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ABSTRACT 360◦ images are informative – it contains omnidirectional visual information around the
camera. However, the areas that cover a 360◦ image is much larger than the human’s field of view, therefore
important information in different view directions is easily overlooked. To tackle this issue, we propose
a method for predicting the optimal set of Region of Interest (RoI) from a single 360◦ image using the
visual saliency as a clue. To deal with the scarce, strongly biased training data of existing single 360◦ image
saliency prediction dataset, we also propose a data augmentation method based on the spherical random data
rotation. From the predicted saliency map and redundant candidate regions, we obtain the optimal set of
RoIs considering both the saliency within a region and the Interaction-Over-Union (IoU) between regions.
We conduct the subjective evaluation to show that the proposed method can select regions that properly
summarize the input 360◦ image.

INDEX TERMS 360◦ image, saliency, region of interest, virtual reality technology, data augmentation.

I. INTRODUCTION
In recent years, 360◦ images and videos have attracted signifi-
cant attention owing to their advantage in terms of their omni-
directional information over the perspective images whose
typical field of view (FoV) is less than 65◦ (i.e., normal field-
of-view (NFoV) [1]). However, the human vision system
does not have such a large FoV and achieving an efficient
way of viewing the 360◦ image is an important problem
in preventing important information in an 360◦ image from
being overlooked.

To tackle this problem, one effective solution is to summa-
rize the entire 360◦ image into a set of Region of Interest (RoI)
and present them to the viewer when browsing 360◦ images
or videos [1], [2]. In our context, RoI is defined as the
local region of a small FoV that might draw the attention
of the viewer, and is expected to represent the important
information in the input 360◦ image or video. In the early
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work by Su et al. [1], which first attempted to extract an RoI
from a 360◦ video, it was assumed there was only a single
RoI in each frame, which can be problematic when multiple
important items are observed at the same time. In addition, the
input must have multiple frames from a 360◦ video because
it utilizes temporal information to decide which view is good
to crop. To tackle this issue, Xiong et al. [2] have recently
proposed a method for extracting multiple RoIs from a single
360◦ image by projecting the 360◦ image onto a unit cube
and optimizing the rotation of the cube such that the extracted
RoIs are placed at the centers of its faces. Although it allows
multiple RoIs from a single image, the FoV covered by each
face of the cube (i.e., 90◦ ) is larger than human’s FoV and
the number (i.e., six) and relative positions of the RoIs (i.e.,
two different faces of cubes) are always fixed. Therefore,
it is highly likely that the extracted RoIs will be either of
redundant or scarce.

To properly support a more effective 360◦ image browsing,
we propose a method that takes a single 360◦ image as input
and outputs the fixed number of RoIs whose positions, and
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FIGURE 1. The task proposed in this study. Detecting the Region of
Interest on the right from the 360◦ ERP image on the left.

corresponding FoVs are adaptively selected. To the best of
our knowledge, this is the first attempt to predict multiple
NFoV RoIs from a single 360-degree image without con-
straining their sizes and positions.

Example results are illustrated in Fig. 1. In this exam-
ple, we extracted five RoIs of varying size from the input
360◦ image in ERP (EquiRectangular Projection) format. Our
method firstly divides the input ERP image into multiple
overlapping candidate rectangular regions through Selective
Search [3] and find the optimal fixed-sized (i.e., five in this
example) subset by optimizing our new evaluation function,
namely, Salient-IoU, which considers the saliency values
within each region and the IoU which measures the overlap
between two regions. Saliency [4] is a quantitative measure
of attracting human visual attention and has been used in
image recognition, object detection, robotics, and advertising
design. In our framework, the accurate prediction of saliency
values is a critical component. The prediction of saliency
originated from Itti et al.’s method [5], which was the first to
introduce a bottom-up model of human visual attention, and
in recent years, deep neural network models based on gaze
information have become mainstream [6]. However, existing
saliency map (a 2-D image that contains the saliency value
at each pixel) prediction is mainly for perspective projection
cameras, and the performance for 360◦ images is fairly lim-
ited [7], [8], [9], [10]. To overcome this limitation, we propose
a simple but effective new data augmentation method using a
random rotation on a unit sphere which deals with the scarce,
strongly biased training data of existing single 360◦ image
saliency prediction dataset [11], [12].

Owing to a lack of existing research on the multiple RoI
extraction from a single 360◦ image for the summarization
purpose, we evaluate our method based on the user study
on Amazon Mechanical Turk [13] and show that our results
match the human’s intuition.

A summary of our contributions is as follows:
• To the best of our knowledge, this is the first work that
predicts multiple RoIs from a single 360-degree image
without constraining the size and position of the RoIs.

• We present the simple but effective data augmenta-
tion strategy for improving single 360◦ image saliency

prediction bywhich our saliency prediction significantly
outperforms the state of the art.

• We conducted a user evaluation on the Amazon
Mechanical Turk to illustrate the performance of our RoI
prediction.

II. RELATED WORKS
A. 360◦ INFORMATION SUMMARIZATION
It is an important task to efficiently present 360◦ images/
videos to the limited human’s view. However, as already
mentioned, there is no prior work which predicted multiple
RoIs from a single 360◦ image, to the best of knowledge.
On the other hand, the summarization of 360◦ video had
been an active topic that is to present the most important
view direction at each frame. For instance, Su et al. [1]
proposed an optimization-based algorithm to find a path
over the spatio-temporal glimpses that maximize the accu-
mulated capture-worthiness score while obeying a smooth
camera motion constraint. This work was later extended
to allow more general camera control such as zoom-
ing [14]. Benefiting from deep-learning-based object detec-
tion methods, Deep 360 Pilot [15] presented an object-centric
deep-learning-based agent for piloting through 360◦ sports
videos automatically. While typical 360◦ video summarizing
task targets to find the optimal spatial camera trajectories,
Lee et al. [16] also addressed story-based temporal summa-
rization by leveraging the memory networks.

Recently, Wang et al. [17] have presented Transition-
ing360, a tool for 360◦ video navigation on 2-D displays by
transitioning between multiple NFoV views that track poten-
tially interesting targets or events. They combined saliency
map, optical flow and object instances computed from the
input 360◦ video and optimized the virtual NFoV paths based
on both contents and temporal smoothness. While this work
also uses the saliency information to detect important regions
in 360◦ video and presented viewersmultiple RoIs at the same
time, the predicted RoIs are basically object centric, which
relies on the specific object categories and more importantly
this method cannot be applied to a single frame. On the other
hand, our method introduces Selective Search [3] to find
perceptually important, non-object-centric candidate regions
and is completely applicable to a single 360◦ image.

B. SALIENCY MAP PREDICTION FROM 360◦ IMAGE
In contrast to the saliency map prediction on normal perspec-
tive images, estimating the saliency map of a 360◦ image in
ERP format is more challenging due to distortions caused by
projection from a sphere to a plane.

Traditionally, the existing bottom-up model of human
visual attention [5] was extended to 360◦ images in ERP
format and the saliency map was predicted based on that
model [18]. However themethod that only considers low level
visual features limits its prediction accuracy.

The data-driven, image-based saliency detection was
made possible by the advent of public data sets. The
first moderate-scale public datasets of 360◦ images with
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FIGURE 2. A framework for detecting multiple Region of Interest from a single360◦ image.

associated eye and head movement data had been presented
byRai et al. [19]which consists of sixty different 360◦ images
and gaze information by at least 40 observers. This dataset
was later followed up by Erwan et al. [20] to extend it to
360◦ videos. Using these dataset, Monroy et al. [9] presented
the first data-driven saliency map prediction method which
takes a 360◦ image as input and splits it into six patches to be
fed to convolutional neural networks (CNN). Chen et al. [21]
presented a spatio-temporal nework to predict 360◦ video
saliency with cube-padding technique to avoid the sphere-
to-plane distortion problem. Zhang et al. [22] presented the
360◦ video saliency detection by a spherical convolution neu-
ral network trained on 104 360◦ videos viewed by 27 human
subjects. Chao et al. [7] extended the perspective saliency
prediction model trained with adversarial examples [23]
to 360◦ images and won Salient360! Grand Challenges at
ICME’18 in the task of prediction of head and eye saliency,
and this method became a touchstone in the domain of the
360◦ image saliency map prediction.

There are two most recent works leveraging state-of-the-
art deep learning techniques. Haoran et al. [10] presented
the 360◦ saliency detection algorithm based on the graph
convolutional neural networks. Specifically, a spherical graph
signal was constructed from a ERP image and saliency map
was generated from the spherical features on the graph. Mar-
tin et al. [8] leveraged 360◦-aware convolutions that represent
kernels as patches tangent to the sphere where the panorama
is projected, and a spherical loss function that penalizes
prediction errors for each pixel depending on its coordinates
in a gnomonic projection.

One of the remaining challenges is the limited amount of
data compared to perspective images. In particular, data diver-
sity is an important issue, and is also a cause of strong center
bias, where the salient region is concentrated on the equator.

FIGURE 3. Examples of random rotation data augmentation.

However, no clear solution to this problem has been pro-
posed yet, even with the state-of-the-art methods described
above [7], [8]. In this work, we show through experiments that
this can be addressed by the data augmentation by rotating
the ERP image in spherical coordinates added on top of the
existing architecture [8].

III. PROPOSED METHOD
An overview of the proposed method is illustrated in Fig. 2.
Given a single 360◦ image in ERP as input, the proposed
method (1) predicts a saliency map using prior baseline net-
works [8] trained using our data augmentation technique by
spherical random rotations, (2) extracts RoI candidates based
on Selective Search [3], and (3) optimizes a set of RoIs based
on our Salient-IoU evaluation score.

A. SALIENCY MAP PREDICTION USING SPHERICAL
RANDOM ROTATION AUGMENTATION
Based on its definition, the RoIs draw more attention from
human viewers than other regions in the same image – RoIs
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can be considered as the region of local maximum saliency.
As introduced in Section II-B, there are a few deep neu-
ral network models for this task but trained on mid-scale
datasets [12], [19] which contain less than two hundred
pairs of a 360◦ image and a corresponding gaze information
where most salient regions are concentrated near the equator.
Näively training a network on this training data inevitably
results in this strong center bias and makes it difficult to
extract RoIs apart from the equator.

To tackle both the problems of scarce of data and the
strong center bias, we propose a simple but effective spherical
data augmentation strategy. As illustrated in Fig. 3, given a
pair of 360◦ images and gaze maps in ERP format, we first
back-project ERP images onto the unit sphere, then apply
random rotation, and project them back onto the ERP coor-
dinates. In this random rotation, the image with its paired
saliency map on sphere is randomly rotated around three
axes individually: θ ∈ [−π, π] around the gravity direction,
φ ∈ [−π2 ,

π
2 ] around the grazing axis, and ψ ∈ [−π, π]

around the axis perpendicular to both rotation axes. After
the rotation, the salient region around the equator moves
away from the equator; therefore, the strong center bias is
removed. In our experiments, wewill show that simply apply-
ing the proposed method to the state-of-the-art single image
360◦ saliency prediction model by Martin et al. [8] dramat-
ically improves the prediction accuracy even with mid-scale
training examples.

B. RoI EXTRACTION THROUGH SALIENT-IoU
OPTIMIZATION
The goal of our framework is to extract a predefined number
of RoIs (e.g., n = 5 in this study) as distinctively salient
regions in the input 360◦ image. However, most pixels in the
predicted saliency map contain non-smooth, non-zero entries
and simply thresholding the saliency values will result in the
generation of a number of isolated regions. Another possible
strategy can be to first apply an object detection algorithm
(e.g., [24]) to the input image and simply take top-n objects
with the highest saliency values (i.e., salient object detection).
Nevertheless, this simple strategy cannot extract an RoI that
includes multiple objects, and more importantly, the result
is restricted to specific recognizable categories of objects.
Instead, we take a two-step approach, which is composed
of the extraction of candidate regions that are perceptually
important and the optimization of selection of subset of RoIs
that satisfy our criteria.

In the first step, we apply Selective Search [3] algorithm to
the input 360◦ image to extract the candidate regions. Selec-
tive Search, which is used for producing object proposals in
the early time of object detection algorithms [24], greedily
merges superpixels based on low-level features such as the
color, texture, size, and fitness to extract perceptually coher-
ent regions. Selective Search is a purely bottom-up approach
that works for various scenes, unlike recent top-down region
proposal neural networks [25] which prefer regions around
specific recognizable categories of objects. The output of the

FIGURE 4. Top row: Inputs for the RoI extraction. Bottom row:Before and
after thresholding output regions of Selective Search in NFoV=65◦.

Selective Search is illustrated in Fig. 4. The resultant region
proposals are overlapping rectangles of various sizes dis-
tributed over an entire image. Because we assume that RoIs
whose corresponding FoV is smaller than NFoV, we exclude
regions where the latitude or longitude FoV is larger than
NFoV (i.e., 65◦) from the result of Selective Search.
Using the predicted saliency map, our task is then to find

the optimal subset of the candidate regions that maximally
summarizes the entire 360◦ image in a perceptually plausible
manner. This is a non-trivial problem because if we only use
top-n regions of the average or summation of the saliency
values, a number of overlapping regions will be extracted
around the most salient area in the entire image. It is not
necessarily desirable to extract regions only around the most
salient area because the other important areas are most likely
to be overlooked. Assume we want to extract n RoI regions,
it is desirable that they are different top-n salient regions from
different parts of the image.

Then, we propose to extract of multiple saliency regions
with a certain size that have less overlap with each other.
Specifically, we minimize the cost function, namely Salient-
IoU (γ ) which evaluates a subset of n regions (S) from a set
of all candidate regions (R) generated by Selective Search.
SIoU considers both the sum of the saliency of the region and
the overlap between the regions and gives a smaller value to
a subset that is considered to be better as follows:

γ (S) =
a
n

n∑
i=1

1
g(Ii)
+ (1− a)

1

nC2

∑
i,j∈[1,n],i6=j

IoU(Ii, Ij), (1)

where Ik∈[1,n] ∈ S is the region included in S, and g(Ik )
is the sum of the predicted saliency values in the region.
Owing to the projection distortion of the ERP format, the
local summation of saliency values is overestimated in high-
latitude regions. Therefore, we multiply w = cos λ using the
predicted saliency map, where λ is the latitude λ ∈ [−π2 ,

π
2 ]

used to maintain a constant pixel density on a surface of a
unit sphere as presented in [26]. The weighted saliency map
is then `2-normalized such that the summation of all saliency
values become one. IoU (Ii, Ij) is the Intersection-Over-Union
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FIGURE 5. An example of 360◦ image viewer with the RoIs.

(IoU) [24], which becomes one when two regions are com-
pletely overlapped and zero when they are not, and a is the
balancing weight (a ∈ [0, 1]) which controls the contribution
of the saliency and the IoU. When a is close to 1, regions
of higher saliency are preferred, and when a is close to zero,
overlapping regions are less.

The algorithm used to find the optimal set of RoIs based
on Salient-IoU minimization is as follows: Given a collection
of regions (R) from Selective Search which was filtered out
by their FoV, the region subset S is initialized with the top n
candidate regions that have the highest total saliency values.
and the elements in S are removed from R. We then greedily
replace one region in S with another region in R, which
has the highest total saliency values in R, one by one, and
compare values of SIoU before and after the replacement.
If the value of SIoU gets smaller after the replacement, S
and R are updated – the replacement is accepted and the
element is removed from R. In the implementation, S is an
array which consists of n regions. With the element of index
from zero to n − 1 in S, replacement, calculation of SIoU
values, and comparison are executed with the current target
element which has the highest total saliency values in R. If the
all possible replacements between each element in S and the
current target element in R are rejected, the current target
element in R is removed from R. Next, the region with the
highest total saliency value in R becomes the current target.
This operation is repeated until there are no more candidates
in R, and the final S is the optimal RoI set.

C. 360◦ IMAGE VIEWER WITH EXTRACTED RoIs
The extracted RoIs can be directly overlaid to the input
360◦ image, however there should be more effective way
to display summarized information to a viewer. For exam-
ple, by applying the proposed method to each frame of a
360◦ video, we can efficiently extract RoIs that changes in
time series to the observer. While this is out of the main scope
of this paper, we designed amock-up GUI and displayed RoIs
extracted from the video frames to the observer as shown
in Fig. 5. We empirically confirmed that the proposed GUI
can efficiently teach viewers what important items and events
exist outside viewer’s field of view. The better GUI design
based on our RoI extractionmethod is left for our future work.

IV. EXPERIMENTAL RESULTS
We conducted two main experiments to demonstrate the
effectiveness of our proposed method. First, we evaluated
our spherical random rotation augmentation for better train-
ing of the baseline saliency prediction network. Second,

we conducted a user study to evaluate the cognitive appro-
priateness of obtained RoIs.

A. QUANTITATIVE EVALUATION OF SALIENCY MAP
PREDICTION
Dataset details: We used Salient360! [11], [12] dataset for
the saliency prediction network training and the evaluation.
It contains 85 ERP images and corresponding ground truth
saliency maps obtained using the eye tracker. We split entire
pairs of 360◦ image and saliency map into 78 for training and
seven (i.e., P91, P93-P98) for the test.
Evaluation metrics: We used six evaluation metrics listed
below – five of them were used in the Grand Chal-
lenge of ICME’17 and ICME’18 of Salient360! [11] and
AUC_Borji [27] was included as well.
• Normalized Scanpath Saliency (NSS)
• Pearson’s Correlation Coefficient (CC)
• Similarity or histogram intersection (SIM)
• Kullback-Leibler divergence (KLD)
• Area under ROC Curve by Judd (AUC_Judd)
• Area under ROC Curve by Borji (AUC_Borji)
Note that we followed the evaluation framework in

salient360! [11]. Specifically, predicted saliency maps were
weighted by their latitude to avoid overestimating the error
in the high-latitude region because the sampling point at
high-latitudes on the unit sphere are stretched horizontally on
the ERP image.
Implementation Details: We evaluated our data augmen-
tation method by the random spherical rotation using one
of the state-of-the-art 360◦ saliency prediction network by
Martin et al. (Baseline, PanoramicConv, PC) [8] as the
backbone network without changing their original imple-
mentation. In addition to our data augmentation technique,
Martin et al. used seven augmentation methods (i.e., three
flips and additive Gaussian noise, Poisson noise, salt-pepper
noise and speckle noise). It is a current state of the art, and
we used them in the evaluation as well.

These seven augmentations cannot alleviate the problem
of the strong center bias of 360◦ images., which is a spe-
cial for saliency prediction of 360◦ images. To remove the
effects of the strong center bias, we used our random rotation
augmentation in addition to the seven augmentations. During
training, the input 360◦ image in ERP format was downsam-
pled to 256 × 128 and the parameters were optimized with
the Momentum SGD [28] and Spherical Mean Squared Error
(MSE) Loss [29]. The hyperparameters for the training are as
follows: epoch=10000, batch size=32, learning rate=10−4,
momentum=0.9, and weight decay=10−5. The entire evalu-
ation framework was implemented using PyTorch [30] where
the network was trained and tested on a single NVIDIA
Quadro RTX 8000 with 48GB of memory.
Results: The results are shown in Table 1. The prediction by
Martin et al. without our spherical rotation augmentation is
shown as the baseline. Ourmethodwas implemented by using
it as a backbone and additionally applied random spherical
rotation augmentation (Proposal w/ random). For the ablation
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FIGURE 6. From left to right: input image of test data, ground truth of saliency map, results of training with SalGAN360 [7], results of training with the
baseline [8], results of training with data augmentation by random rotation of the proposed method, and results of training with data augmentation by
horizontal rotation of the proposed method.

TABLE 1. Evaluation of saliency prediction with data augmentation.

study, we also showed the result in which the training data
was rotated only around the gravity axis (Proposal w/ hori-
zontal). Note that the rotation was only applied to the training
data, but not to the test data. Because Martin et al. ’s and
Chao et al. [7]’s models’ codes are publicly available among
the the state of the art methods, we used Chao et al. ’s model
for the comparison with the same setting of Martin et al.’s.
Papers [10], [31] also used Chao et al. ’s model as a compar-
ison method.

For all evaluation metrics, the random rotation augmen-
tation was shown to most effectively improve the perfor-
mance, and its accuracy is significantly better than that of
the baseline. We also see that the horizontal rotation is not
enough.

Figure 6 shows a visualization of the obtained saliency.
It can be confirmed that the baseline method tends to predict
high saliency values near the equator owing to the strong
center bias of the training data, whereas the proposed method
can predict the saliency robustly even within a high latitude
region. Besides, even if our horizontal rotation is applied to
the dataset, predicted saliency values tend to be blurred and
spread within the middle latitude region because of the strong
center bias. In contrast, when we use the random rotation,
the blurred area becomes denser, and it shows the random
rotation is necessary for a better prediction.

B. EVALUATION OF SINGLE 360◦ IMAGE MULTIPLE RoI
PREDICTION
1) DATASET CONSTRUCTION
There is no existing dataset for evaluating multiple RoI pre-
diction task from a single 360◦ image, therefore we con-
structed the evaluation dataset which consists of pairs of
360◦ image and RoIs annotated by human. Some examples
in our dataset are shown in Fig. 7.

FIGURE 7. Examples of user-annotated RoIs dataset for evaluation.

Our dataset consists of forty five 360◦ images extracted
from five 360◦ outdoor video clips on YouTube [32] and
corresponding RoI annotation by three different persons.
To annotate RoIs on each 360◦ image, we recruited crowd
workers using Amazon Mechanical Turk [13] to ask to anno-
tate five impressive regions in each 360◦ image of the dataset.
The dataset construction process is detailed as follow.

First, a cloud worker was instructed to look around an
omnidirectional image on the web browser through cropped
perspective view by freely changing the view direction
and remember the scene. Actual instructions are as fol-
lows: (1) Look around the image by dragging the cursor.
(2) Remember the parts of the image that are particularly
impressive. (3) Take at least 30 seconds. Make sure not
missing the ceiling or floor.

Next, we showed the same 360◦ image but in ERP format
to the worker and asked him/her to draw five bounding boxes
around impressive parts. The instructions were as follows:
(1) Use the bounding box tool to draw boxes around the area
that are impressive to you. Draw a rectangle using yourmouse
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FIGURE 8. Examples of RoIs obtained by our framework with different as.

over the area. (2) Each rectangle should be less than 1/4 of
the total image. (3) This is not an object detection annotation,
so you can enclose areas where there are no objects. It is okay
if the areas overlap each other.

A total of 14 crowd workers participated in the annotation.
We did not impose any restrictions on the qualifications of
the crowd workers, but only approved those workers who
spent more than 60 seconds on the task. Our dataset includes
50 images in total, and each image was annotated by 3 per-
sons, resulting in 150 pairs of 360◦ image and user-annotated
RoIs. Excluding the inappropriate 5 images such as a black-
out scene, we finally constructed an evaluation dataset of
45 images and 135 RoI annotations. Since RoIs in an image is
highly subjective in nature, we didn’t merge three annotations
of the same 360◦ image in evaluation.

2) QUALITATIVE EVALUATION
Some examples of our result applied to the constructed
dataset are shown in Fig. 8. The predicted RoIs (green color
boxes) are overlaid on the input 360◦ image with different
choices of a in Eq. (1). We observed that the prediction
results were reasonably close to one of the user-annotated
RoIs. As expected, only considering the saliency information
(i.e., a = 1) gave significantly overlapped RoIs, and we
couldn’t detect multiple RoIs. On the other hand, spatially
distributed RoIs were extracted when we consider both visual
saliency and IoU. In failure cases, as shown in the bottom of
Figure 9, images with few objects tended to produce RoIs that
were significantly different from the user annotation. This
is probably due to the fact that the training dataset for the
saliency prediction does not include very small salient items.
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FIGURE 9. Comparison of user annotated RoIs and our detected RoIs.

3) QUANTITATIVE EVALUATION
We conducted a quantitative comparison between user-
annotated RoIs (SUser ) and the RoIs predicted by the proposed
method (SPred ). The evaluation metrics for the quantitative
comparison were the normalized Euclidean distance (L2
norm) on the image between the center points of the pre-
dicted and user-annotated RoIs, and the IoU between them.
Considering that the right and left edges of the ERP image

are connected, the longest distance is D =
√

W
2
2
+ H2 when

the number of vertical pixels in the ERP image is H and the
number of horizontal pixels isW . The normalized Euclidean
distance D between the regions α = (xα, yα,wα, hα) and the
region β = (xβ , yβ ,wβ , hβ ) is computed as follows:

D =

√
min(|xα − xβ |,W − |xα − xβ |)2 + (yα − yβ )2√

W
2
2
+ H2

. (2)

For the IoU, because Selective Search [3] is originally an
algorithm for perspective images, it does not take into account
a candidate region that crosses the right to the left edge of an
ERP image.

We considered the following two methods for paring
human-annotated regions and predicted regions for com-
parison. SUser and SPred means a set of five RoIs by
human-annotation and our prediction, respectively.
• For each RoI in SPred , choose the region of SUser that
gives the best evaluation, and average all of the best
evaluations. (Eval1)

• For each RoI in SUser , choose the region of SPred that
gives the best evaluation, and average all of the best
evaluations. (Eval2)

Eval1 and Eval2 are similar to precision and recall, respec-
tively. The graphs of the results for these evaluations are
shown in Fig. 10. In addition to the human-annotation and
our prediction, we show a random selection in Fig. 10.
The random selection randomly chose five regions from the

FIGURE 10. Comprisons between the the user annotated RoIs and our
detected RoIs for varying as. (a) L2 norm, (b) IoU.

regions obtained by Selective Search. Its evaluation is shown
by dashed lines in the figures.

It is noteworthy that when the saliency was more weighted
in Salient-IoU, L2 norm slightly decreased in Eval1 and
increased in Eval2. This indicates that the RoIs predicted
by emphasizing only saliency and neglecting the degree of
overlap between RoIs were concentrated in specific high
salient region, and the RoIs did not well distribute within
the images. In other words, although the prediction with
a = 1 accurately select the highest salient region, but
‘‘overlook’’ is not avoided. These results are consistent with
the observations in the qualitative evaluation presented in the
previous section.

C. USER STUDY FOR EVALUATING PREDICTED RoIs
We conducted subjective evaluation to verify the quality of
predicted RoIs. For presenting predicted/annotated RoIs on
the NFoV perspective image, we converted RoIs defined on
the ERP coordinates to ones on perspective images without
projection distortions. In this conversion, we set a tangent
plane contacting on the unit sphere at the center coordinate
of the RoI on the ERP image, and project points on the unit
sphere using the RoI as the projection plane. When the image
size of the projection plane is set to Hp andWp, the following
equations are obtained for Hp and Wp:

Hp = 2r tan (
Bh
H
π

2
) (3)

Wp = 2r tan (
Bw
W
π ) (4)
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TABLE 2. Selection rate for each image group.

where r is the radius of the unit sphere, H and W are the
height and width in pixels of the ERP image, respectively.
Bh ∈ (0,H ) and Bw ∈ (0, W2 ) are the height and width of each
RoI, respectively. We extracted five perspective projection
images from a 360◦ image based on the resulting RoIs. This
resulted in 135 pairs of a ERP image and a set of five RoIs
for evaluation.

For the user study, we recruited the subjects on Amazon
Mechanical Turk [13] to view each 360◦ image in a browser
for 30s, and answer a questionnaire. The protocol is that
after showing the 360◦ images to the cloud workers for 30s,
we showed them three groups of images:

A Five perspective RoI images of our user-annotated RoIs
dataset.

B Five perspective RoI images predicted by the proposed
method.

C Five randomly chosen regions from candidates
obtained by Selective Search.

We created the following question: ‘‘Which of the three
sets of regions do you think is the most impressive in the
360◦ image?’’We also provided a choice ‘‘tie.’’Workers were
not told which group each set of images corresponded to, and
the order of the options was changed each time. We received
three responses for each of the 135 sets and repeated these
experiments six times with different Sailent-IoU parameters
a while maintaining n = 5. We only approved workers who
spent at least 60 seconds per one image. We did not limit the
maximum number of tasks that one worker could participate
in, and thus the number of workers differed from 42 to 67 as
the value of a changed. In each 360◦ image, we got answers
from different three workers.

The selection rates for each image group are shown in
Table 2. Interestingly, the RoI predicted by the proposed
method was rated higher than the user-annotated RoI, that is,
manual choice. According to the results of χ2 tests, on the
condition of a = 0, 0.01, 0.03, 0.1, 0.4, there is statistical
significance between the frequencies of User annotation and
Our results. In addition, the RoI detected with weight on both
saliency and IoU was more preferred, and it shows SIoU is
the reasonable evaluation function for RoI detection.

V. CONCLUSION
In this study, we tackle the problem of predicting the regions
of interest (RoI) from a single 360◦ image as a set of perspec-
tive projection images with variable FoV and free position-
ing relationships. We proposed an algorithm to predict the
optimal RoI set based on the saliency map predicted from
360◦ images and an evaluation function considering both

the saliency value and the IoU in candidate regions obtained
through Selective Search. To train the network to predict the
saliency map, we proposed the random rotation data augmen-
tation to overcome the strong center bias of the training data,
and showed a significant improvement in performance over
the baseline [8]. We created RoI dataset, and evaluated the
predected RoIs in quantitatively, qualitatively with it. In user
study, we show that our algorithm can predict reasonable
RoIs.
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