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ABSTRACT Recent research interests have been directed to study the security of vehicles due to the
advancement of their technologies. Due to the rapid growth and accelerated development of electronic control
units (ECUs), they are countered to be exploited by external attacks. As a result, recent research efforts
have been focused on investigating alternative countermeasures that might be implemented by introducing
different intrusion detection systems (IDSs). The problem with some of IDSs is the location of their
deployment because of the ECU limitations and constraints. Other introduced IDSs require severe changes
in the in-vehicle network, which is not preferred by vehicle manufacturers. In this research, we introduce a
novel design of a framework to check the state of the vehicle and capture possible attacks by detecting any
malicious data in the diagnostic parameters of the vehicle. The framework is divided into two phases: the
specific-based detection phase and the anomaly-based detection phase. The proposed system employs the
extreme gradient boosting (XGBoost) algorithm to detect anomalies in diagnostic data and it is optimized by
a non-dominated sorting genetic algorithm II (NSGA-II). Themodel is verified against two datasets collected
from real vehicles. To generate anomalies in datasets, an attack generation algorithm is introduced. The
model is trained on a dataset that contains different attack types and verified blindly against various attacks
that have not been seen before. The framework’s experimental results show that it can detect abnormalities
with accuracy 97.00% for the Seat Leon 2018 dataset and 97.49% for the KIA SOUL dataset.

INDEX TERMS Anomaly detection, cyber-physical security threats, diagnostics, genetic algorithm, intru-
sion detection, machine learning, NSGA-II, vehicular security, XGBoost.

I. INTRODUCTION
Over the last decade, automobile manufacturers have trans-
formed the shape and function of modern vehicles by rapidly
adopting different current technologies. Advanced elements
such as automation and connectivity with the outside envi-
ronment (e.g., Vehicle to Infrastructure (V2I) and Vehicle
to Vehicle (V2V) communications) are included to increase
safety and enable vehicle collaboration.Modern vehicles now
comprise a network of ECUs, accompanied by actuators and
sensors, that perform one or more functions including critical
ones. ECUs can serve a variety of functions, ranging from
simple tasks like opening a door to more complex procedures

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung .

like regulating the car’s braking system. ECUs are managed
by sophisticated software components that read data from
and send data to other ECUs through one of the in-vehicle
communication protocols.

Securing vehicles from cyberattacks is a difficult mission,
as vehicles have traditionally been designed without consid-
ering full security requirements, relying on the supposition
that vehicles function independently with no communication
capabilities. ECUs can be exposed to threats through physical
access to the on-board diagnostic (OBD)-II port or short and
long-range wireless connectivity such as Bluetooth, cellu-
lar radio, and telematics control unit (TCU). The firmware
updates over the air (FOTA) can reveal ECUs software and
hardware faults and vulnerabilities that can be exploited to be
one of the reasons for external unwilling control [1]. Thus,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88907

https://orcid.org/0000-0003-4372-8600
https://orcid.org/0000-0002-6033-733X
https://orcid.org/0000-0002-4808-4018
https://orcid.org/0000-0003-0039-9018
https://orcid.org/0000-0002-3367-1711


T. A. Awaad et al.: Intelligent, Two-Stage, In-Vehicle Diagnostic-Based Secured Framework

the safety and security of cyber-physical systems, such as
vehicles, became an essential topic to be discussed.

Inter-vehicle communication is a promising paradigm that,
by sharing messages, can assist in reducing traffic congestion
and crashes. The security of the inter-communication of vehi-
cles and intra-communication received a lot of interest for a
discussion in the latest research [2], [3], [4]. The findings
of studies into remote attacks on vehicles have astounded
automotive companies, and this has resulted in recalling of
1.4 million vehicles [5], [6]. Tesla automobiles were shown
by researchers that can be hacked and they demonstrated that
the crucial vehicle functions can bemanipulated remotely [5].
Electric vehicles, such as Tesla, can be attacked to broadcast
false state-of-charge (SoC) data to charging services in order
to get greater priority for charging [7]. Current studies are
not concerned only with defending electric vehicles but also
protecting the charging stations using deep learning tech-
niques [8].

Various methods were mentioned by Zhang et al. to
attack any vehicle [9]. One method is to use the OBD-II
port, which allows users to capture the ECU traffic. Most
ECU-controlling attacks are carried out via diagnostic
updates, which allow users to download or update software.
Wolf et al. studied the possible hazards of ransomware attacks
on automotive systems [10]. The vehicle may be rendered
unusable as a result of the ransomware encrypting one of its
critical ECUs until the user pays to release it.

Usually, the focus of recent research in the automotive
field tends to detect malicious attacks on Controller Area
Network (CAN) buses due to the deficiency of its security
features. The problem with such proposed IDSs that they
need to be reliable, light, and rapid in the processing due
to the characteristics of the CAN bus and the limitations
of the provided ECUs. Malicious CAN messages can be
detected by capturing the frequency of abnormal messages
or manipulated data of CAN messages. The disadvantage
of such IDSs that they can ignore some of the diagnostic
parameters that are not frequently sent on the CAN bus or
the diagnostic data that are related to the ECU that has the
IDS. Thus, our research will focus on detecting attacks on the
diagnostic data of the vehicle regardless of the source ECU
that is in charge of them.

Various protocols, such as the OBD protocol [11] and
the universal diagnostic services (UDS) protocol [12] are
used to communicate data between ECUs and diagnostic
systems. Several PIDswere captured using theOBDandUDS
protocols in our test case.

The goal of this study is to detect malicious behav-
iors in vehicle diagnostics with acceptable accuracy. Thus,
we expanded our previous proposed IDS [13] to introduce
a framework of two stages: the first stage is responsible for
detecting the unreasonable values of diagnostics based on
the specification rules for each PID, while the second stage
is in charge of detecting malicious semantic values of PIDs
using machine learning. Since the current stream of research
is interested in the utilization of machine learning and deep

learning approaches to detect complex attacks, the XGBoost
algorithm is employed in the second stage of our framework
to detect suspicious data as it is a widespread and efficient
open-source framework for this aim [14]. Selecting proper
parameters for XGBoost is a hard problem. Consequently in
this research, we use a modified version of the genetic algo-
rithm known as NSGA-II to optimize the hyperparameters of
the machine learning model [15].

The following are the key contributions to the literature
made by this article:

1) Introducing a novel two-step framework for detecting
malicious attacks in diagnostic parameters obtained
from real vehicles without overloading the bus based
on specification and anomaly detection techniques.
The specification detection stage is composed of rules
related to the characteristics of each PID and the
anomaly detection stage uses the XGBoost in capturing
malicious attacks.

2) Optimizing the hyperparameters of XGBoost using
NSGA-II to detect malicious diagnostic in-vehicle
parameters with optimal results.

3) Building datasets containing benign and malicious
data to train and verify our framework. The malicious
attacks have been generated through introduced attack
models.

4) Comparing the detection performance of our frame-
work against other machine learning and statistical
algorithms.

5) Verifying our framework against unknown attacks gen-
erated from different attack models that are not used in
the training process of the XGBoost model.

The structure of this paper is as follows. A brief background
is provided about diagnostic protocols, XGBoost model, and
genetic algorithm (GA) used in this research in Section II.
The related work will be shown in Section III. The suggested
architecture is shown in Section IV, which also depicts the
model’s flow. It also explains the machine learning technique
that is applied to recognize anomalies and how the model
parameters have been optimized using the NSGA-II algo-
rithm. An illustration of the datasets used in this study, as well
as a clarification of the attack generation models for training
and testing, will be found in Section V. Evaluation results are
discussed in Section VI and the limitations and advantages
of our proposed work are discussed in Section VII. The
conclusion of this study and future work are included in
Section VIII.

II. OVERVIEW
This section provides an overview on some of the diagnostic
protocols, such as OBD-II and UDS. It also provides a brief
background about XGBoost and GA techniques.

A. DIAGNOSTIC PROTOCOLS
1) OBD-II
OBD-II is a vehicle’s diagnostic protocol that is used to
read emission data from ECUs for the purpose of diagno-
sis and monitoring [11]. OBD-II PIDs are defined by the
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FIGURE 1. General structure of an OBD-II frame.

FIGURE 2. General structure of a UDS message.

SAE J1979 standard so that each PID has a code to request
certain information about one of the vehicle’s parameters
(e.g., vehicle speed) [16]. The OBD-II PIDs do not cover
all vehicle parameters, however, the vehicle manufacturer
can customize PIDs using another diagnostic protocol (e.g.,
UDS). The OBD request is sent when a diagnostic tool is
connected to the OBD-II connector and the corresponding
ECU responds. Figure 1 shows the general structure of an
OBD-II frame, where the identifier field shows whether it
is a request or a response message, and the number of bytes
field shows the needed number of bytes for each PID. The
OBD-II has ten modes, where some of them show the data
in real-time (e.g., RPM) and others clear and retrieve the
stored trouble codes. The third field of the OBD-II frame
shows the mode in which PIDs are defined. The fourth field
of the frame is the corresponding PID. Some PIDs have
minimum and maximum values and the formula to convert
the corresponding PID value to decimal. The A, B, C, and
D fields are the sent hexadecimal data bytes that need to be
converted to logical values.

2) UDS
UDS is a diagnostic protocol that can be used for different
communication buses, such as CAN and Local Interconnect
Network (LIN) [12]. This protocol allows the diagnostic
devices to interact with ECUs to diagnose and analyze the
faults and provide the possibility to reprogram ECUs. The
diagnostic communication through UDS is held by sending
UDS request to the ECU which replies whether by a positive
or negative response with the UDS message structure shown
in Figure 2. The first field of the message is Service Iden-
tifier (SID) which distinguishes between the response and
request messages. The subfunction field is added to some
UDS messages as it is an optional field. The data parameter
field identifies further information and configuration for the
requested parameter.

B. XGBoost
XGBoost is a gradient boosting algorithm implementation
that is scalable, portable, and distributed [14]. From ensemble
weak learners models, the gradient boosting technique cre-
ates predictive models. Decision trees are a common model
used in gradient boosting. The trees are built in a sequential
order while boosting, with each succeeding tree attempting to
reduce the faults of the previous tree. Each tree learns from its
predecessors’ residual errors and updates them. As a result,

the tree that grows next in the series will learn from amodified
version of the residuals.

To anticipate the outputs, the tree boosting model employs
K additive functions.

ŷi = ∅(Xi) =
K∑
k=1

fk (Xi), fk ∈ F , (1)

where F is the space of tree regression and fk is one of the
tree structures that its leaves have wj as a weight score at
each j − th leaf. The sum of the score of leaves is given by
w. An objective function (2) must be minimized to train the
model.

obj(t) =
∑
i

l(ŷi, yi)+
∑
k

�(fk ), (2)

�(fk ) = γT +
1
2
λ||w||2, (3)

where l is the differentiable loss function that assesses the
discrepancy between the anticipated ŷi value and expected
value yi, while �(fk ) (3) is a regularization function that
represents the tree structure complexity and is used to avoid
model overfitting, the number of tree leaves is denoted by T ,
γ is the score when an external leaf is inserted, λ is the score
when the tree cannot be subdivided any further. Because the
model is based on the ensemble concept, it will be trained
in an additive manner to predict ŷt at the t-th iteration by
minimizing ft by adding it to (2). Taylor series is used to
express some loss functions since they are difficult to simplify
in good forms. The objective function can be described as
indicated in (4) after the tree model has been re-formulated
with respect to the derivation and Taylor series representation.

obj(t) =
T∑
j=1

[
∑
i∈Ij

giwj +
1
2
(
∑
i∈Ij

hi + λ)w2
j ]+ γT , (4)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1)
l(yi, ŷ(t−1)).

Each j-th leaf’s weight score can be determined as illustrated
in (5). Equation (6) will be used to determine how good the
supplied tree structure is. Because the number of produced
trees is too huge to identify the best one, a greedy approach
is used to prune ineffective tree branches one level at a time,
utilizing (7) to evaluate split possibilities,

wj =

∑
i∈Ij gi∑

i∈Ij hi + λ
(5)

obj(t)(q) = −
1
2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT (6)

objsplit =
1
2
[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ

−
(
∑

i∈I gi)
2∑

i∈I hi + λ
]− γ (7)

After splitting, IL and IR are instances of left and right tree
nodes, respectively, where the I = IL ∪ IR. The branch will
be trimmed if the gain of (7) is negative.
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C. GENETIC ALGORITHM
It is a stochastic optimization technique that is devoid of
derivatives and depends on natural selection and biological
evolution. GA outperforms other optimization methods in a
number of ways [17]. It can be used to solve issues in both
continuous and discrete optimization [17]. It is a population
genetic-inspired computational model [17]. It has primar-
ily been exploited as a function optimizer, and it has been
shown to be a useful global optimization tool, particularly
for multi-model and non-continuous functions [17]. GA cre-
ates a population of individuals, which is a collection of
elements. Each individual represents a potential solution Xi
(i = 1, 2, 3, . . . , p), where p is the number of elements in
the population, to the problem that needs to be optimized.
The individual solution can be represented in a number of
parameters which is known as a gene. The combination of
genes for a string value is known as chromosomes.

The algorithm starts with the initial population to be eval-
uated by the fitness function. The selected individuals in the
population are paired to apply the typical crossover operator.
The matching locations on the two mating chromosomes are
cut once, and the parts after the cuts are exchanged. The point
of intersection can be randomly selected. The new individuals
are subjected tomutation after crossing. A random value from
a provided set of values corresponding to each parameter is
used to change the value of a variable that is chosen with a
particular probability. A tiny percentage of the fittest solu-
tions is also copied into the next generation, which is known
as elitism. Elitism ensures that the GA’s solution quality does
not deteriorate from one generation to another. The algorithm
is repeated until a stopping criterion is reached.

III. RELATED WORK
A significant number of academics have focused onmalicious
attack detection in automotive network communication,
reflecting the fact that this is one of the most impor-
tant challenges for governments, businesses, and research.
In this section, previously proposed in-vehicle communi-
cation IDSs, such as CAN bus and diagnostic IDSs are
discussed.

A. IN-VEHICLE COMMUNICATION IDSs
According to Al-Jarrah et al., IDSs are conventionally clas-
sified based on detection techniques into two types; knowl-
edge/misuse and anomaly-based IDSs [18].

1) KNOWLEDGE-BASED IDS
It matches monitored events to known attack patterns (i.e.,
signatures). When knowledge-based IDS detects a match
between the recorded events and known attack patterns,
an intrusion is notified. Aldwairi textitet al. [19] proposed
a parallel IDS approach for parallelizing a pattern match-
ing algorithm on a multi-core CPU to speed up pattern
matching.

2) ANOMALY-BASED IDS
It recognizes typical system behavior and classifies signif-
icant departures from it as intrusions. Lo et al. proposed
a deep learning IDS that is composed of a convolutional
neural network (CNN) and long short-term memory (LSTM)
to capture the spatial and temporal dependencies in CAN
data [20]. Their IDS performs preprocessing on CAN traffic
to reduce inconsistency and incomplete data. The processed
data are fed to CNN to extract the feature map and then
LSTM is applied to extract the temporal dependencies and the
extracted features are finally fed to a fully connected neural
network (NN) to classify the output. Basavaraj and Tayeb
proposed IDS where the data are preprocessed and encoded
to be fed to a deep neural network (DNN) to detect anomalies
in CAN data [21].

Al-Jarrah et al. categorized the intra-vehicle IDSs further
into hybrid, payload-based, and flow-based IDSs [18].

3) FLOW-BASED IDS
The internal network of a vehicle, often the CAN bus,
is monitored by a flow-based IDS, which extracts distinct
characteristics. Vuong et al. proposed a detection model
based on a decision tree using eight on-board cyber and
physical features that were held on small-scale robotic vehi-
cle [22]. Taylor et al. proposed a method for computing the
mean of inter-packet timing using historical timing that was
pre-calculated in normal packet flow to capture anomalies
attacks in CANmessages [23]. The mean of inter-packet tim-
ing is used in a one-class support vector machine (OCSVM)
to indicate whether an abnormal arriving frequency of CAN
messages exists [23]. The proposed frequency-based detector,
on the other hand, is unable to identify data manipulation
attacks (masquerade) in CAN communications. Song et al.
developed a lightweight technique for detecting unexpected
behavior in CAN message frequency [24]. They claimed that
each CAN ID is sent at a specific time interval, and if one of
the CAN IDs’ messages is sent faster than the corresponding
time interval, an attack is detected. A modified OCSVM was
introduced by Avatefipour et al. to capture cyber-attacks on
CAN bus [25].

4) PAYLOAD-BASED IDS
A payload-based IDS looks at the payload of transactions
to detect intrusions. Stabili et al. introduced a Hamming
distance-based intrusion detection technique to capture
abnormalities across a series of payloads of distinct ID
classes [26]. Ganesan et al. developed a method for obtaining
pairwise correlation between sensors, clustering those pair-
wise points for various driver behaviors, and comparing the
cluster correlation points to the computed correlation values
of the given sensor data [27]. Li et al. built a model that uses
regression to forecast sensor values in relation to other con-
nected sensors, compare the anticipated value to the received
value, and raise a harmful alarm if the difference value is
larger than a specific threshold [28]. Deep learning was used
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by Kang to recognize attacks in CAN messages [29]. High-
dimensional features derived from in-vehicle network packet
bit streams that are exchanged between ECUs are used to train
the detection model.

5) HYBRID IDS
A hybrid IDS is one that combines a payload-based IDS and
a flow-based IDS categories. Müter et al. developed a set of
detection sensors, including a consistency sensor, a plausibil-
ity sensor, a protocol sensor, a correlation sensor, a frequency
sensor, a range sensor, a location sensor, and a formality
sensor that allow for the identification of intrusions while
driving without causing false positives [3]. The IDS presented
by Zhang et al. has two stages: the first is a rule-based model
that uses the time interval, message sequence, valid ID, and
frequency of messages to detect anomalous behaviors [30].
The second stage of this approach employs a deep learning
model to reveal anomaly attacks that may have passed the
first stage.

B. VEHICLE DIAGNOSTIC IDSs
Rumez et al. proposed diagnostic IDS based on natural lan-
guage processing (NLP) approach using the n-gram tech-
nique [31]. Their idea is based on building diagnostic logs
by a gateway and sending the log to a server to analyze
and perform anomaly detection. The IDS captures diagnostic
sequences in a given window size to be analyzed. If the
captured behavior is observed before in the training dataset,
then the sequence is normal. If an anomaly in the sequence
is detected, byte-based analysis is performed, which is built
based on the n-gram algorithm. The byte-based analysis
considers the CAN message as sentences and the bytes of
payload as words that construct the contextual meaning of the
diagnostic message. The work was built on the assumption
that the attacker has access to the in-vehicle network. The
attack scenarios can be summarized as follows.
• The CAN message can be manipulated and changed
within the sequence.

• Additional CAN messages can be inserted within the
sequence.

• The CAN messages within the sequence can be
exchanged.

The dataset was collected from BMW i3 using a diagnostic
device. However, the dataset is small, whereas the proposed
IDS is not proven to scale with large diagnostic data and
different attack models.

IV. PROPOSED FRAMEWORK
The framework consists of two main detection levels as
shown in Figure 3; the first level is the specification-based
detection (specification-based system) and the second level is
the anomaly attack detection using a machine learning model
(anomaly-based system) that is tuned by an optimization
technique. Our suggested approach addresses the problem of
the location of IDS. The IDSs are usually installed in a single
ECU or a gateway ECU. The downside of deploying such an

IDS is the ECU’s power limits, as the IDS should not impact
the ECU’s CPU load in general, the complexity of modifying
the internal design of each manufacturer’s vehicle network,
and the cost of additional powerful ECUs. The proposed solu-
tion is to introduce an appropriate architecture that allows one
powerful ECU to maintain the IDS while reducing the cost of
employing many powerful ECUs. The trend nowadays is to
consolidate multiple functions distributed over many ECUs
into common zone ECUs to reduce the complexity of wiring
and architectures in the in-vehicle networks, where these zone
ECUs will be connected to each other, and they will carry
all the messages of their smaller children ECUs [32], [33].
Hence, these zone ECUs should be more powerful compared
to the ordinary ECUs used in the previous architectures.

The end node ECU is attached to the OBD connector,
as shown in Figure 3. The diagnostic analysis will be per-
formed on each PID in addition to the basic functionality of
the end node ECU,which is to carry out the OBD request. The
model should issue a diagnostic request via the connecting
bus, and the recipient ECUs either respond directly if they
have the needed PID, or they route the request to other ECUs
that are not directly connected to the OBD. The targeted ECU
sends the PID’s value to the framework after receiving the
request.

Another ECU can complement our introduced framework
to avoid a single point of failure in our system, however, this
decision is up to themanufacturer to compromise between the
cost of another powerful ECU and the necessity of the vehicle
safety and security.

In our proposed approach, sending emission diagnostic
messages during the vehicle operation to read the PIDs will
be treated as normal messages, otherwise, it will be taken into
consideration as an attack.

A. SPECIFICATION-BASED SYSTEM
The input to our framework will be processed by the first
stage which is the specification-based system that detects
whether this PID is benign based on some defined specifi-
cation rules for the corresponding PID. For example, if the
received value of PID is out of its minimum and maximum
ranges, then the framework reports that there is an attack.
If the processing PID passes successfully, the PID is sent to
the second stage which is the anomaly detection based on the
XGBoost technique that is tuned by NSGA-II.

B. ANOMALY-BASED SYSTEM
The second stage of the framework employs XGBoost tech-
nique [14], which is divided into two phases; the first phase is
responsible for training. In this phase, the model is optimized
and validated. The second phase is in charge of testing.
XGBoost works well with heterogeneous features as in our
case. The training shape of the datasets is in two dimensions
(2D) format where the first dimension represents the values of
each feature (PID) over time and the second dimension rep-
resents different PIDs. XGBoost has several parameters that
affect its performance. Consequently, we used NSGA-II [15]
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FIGURE 3. The proposed framework for in-vehicle network communication architecture.

to optimize XGBoost parameters in the training phase of the
second stage of our framework.

In our case, the problem population is a set of different
XGBoost models with different model values. Each param-
eter of the model is considered in our case as a gene. The
chromosome representation in our problemwill be a vector of
consecutive parameters of the model, which can be identified
as

C = [η, γ, θ, . . .], (8)

where θ is the maximum depth of a tree, γ is the value of
minimum loss reduction, and η is the learning rate. The rest
of the parameters, such as instance minimum sum weight
needed for each child, themethod to use to sample the training
instances, and the subsample ratio of the training instances
can be listed in a sequence to follow the aforementioned
parameters that are identified in (8).

Figure 4 provides an overview of the training and testing
phases in the second stage of the framework. The population
is divided frontwise based on non-dominated sorting. The
algorithm selects N XGBoost models by forming N chro-
mosomes of different model parameters (genes). The chosen
candidates are trained and evaluated by a fitness function.
The fitness function in our problem assesses the loss of the
XGBoost in (2), minimizes the false acceptance rate, and
increases the detection rate. Individuals are ranked based on
calculated crowding distance. The crossover andmutation are
held on given XGBoost models by exchanging and mutating
some of the parameters’ values. The newly built XGBoost

models are evaluated to choose the new offspring based on
the given criteria. Sometimes, someXGBoost models provide
the same loss, false acceptance rate, and detection rate results,
so the criteria for selecting the fittest offspring have been
updated so that if there are XGBoost models that give the
same results, the algorithm chooses the models that have
the least value ofmaximumdepth of trees parameter to reduce
the model complexity as much as possible. For each popu-
lation, the process is repeated until the GA converges. Con-
vergence refers to the algorithm’s ability to produce children
that are not significantly different from earlier generations or
reach the criteria. After completing the training process, the
final XGBoost model is produced to be evaluated by test data
in the testing phase.

V. DATASETS AND ATTACK MODEL FOR TRAINING
AND TESTING
This section illustrates the datasets and explains the attack
models used in the creation of the training and testing
datasets. To verify the framework, two datasets were obtained
from real vehicles. They were acquired from genuine auto-
mobiles, such as the Seat Leon 2018 vehicle [34] and the
KIA SOUL vehicle [35]. The KIA SOUL dataset is avail-
able on the Hacking and Countermeasure Research Lab
(HCRL) website. It contains 51 vehicle signals collected
through OBD-II [35]. The total records of the dataset are
94,401 captured every one second for ten drivers. The Seat
Leon 2018 dataset is available on the Karlsruhe Institute of
Technology (KIT) website. It contains ten signals collected
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FIGURE 4. Training and testing phases of the anomaly-based detection system in the second stage of the proposed framework.

through OBD-II collected every 100 ms [34]. The total
records of data used in this work are 54,784.

The autocorrelation function (ACF) is used to check the
periodicity in both datasets, as shown in Figure 5, where the
cyclic behavior of the signal is repeated over time in both
datasets. ACF shows the correlation between the current value
of the signal with its previous values over time. The period-
icity behavior in given datasets assists machine learning to
detect the deviation when abnormal behavior occurs.

Most of the proposed IDSs mentioned in Section III stated
attack model scenarios for CAN messages, such as injection
fuzzy and spoofing messages and performing replay, mas-
querade, and denial of service attacks without sharing the
datasets they worked on. Kang et al., Lee et al. published
benign and malicious datasets for CAN messages [36], [37].
However, we would not work on them as their representation
differs from the format that is needed for our framework in the
application layer of the OSI model. Our framework works on
tabular data where each column contains a particular feature
(PID) represented in logical values, while other datasets, such
as ‘‘Car Hacking: Attack Dataset‘‘ [36] that has a different
format where each row represents a time stamp, CAN mes-
sage ID, number of data bytes, and the physical values of
different PIDs and other fields. Hence, there is no published
dataset containing malicious data for diagnostic parameters.
We introduce different attack models depending on random-
ization that manipulates the benign dataset to createmalicious
training and testing data.

The attack models are built on the following
assumptions:

• Diagnostic tests with values that are anomalous or mali-
cious coming from suspicious sources configure some
diagnostic parameters.

• Random values are written by an infected ECU into
other ECUs.

• Semantic values are written by an infected ECU into
other ECUs for certain PIDs but at an inappropriate time.

A. TRAINING ATTACK MODEL
Algorithm 1 depicts which attack model is used to exploit
the datasets for training the XGBoost model. The algorithm
iterates over the dataset through a step-wise period n, where
N is the number of steps, to capture particular rows at a
certain time t to be manipulated by different attacks based
on the generated probability p. The value of n should not
be too large to avoid generating a biased dataset providing
the machine learning model, the space to learn the benign
and the malicious behaviors. If a biased dataset is generated,
augmentation algorithms, such as the adaptive synthetic sam-
pling approach (ADASYN) can be utilized for an imbalanced
dataset. The attacks depend heavily on randomness where
Attack A and Attack B are performed on randomly chosen
PID at a certain t , while AttackD is performed on two random
PIDs at the same particular t and Attack C is performed on
all PIDs.
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FIGURE 5. ACF graphs of engine speed of the Seat Leon 2018 and KIA SOUL datasets. The blue shaded region indicates the confidence interval.
If the signal at any time exists within the shaded region, then this signal becomes less correlated to itself in past times.

Algorithm 1Mechanism for Generating Attacks
1: p:= generate_random(0.1, 0.9)
2: for t ← n to N ∗ n do
3: if p > 0.75 then
4: Dataset[t]← Generate_Attack_D()
5: else if p > 0.50 then
6: Dataset[t]← Generate_Attack_C()
7: else if p > 0.25 then
8: Dataset[t]← Generate_Attack_B()
9: else

10: Dataset[t]← Generate_Attack_A()
11: end if
12: end for

Attack A can be formulated as follows.

f (tl, xk ) =
{

f (tl, xk )α, if p > 0.5, 0.1 ≤ α ≤ 0.9 (9)

−f (tl, xk )α, otherwise, 0.1≤α≤0.9 (10)

The aim of Attack A is to manipulate the current value of
random PID at a chosen t by reducing it with a positive or
negative value (α) determined by random probability p. Since
there are negative values for some of the PIDs, the negative
part is introduced to fuzz the values.

The second attack can be stated as follows.

f (tl, xk )=
{

f (tl−1, xk )β, if p > 0.5, 0.1≤β≤0.9 (11)

f (tl−1, xk )β, otherwise, 1.5≤β≤4 (12)

Attack B targets the manipulation of the current value of
PID, which is chosen randomly, by replacing it with the
previous value of this PID and multiplying it with a ran-
dom value to scale up or scale down the current value
of PID.

The following is an example of Attack C. The attack
changes the value of all PIDs at t to zeros.

f (tl, xk ) = 0, ∀k (13)

Attack D is as follows.

f (tl, xk ) = f (tl, xk )α, 0.1 ≤ α ≤ 0.9 (14)

f (tl, xm) = f (tl, xm)β, 1.5 ≤ β ≤ 4 (15)

This attack targets change in two random PIDs at the same
t to insert more fuzziness in the data. The randomization
attacks are more effective and powerful than increasing or
reducing the current benign value by a specific amount, as
they also cover different types of attacks like replay, chip
tuning, and masquerade.

Figure 6 demonstrates the manipulation of engine speed in
the two datasets. The graphs show the occurrence of point
anomalies, where some of the benign values deviate at a
particular time.

B. TESTING ATTACK MODEL
For testing the IDS with unknown attacks, the framework is
verified against different datasets where each dataset contains
benign data and malicious data that is created by one of four
attacks mentioned in Table 1. To generate testing datasets,
the benign dataset is iterated by step-wise period n to obtain
certain rows at a particular time t to manipulate random
PIDs with a certain attack. Since the testing attack generation
depends on randomness, the distribution of each new dataset
with one of the attacks is hard to be predicted. This process
is done to test the robustness and stability of the model.

The proposed testing attacks cover many scenarios that
target manipulation of PID values in a different way from
attacks used in training. Increasing the Engine Coolant Tem-
perature PID while the vehicle is in a normal state could
lead to poor performance for the engine and may lead to
operating the electric radiator fans in case it is not needed.
While reducing RPM may give a false alarm for the driver
to increase the driving speed which leads to jeopardizing the
driver’s life.
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FIGURE 6. An example of generated malicious engine speed PID in both datasets used in training XGBoost model. The benign data points in
(a) and (b) are manipulated at a particular time by applying Algorithm 1 to deviate from the normal behavior.

TABLE 1. Attack models for testing.

VI. EXPERIMENTAL RESULTS
Our framework’s output is depicted in this section. On an Intel
Core i7-8550U processor running at 1.80 GHz, the training
and testing are simulated. Currently, we are not concerned
about the framework’s processing time as the results focus on
the proof of concept for the proposed idea. The introduced
IDSs in section III for in-vehicle communication buses are
not in our scope as we focus on diagnostic IDSs. The intro-
duced IDS for detecting anomalies in diagnostic messages in
work [31] did not publish the used dataset and worked on
UDS messages over CAN bus which have different formats
than needed by our framework. Therefore, a benchmark is
built to show the comparison between the performance of our
framework against techniques, such as decision trees, random
forest, naive Bayes, SVMwith the sigmoid kernel, SVMwith
the radial basis function kernel (RBF), SVM with the linear
kernel, OCSVM, isolation forest, and neural network that are
used in some of mentioned IDSs in section III.
First, our framework is compared to some well-known

machine learning models as well as statistical models men-
tioned in [21], [22], [23], and [27]. The dataset, which con-
tains benign data and malicious data generated from Attack
A, Attack B, Attack C, and Attack D is divided into 70%
training data and 30% for testing and validation. The testing
part of the dataset is used for the evaluation of our IDS against
other models. NSGA-II is used to tune and choose the fittest

TABLE 2. Configuration of hyperparameters of XGBoost in our framework
after using NSGA-II.

parameters of the mentioned models for consistency. The size
of the population used in our case is 20 and the number of
generations is 15. The rates of crossover and mutation used
are 0.9.

Table 2 shows the optimal value of each XGBoost parame-
ter used for anomaly detection of PIDs after using NSGA-II.
The learning rate is used to avoid overfitting by tensing the
feature weights at each iteration. The maximum depth of
the tree is not preferable to be high to avoid the complexity
and the overfitting of the model. Minimum loss reduction is
a parameter that indicates the minimum reduction value of
loss to perform a split on the leaf node. The split will be
done only if the resulting reduction is positive. The sampling
approach used in our model is uniform, which provides an
equal probability for each training set leading to choose the
subsample ratio to be greater than 0.5 for getting good results.
The partitioning process of the leaf node will stop if the
instance sumweight of the leaf node is less than the minimum
sum child weight.

Detection accuracy, precision (PR), and recall (R) are cho-
sen as metrics to compare between our framework and other
machine learning and statistical models. Detection accuracy
can be determined by the ratio of true positively detected
attacks and true negatively detected attacks over the total
number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
, (24)

where TP denotes malicious attacks that have been positively
identified and TN represents the true classified benign class.
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TABLE 3. The accuracy of the proposed framework versus the accuracy of
some common machine learning and statistical models.

TABLE 4. The precision and recall of the proposed framework versus the
precision and recall of some common machine learning and statistical
models.

The number of benign samples recognized as malicious is
represented by FP, whereas the number of malicious samples
detected as benign is represented by FN .
A precision factor is the number of correct attack detections

to the overall number of identifications.

PR =
TP

TP + FP
(25)

A recall factor is the number of correct attack detections to
the total number of generated attacks.

R =
TP

TP + FN
(26)

Table 3 and Table 4 show the superiority of our framework
against others regarding the accuracy, precision, and recall.
Because the attacks are generated randomly, the resulting
value is sometimes close to normal values but at an inappro-
priate time, causing models like isolation forest and OCSVM
to miss such an attack. The linear and statistical classifiers
fail to detect the rise in unpredictability and nonlinearity of
employed datasets. Random forest and decision tree models
are the only models that can achieve results that are close to
our framework, however, they are less stable and more sensi-
tive to any change in the data. The results of the framework
show its stability against datasets of two different vehicles.

The performance of the XGBoost for different model
thresholds is shown in Figure 7 for the two datasets, where
the area under the curve (AUC) of the model is 0.97 for the
Seat Leon 2018 dataset and 0.98 for the KIA SOUL dataset

FIGURE 7. Roc curves of our anomaly detection model for the Seat Leon
2018 and KIA SOUL datasets.

clarifying the ability of the model in differentiating between
the two classes (i.e., benign and malicious).

Second, we verified the model against four datasets, where
each dataset per vehicle contains benign data manipulated
by one of the attacks used in training to verify the model
accuracy, false acceptance rate, detection rate, precision, and
recall for each attack as clarified in Table 5 and Table 6.

The detection rate (DR) is a metric for determining the
proportion of truly identified malicious diagnostic readings
to the overall number of malicious attacks detected.

DR =
TP

TP + FP
(27)

The false acceptance rate (FA) is the proportion of benign
diagnostic values detected as malicious.

FA =
FP

TN + FP
(28)

The framework returns a low false acceptance rate and a
high detection rate, indicating that the ratio of benign data
misclassification is minimal, reducing user distraction and
demonstrating that the framework is effective. Figure 8 shows
the good performance of the anomaly detectionmodel used in
the second stage of our proposed framework against Attack
A, Attack B, Attack C, and Attack D for the two different
vehicles.

Third, the framework is evaluated against Attack E, Attack
F, Attack G, and Attack H which are considered unknown
attacks that are not used in the training process of the
XGBoost model. Although the IDS has not seen the attacks
before, it is capable to detect them with high accuracy,
precision, and recall with a good detection rate, and false
acceptance rate for each attack in the two datasets, as shown in
Figure 9. Due to the gradient boosting nature of the XGBoost
and the capability to build a more expressive model by learn-
ing and updating the previous weak models’ residual errors,
the classifier is efficient to detect the abnormalities in diag-
nostic parameters even if the classifier has not been trained on
the attack models used in testing. The results proved that our
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FIGURE 8. ROC curves of the XGBoost model for (a) the Seat Leon 2018 and (b) the KIA SOUL datasets. The model is tested against Attack A,
Attack B, Attack C, and Attack D over the Seat Leon 2018 and the KIA SOUL dataset. The model is trained on a dataset that contains benign data
and manipulated data generated from Algorithm 1. The model is verified against four datasets, where each dataset contains benign data and
manipulated data by one of the aforementioned attacks.

TABLE 5. The accuracy, detection rate, false acceptance rate, precision,
and recall of the proposed framework against Attack A, Attack B, Attack
C, and Attack D for Seat Leon 2018.

TABLE 6. The accuracy, detection rate, false acceptance rate, precision,
and recall of the proposed framework against Attack A, Attack B, Attack
C, and Attack D for KIA SOUL.

framework is capable of being used in detecting anomalous
attacks without causing a distraction for the user.

According to the busload analysis, each PID requires two
messages: a request message and a response message, both
of which take 400 us because one CANmessage takes 200 us
at a common CAN baud rate of 500 kbps. If the system is
expected to process 200 PIDs, the model will need to send
and receive 200 CANmessages, which will take 80ms. If the
system checks all of the PIDs once every second, the busload
in this instance will be less than 10%. By concentrating on
the most critical PIDs and increasing their reading rate while
decreasing the rate of reading the less important ones, the
busload can be minimized.

VII. DISCUSSION
Our framework has several advantages that can be summa-
rized as follows. It is a generic framework due to its ability
to deal with any diagnostic protocol because of its location

in the application layer of the OSI model. It is located in
a centralized arrangement to reduce the need for additional
ECUs in distributed systems. Querying different PIDs mini-
mizes the busload on the in-vehicle network buses by dividing
the messages on different communication buses; therefore
reducing the heavy load on a particular bus or ECU. The
framework can detect the attack of any ECU by detecting
any abnormal change in the PIDs that are not necessarily
processed by the aforementioned ECU but are correlated
to the signals of that ECU. It can check the state of the
vehicle periodically in the diagnostic testing and updates
(e.g., firmware updates) and in moving mode. It provides the
manufacturer the flexibility to define which important PIDs
can be checked due to the generality of the framework. The
existence of the first phase accelerates the detection process
when the specification-based system can capture malicious
diagnostic data and increases the accuracy of the detection.
The proposed framework provides a solution to detect attacks
in any ECU without changing the internal design of the
in-vehicle network structure. The framework is verified on
datasets of two different vehicle models, where one of them
contains the behavior of ten drivers which shows that the
framework is stable and robust.

However, there are some challenges that need to be
addressed further in future work. The characteristics of some
signals could be changed by increasing the age of the vehicle.
The problem of vehicle aging could be solved by performing
training in the maintenance time to avoid the increase of false
alarms. Vehicle maintenance and future software updates
may change the behavior of vehicle modules which may
affect the framework accuracy. However, the re-training of
our framework could solve this issue, but this will expose
our framework to attacks. The framework deals with any
abnormal behavior as a malicious one without checking the
diagnostic trouble code (DTC) for possible issues or faults in
sensors [38].
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FIGURE 9. Accuracy, recall, and precision results of (a) Attack E, (b) Attack F, (c) Attack G, and (d) Attack H for the Seat Leon 2018 and KIA SOUL
datasets.

VIII. CONCLUSION
Our research introduced a framework to detect anomalous
cyber intrusions in automotive diagnostics. To detect mali-
cious diagnostic parameters without raising the busload,
a novel architecture of a vehicle communication network was
introduced. Our IDS works with any diagnostic protocol’s
data. The framework contains two phases; the first phase
is a specific-based detection system and the second one is
the anomaly-based detection system. The XGBoost machine
learning technique is employed in the second stage of the
framework. The parameters of the XGBoost were tuned using
the NSGA-II optimization technique in the training phase.
The model was verified using two datasets gathered from
several real-world vehicles. To modify the diagnostic data,
different attack models are proposed. Because of the diffi-
culty of attacks, the most prominent machine learning models
mentioned in this research failed to detect them, while our
proposed framework achieved high detection accuracy with
97.00% for the Seat Leon 2018 dataset and 97.49% for the
KIA SOUL dataset. In addition, the proposed framework can
detect unknown attacks (Attack E, Attack F, Attack G, and
Attack H) with a high detection accuracy of 91.22%, 93.16%,
95.22%, and 95.33%, respectively, for Seat Leon 2018 and
95.13%, 97.22%, 97.33%, and 95.39%, respectively, for KIA
SOUL. In future work, wewill enhance the framework to deal
with period anomalies that affect the behavior of the signal for
a period of time. Hardware acceleration for such a framework
will be developed to include more complex functionality in
our IDS.
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