSIFT and SR fusion, perform better than TDFIF.

2) CONTRAST AND VARIANCE BASED ANALYSIS
QY is the local structural similarity measure using SSIM. The
proposed method delivers good local similarity for the two
sets of image and performs moderately well for the other
two image pairs as presented in Table 4. Qcb is the con-
trast sensitivity-based metric in which DSIFT tops the per-
formance metrics. Whereas, the proposed method performs
moderatelywell among theDL-basedmethods. FromTable 5,
it could be observed that similar performance is reflected in
DCS. SSIM is another qualitative metric that analyzes the
structural similarity between the source and fused images
considering contract, variance, and illumination. The evalu-
ated values are presented in Table 6. The SSIM values of the
proposedmethod are better compared to other fusionmethods
taken for analysis except for VGG19 based fusion method.

E. DEPICTION OF RELATIVE ASSESSMENT OF FUSION
METHODS
The analysis of metrics among the DL-based methods leads
to ranking the performance. The TDFIF method tops the

TABLE 4. Performance analysis: QY for the four sets of source images.

TABLE 5. Performance analysis: Qcb for the four sets of source images.

TABLE 6. Performance analysis: SSIM for the four sets of source images.

ranking, as shown in Fig. 10, as the performance is good in
Qmi,QY and SSIM . Compared to other DL-basedmethods, its
performance is moderately good in other metrics. The output
images of the proposed method are subjectively superior
compared to other fusion methods.

F. ANALYSIS OF SEGMENTED ROI AFTER FUSION
The impact of fusion in segmentation is analyzed by segment-
ing the source and fused images using fuzzy C-Means (FCM)
clustering algorithm. The images are segmented into five
clusters, then the segmented regions are presented in Fig. 11.
It could be observed that the details present in the source
images are fused and presented in the segmented region of
the fused image. This would help in analyzing the ROI from
the single fused image.

G. FEASIBILITY AND FUTURE SCOPE
To throw light on the future scope of the existing proposition,
one could ponder over strengthening the primed modules,
specifically, feature fusion as well as feature regeneration.
The former could be strengthened upon the employment
of unique fusion strategies which could potentially impact
the fused outcome. Moreover, one could also look for vivid
classifiers apart from the concept of decision mapping which
could potentially assist the process efficiently. Now, for
strengthening the latter module, one could go for the in-detail
examination of the regeneration layers to interpret the hap-
penings within the FC phase of the network. The feature
maps’ comprehensive visualization would do in this case.
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FIGURE 10. Relative Assessment of fusion models (Model Vs Relative
Ranking) *Lower the rank better the Model.

FIGURE 11. Impact of fusion in Segmentation (a-c) Set1, (d-f) Set2
(g-i) Set3 (j-l) Set4.

One could opt for making this module insignificant by
vouching for weighted fusion as it eliminates the anticipated
biases. Apart from strengthening the individual modules, one
could try for baseline hyper-parameter tuning and robust
training approaches (with the use of appropriate loss function,
enhancing the frequency of the inputs via data augmentation,
etc), multi-modal inputs such as PET, SPECT, etc apart from
the standard medical imaging modalities, etc. Thus, the exist-
ing proposition can be potentially corroborated as robustly
feasible as well as scalable from the technical stand-point as
depicted in Tables 1 - 6.

TABLE 7. Mean metric values calculated over the entire dataset.

H. FUSION PERFORMANCE ON THE DATASET
The proposed TDFIF method is tested on all the image pairs
in the dataset and the mean of metrics is presented in Table 7.
It is observed that the qualitative and quantitative perfor-
mances are moderately good for the proposed method.

IV. CONCLUSION
Multimodal fusion plays a vital role in combining com-
plementary image details, thus eliminating the redundancy
present among the multiple medical images of the same ROI.
This paper evaluates statistical parameters from the GLCM
matrices of the feature maps. The feature maps are derived
from the source images using two sets of convolution layers.
The decision function-based weights are derived from the
GLCM matrix of the feature maps. It could be observed that
the proposed TDFIF with SSIM-based decision function can
deliver good fusion results subjectively. The performance is
evaluated by the standard fusion metrics and also compared
with other fusion algorithms. The objective evaluation is also
good compared to other fusion methods.
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