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ABSTRACT Particle filtering is probably the most widely accepted methodology for general nonlinear
filtering applications. The performance of a particle filter critically depends on the choice of proposal
distribution. In this paper, we propose using a wrapped normal distribution as a proposal distribution for
angular data, i.e. data within finite range (−π, π]. We then use the same method to derive the proposal
density for a particle filter, in place of a standard assumed Gaussian density filter such as the unscented
Kalman filter. The numerical integrals with respect to wrapped normal distribution are evaluated using
Rogers-Szegő quadrature. Compared to using the unscented filter and similar approximate Gaussian filters
to produce proposal densities, we show through examples that wrapped normal distribution gives a far better
filtering performance when working with angular data. In addition, we demonstrate the trade-off involved
in particle filters with local sampling and global sampling (i.e. by running a bank of approximate Gaussian
filters vs running a single approximate Gaussian filter) with the former yielding a better filtering performance
than the latter at the cost of increased computational load.

INDEX TERMS Nonlinear dynamical systems, angular data, particle filtering, wrapped normal distribution,
Rogers-Szegő quadrature rule.

I. INTRODUCTION
The popular data-based analytical problem is a latent state
estimation or filtering, which determines the internal or hid-
den states of a dynamic system by recursively combining
noisy measurements and model-based prediction [1]. Some
popular scientific areas involving filtering applications are
target tracking [1], biomedical modeling [2], mathematical
finance [3], and industrial diagnosis and prognosis [4], [5].

The filtering literature mainly begins with the linear
Kalman filter (KF) [6], developed in the sixties. In the six-
ties itself, a preliminary extension of the linear KF, named
extended Kalman filter (EKF) [7], [8], was introduced for
nonlinear dynamical systems. Although the linear KF is opti-
mal (in the sense of being conditional mean estimator) for
linear Gaussian systems, the nonlinear EKF has no such opti-
mality property due to the linear approximation involved for
the nonlinearities. This approximation often results in poor
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accuracy and numerical instability. Later, advanced approx-
imate Gaussian filtering techniques were introduced, which
include the unscented KF [9], the Gauss-Hermite filter [10],
and others [11], [12] for nonlinear systems to improve the
accuracy and the numerical stability while still staying in
the approximate Gaussian filtering framework. However, all
approximate Gaussian filters work poorly in the presence
of severe nonlinearities and/or non-Gaussian data [5], [8].
Particle filtering [13] was the next major advancement, which
uses recursive Monte Carlo simulation, with the probability
density being adjusted using measurements at each time step.
This adapts well to nonlinear and non-Gaussian systems.
Other recent development include heuristics for filtering with
irregular measurements [14], [15] and assumed Gaussian
density filtering with non-Gaussian noise [16].

A specific, but practically important filtering problem is
the filtering with angular data [17], [18], where the state
and measurement appear on circular path. An example is the
angle estimation problem of a robot arm [19]. Applications
in robotics often require closed-loop position control of the
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robot arm, requiring a measurement of the current angle of
the arm as feedback. This, in turn, involves estimate of an
angular quantity from noisy sensor measurements.

Modelling circular data in terms of angles generally
leads to a nonlinear filtering problem. For nonlinear fil-
tering, two methodologies are popular in literature, Gaus-
sian filtering [11], [12] and particle filtering [13], [20]. The
particle filtering can be significantly more accurate at the
cost of increased computation and is the main focus of this
paper.

The particle filtering represents the desired internal states
of dynamical systems in terms of their posterior conditional
probability density functions (PDF) and characterizes the
PDFs as weighted sum of particles [20]. For generating the
particles and the associated probability weights, particle fil-
tering uses a representative PDF, often known as the proposal
or importance density [13]. In the state-of-art particle filter-
ing, the proposal density is approximated as an appropriate
Gaussian density [21], [22], [23] and is accordingly charac-
terized by its mean and its covariance. The proposal density
may be defined locally or globally [21], [24], [25]. A globally
defined proposal density generates all the particles at each
time step [24]. However, a locally defined proposal density is
used for generating a single particle and we require a bank of
local proposal densities for generating all the particles. Some
of the popular particle filtering techniques, classified in terms
of the underlying proposal density used, include the particle
filter with transition density as its proposal (PF), unscented
particle filter (UPF) [21], cubature particle filter (CPF) [22],
and Gauss-Hermite particle filter (GHPF) [23].

The particle filtering accuracy depends on the appropri-
ateness of the proposal density and the re-sampling tech-
niques. The choice of proposal density is further affected
by: i) whether its shape is close to the unknown posterior
PDF and ii) whether any multivariate integrals involved in
computing its moments can be computed accurately in real
time. The literature primarily uses Gaussian shape for the
proposal density, while many contributions appeared in the
literature by introducing different numerical approximation
techniques [21], [22], [23], [25], [26], [27], [28]. Similarly,
the literature also witnesses many developments by advanc-
ing the re-sampling techniques [5], [29]. As we will observe
in the later parts of this paper, our objective is to improve the
shape of the proposal density to better match the anticipated
shape of the unknown PDFs. This will also require to modify
the numerical approximation technique for computing the
moments involved.

In all the above cases, Gaussian proposal density is over the
entire real line as its support. However, Gaussian distribution
fails to provide a close approximation of the proposal den-
sity, if the variables themselves are constrained to a smaller
support, e.g. (−π , π ] [30]. Thus we need a proposal density
specifically designed for angular data. Academic literature
witnesses some preliminary developments [19], [31], [32],
[33]. An early development [31] utilized a truncated Fourier
series with wrapped normal (WN) distribution. However,

finite-length truncation of Fourier series affects estimation
accuracy. Some of the later developments [32], [33] are
designed only for linear system models in angular data.
In a further development, Kurz et al. introduced a nonlin-
ear circular filtering method through a series of publica-
tions [17], [19], [34]. However, this method is designed for
univariate systems, whereas many of the real-life filtering
problems aremultivariate. Considering the several limitations
of the existing methods, efficient angular filtering is still
challenging.

In this paper, we propose a novel particle filtering method
for handling nonlinear multivariate angular filtering prob-
lems. We represent the unknown angular proposal density
appearing over (−π , π ] with WN distribution, which is a
counterpart of the ordinary normal distribution in the range
(−π , π] [35]. The parameters of the wrapped normal dis-
tribution are the mean and the covariance. In the proposed
method, the computation of the mean and the covariance
involves intractable integrals of the form ‘nonlinear function
× wrapped normal distribution’. We use univariate Rogers-
Szegő quadrature rule [36], [37] for approximating such
intractable integrals and also extend it to the multivariate
case using the product rule. Subsequently, we name the
proposed filtering method as Rogers-Szegő particle filter
(RSPF). We develop and test the proposed RSPF for both
the locally and globally generated proposal densities. Further,
we simulate the proposed filters for two angular filtering
problems and validate its improved accuracy relative to the
existing Gaussian proposal density filters from the simulation
results.

Summarizing the above discussion, we highlight the fol-
lowing contributions of our paper in comparison to the exist-
ing literature on filtering.
• The proposed RSPF considers wrapped normally dis-
tributed proposal density, instead of the Gaussian pro-
posal density which is most commonly used in the
existing particle filtering algorithms.

• The proposed RSPF utilizes Rogers-Szegő quadrature
rule for the numerical approximation of the integrals.
To authors’ knowledge, this is the first use of this quadra-
ture rule in particle filtering context.

• We demonstrate through comprehensive numerical
examples that the proposed RSPF can accurately handle
angular data, where the existing filters underperform.

• We formulated the proposed RSPF for both the locally
and globally generated proposal density. To authors’
knowledge, this is the first explicit comparison of the
two different particle filtering paradigms in the liter-
ature, which offer a compromise between estimation
accuracy and computational cost for the same chosen
proposal density.

The rest of the paper are organized as follows. Section II
discusses the problem formulation, followed by the discus-
sion on the proposed RSPF in Section III. The simulation
results are explained and illustrated in Section IV, while
Section V provides conclusions of our work.
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II. PROBLEM FORMULATION
Our aim is to develop a particle filtering method suitable for
angular data. The underlying state space model is represented
as

θk = φk−1(θk−1)+ ηk−1, (1)

yk = = ψk (θk )+ ϑk , (2)

where θk ∈ Dn and yk ∈ Dd , with D ∈ (−π, π], are state
and measurement variables, respectively at k th instant with
k ∈ {1, 2, · · · }. φk : Dn → Dn and ψk : Dn → Dd are
general nonlinear functions, representing the state dynamics
and the measurement equation, respectively. Finally, ηk ∈ Dn

and ϑk ∈ Dd represent the process and measurement noises,
respectively. Our objective is to recursively estimate θk ∀k ∈
{1, 2, · · · } from a sequentially received set of measurements
yk ∀k ∈ {1, 2, · · · }.
The estimation of θk from yk requires characterizing the

PDF P(θk |y1:k ) analytically. In this regard, the particle fil-
ter [20] approximates P(θk |y1:k ) as a weighted summation
of stochastically generated sample points, also known as
particles. Particles are sampled from an appropriately chosen
proposal density q(θk |y1:k ) for representing the unknown
PDF P(θk |y1:k ). We denote θ ik and ωik , ∀i ∈ {1, 2, · · · ,N },
as the ith particle and the associated weight, respectively,
at k th instant. The weights are normalized, i.e.,

∑N
i=1 ω

i
k = 1.

Subsequently, the desired PDF P(θk |y1:k ) is approximated as

P(θk |y1:k ) ≈
N∑
i=1

ωikδ
(
θk − θ ik

)
, (3)

where P(yk |θ ik ) represents the likelihood function, δ(·) rep-
resents dirac delta function, and N represents the number of
particles. If q(θk |y1:k ) is the same as the transition density
P(θk |θk−1), then the weights can be recursively updated as
ωik ∝ ω

i
k−1P(yk/θ

i
k ).

However, using transition density as proposal ignores the
information inferred from the latest measurement, and can
result in poor approximation of P(θk |y1:k ) [22]. Using the
proposal density resulting from approximate Gaussian fil-
ters such as the unscented Kalman filter, i.e., the UKF [21]
or the cubature Kalman filter, i.e., the CKF [22], include
the latest measurements information during generation of
particles. There are two fundamentally different approaches
for generating particles. In local sampling, [21] we approxi-
mate q(θ ik |θ

i
0:k−1, y1:k ) = P(θ ik |θ

i
k−1, y1:k ) ≈ N (θ̂

i
k|k ,P

i
k|k )

for each particle, where N (·) denotes the Gaussian distri-
bution and θ̂

i
k|k , P

i
k|k , respectively, represent i

th posterior
mean and the posterior covariance estimates at time k . This
update of density for each individual particle effectively
involves running a bank of N individual Gaussian filters.
Alternatively, [24], we can approximate q(θ ik |θ

i
0:k−1, y1:k ) =

P(θ ik |θ
i
k−1, y1:k ) ≈ N (θ̂k|k ,Pk|k ) for all the particles. This

requires a single Gaussian proposal at each time step and
is termed as global sampling. The authors have not come
across explicit comparison of global and local approaches

FIGURE 1. Wrapped normal distribution plot for zero-mean and
unity-variance.

to proposal density generation. Most of the subsequent dis-
cussion in this paper follows local sampling strategy. How-
ever, we also compare our results using the global sampling
strategy with those using the local sampling strategy in our
simulation examples.

Note that Gaussian proposal density characterizes any data
over entire real line. This is inappropriate characterization
of the angular data bounded within (−π, π] and can result
in poor accuracy for angular filtering. Here, we propose
a novel particle filtering algorithm for angular filtering by
characterizing the angular PDFs over (−π , π ] instead of the
entire real line. As discussed above, we also illustrate the
developed particle filtering method for both the locally and
globally defined proposal densities.

III. ROGERS-SZEGŐ PARTICLE FILTER
In this section, we introduce the proposed RSPF, which has
potential to be far more accurate for angular data appeared
over (−π , π ]. We approximate the unknown proposal density
with wrapped normal distribution 37, defined over (−π , π ].
Before proceeding further, we briefly discuss this distribution
in the next sub-section.

A. WRAPPED NORMAL DISTRIBUTION
The wrapped normal distribution may be obtained by wrap-
ping the horizontal axis of an ordinary normal distribution
curve around a unit circle [19]. Similar to a normal dis-
tribution, wrapped normal distribution is also completely
characterized by the mean and the variance. If θ is wrapped
normally distributed with mean µ and variance σ 2, then the
distribution of θ is given as [17],

fWN (θ;µ, σ 2) =
1

σ
√
2π

∞∑
l=−∞

exp
(
−(θ − µ−2π l)2

2σ 2

)
. (4)

The zero-mean and unit-variance wrapped normal dis-
tribution is plotted in Fig. 1. We refer to [17], [38],
[39] for more detailed discussion on the wrapped normal
distribution.
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B. PROPOSAL DENSITY APPROXIMATION
As stated in [38] and [17], the wrapped normal distribution
follows circular central limit theorem for angular data. Thus,
we consider the following approximations.

• The prior and posterior distributions of θ ik are
approximated as wrapped normally distributed, i.e.,
P(θ ik |yk−1) ≈ fWN(θ ik ; θ̂

i
k|k−1,P

i
k|k−1) and P(θ

i
k |yk ) ≈

fWN(θ ik ; θ̂
i
k|k ,P

i
k|k ), where fWN(·) represents multi-

variate wrapped normal distribution. Here, θ̂
i
k|k , P

i
k|k ,

respectively, represent the ith posterior mean and the
posterior covariance of the state at time k .

• We further approximate P(yik |yk−1) ≈ fWN(yik ; ŷ
i
k|k−1,

Pyyi
k|k−1), where ŷ

i
k|k−1 and Pyyi

k|k−1 denote the mean and
the covariance of yik , respectively.

• The desired proposal density is approximated as
wrapped normally distributed, i.e., q(θ ik |θ

i
0:k−1, y1:k ) ≈

fWN(θ ik ; θ̂
i
k|k ,P

i
k|k ).

• The noises, ηk and ϑk , are approximated as fWN(0,Qk )
and fWN(0,Rk ), respectively, where Qk and Rk are the
covariances of the respective noises.

• Additionally, we assume that the noises, ηk and ϑk are
independent of each other as well as serially indepen-
dent.

From the above assumptions, the proposal density can be
characterized by mean θ̂

i
k|k and covariance Pik|k for each

particle, which corresponds to local sampling in our earlier
discussion. As in any standard Gaussian filtering algorithm,
we obtain θ̂

i
k|k and Pik|k in two steps, prediction and update.

The prediction characterizes the PDF P(θ ik |yk−1) by com-

puting the mean θ̂
i
k|k−1 and covariance Pik|k−1. The update

characterizes the desired PDF P(θ ik |yk ) by determining the

mean θ̂
i
k|k and the covariance Pik|k approximately, using the

formulae for conditional mean and the conditional variance
for Gaussian distributions, which is a step similar to other
assumed Gaussian density filters [11], [39]. We provide the
computational aspects of these two steps in the following
discussion.

1) PREDICTION

This step computes θ̂
i
k|k−1 and P

i
k|k−1, respectively, as [23]

θ̂
i
k|k−1

=

∫
Dn
φk−1(θ ik−1)fWN(θ ik−1; θ̂

i
k−1|k−1,P

i
k−1|k−1)dθ ik−1,

(5)

Pik|k−1

=

∫
Dn
[φk−1(θ ik−1)φ

T
k−1(θ

i
k−1)fWN(θ ik−1; θ̂

i
k−1|k−1,

Pik−1|k−1)dθ ik−1]− θ̂
i
k−1|k−1θ̂

iT
k−1|k−1 +Qi

k . (6)

2) UPDATE

This step computes θ̂
i
k|k and P

i
k|k , respectively, as [23]

θ̂
i
k|k = θ̂

i
k|k−1 +Ki

k (yk − ŷik|k−1), (7)

Pik|k = Pik|k−1 −Ki
kP

yyi
k|k−1K

iT
k , (8)

where ŷik|k−1, P
yyi
k|k−1, P

θyi
k|k−1, andK

i
k are determined, respec-

tively, as [23]

ŷik|k−1 =
∫
Dn
ψk (θ ik )fWN(θ ik ; θ̂

i
k|k−1,P

i
k|k−1)dθ ik , (9)

Pyyi
k|k−1 =

∫
Dn
ψk (θ ik )ψ

T
k (θ

i
k )fWN(θ ik ; θ̂

i
k|k−1,P

i
k|k−1)

× dθ ik − ŷik|k−1ŷ
iT
k|k−1 + Ri

k , (10)

Pθyi
k|k−1 =

∫
Dn

θ ikψ
T
k (θ

i
k )fWN(θ ik ; θ̂

i
k|k−1,P

i
k|k−1)dθ ik

− θ̂
i
k|k−1ŷ

iT
k|k−1,

Ki
k = Pθyi

k|k−1(P
yyi
k|k−1)

−1. (11)

Eqs. (5) to (11) give the steps needed to gen-
erate the ith mean-covariance pair

(
θ̂
i
k|k ,P

i
k|k

)
, given(

θ̂
i
k−1|k−1,P

i
k−1|k−1

)
and the measurement yk . Note that

these equations use the same approximate equations for prior
and posterior distributions as in the case of other assumed
Gaussian density filters [12], apart from one crucial differ-
ence that wrapped normal density is used in place of normal
density for calculating moments.

The characterization of the proposal density using the
above equations requires computing integrals of the form

In(F) =
∫
Dn

F(θ )fWN(θ; θ̂ ,P)dθ , (12)

where F : Dn → Dn is a general nonlinear function.
As closed-form solution is not available for such integrals
in general, the proposed RSPF introduces Rogers-Szegő
quadrature rule [37], [40] for approximating such integrals.
The integrals occurring here are different from those which
occur in traditional proposal densities or in approximate
Gaussian filters [11], [12] or in traditional proposal densities
for particle filters [21], [22], [23], since these involve a
Gaussian density (rather than a wrapped normal density).

C. APPROXIMATION OF INTEGRALS
In this section, we introduce the Rogers-Szegő quadrature
rule for approximating the desired intractable integral In(F).
While the Rogers-Szegő quadrature rule is applicable only for
univariate systems, the desired integral In(F) is multivariate.
We additionally use the product rule [10] for extending the
univariate Rogers-Szegő quadrature rule to multivariate case.

We will first approximate the standard form (zero-mean
and unity-covariance) of In(F), given as

In0 (F) =
∫
Dn

F(θ )fWN(θ; 0, In)dθ , (13)
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where In represents the identity matrix. Further, themultivari-
ate integral In0 (F) can be expressed as

In0 (F) = I10 (F1)× I10 (F2)× · · · × I10 (Fn), (14)

where the univariate integrals I10 (Fs) ∀s ∈ {1, 2, · · · , n} can
be expressed as

I10 (Fs) =
∫ π

−π

F(θs)fWN (θs; 0, 1)dθs, (15)

with

fWN (θs; 0, 1) =

√
1
2π

∞∑
l=−∞

exp
(
−
(θs − 2π l)2

2

)
. (16)

The univariate Rogers-Szegő quadrature rule is designed for
approximating I10 (Fs) given in Eq. (15).

1) UNIVARIATE ROGERS-SZEGŐ QUADRATURE RULE
The Rogers-Szegő quadrature rule, designed for approximat-
ing I10 (Fs), is defined over unit circle U [41]. We denote the
unit circle as U = {Z ∈ C : |Z| = 1}, where Z = ejθs , while
C represents the set of all circles. The Rogers-Szegő quadra-
ture rule utilizes Rogers-Szegő polynomials [36], which are
orthogonal with the weight function fWN (θs; 0, 1) on unit
circle and also normalized, i.e.,

∫ π
−π

fWN (θs; 0, 1)dθs = 1.
Let us denote the Rogers-Szegő polynomials as νm(Z),
∀m ∈ {1, 2, · · · }, which are defined on unit circleU [36]. The
orthogonality of νm(Z) is defined in terms of inner product
of νm(Z) induced by fWN (θs; 0, 1). The inner product must
satisfy

<νm, νm̄>=
1
√
2π

∫ π

−π

νm(Z)νm(Z)fWN (θs; 0, 1)dθs= δm,m̄,

(17)

where ν̄m(Z) represents the conjugate of νm(Z) and δm,m̄
denotes Kronecker delta.

The Rogers-Szegő polynomials satisfying Eq. (17) are
obtained frommonic sequences evaluated from iterative solu-
tions of Rogers-Szegő forward recurrence relation [42]. Let
us denote γm(Z), ∀m ∈ {1, 2, · · · }, as the monic sequences of
νm(Z), then the Rogers-Szegő forward recurrence relation is
given as [43],[

γm(Z)
γ ∗m(Z)

]
=

[
Z βm
β̄mZ 1

] [
γm−1(Z)
γ ∗m−1(Z)

]
, (18)

where m ≥ 1, γ ∗m(Z) is reciprocal of γm(Z), and βm = γm(0)
∀m ≥ 0 is Verblunsky coefficient 37. The reciprocal value
γ ∗m(Z) is obtained as γ ∗m(Z) = Zmγm(1/Z̄), where γ̄m denotes
the conjugate of γm. As mentioned in [36], the recurrence
relation can be initiated with γ0(Z) = γ ∗0 (Z) = 1. Moreover,
β0 = 1 and |βm| < 1 ∀m ≤ 1 37. The readers may refer
to [36], [41] for a detailed discussion on γm(Z), βm, and the
properties of Rogers-Szegő polynomials for the family of
orthogonal polynomials on U.

The solution of the recurrence relation Eq. (18) corre-
sponding to fWN (θs; 0, 1) gives the desired monic sequences
in terms of τ -binomial coefficient as 37

γm(Z) =
m∑
j=0

(−1)m−j
[
m
j

]
τ

τ
m−j
2 Zj, (19)

where τ -binomial coefficient is[
m
j

]
τ

=
(m)τ

(j)τ (m−j)τ
=

∏m
k=m−j+1(1−τ

k )∏j
k=1(1−τ

k )
,

with 0 < τ < 1 and

(0)τ =
(
m
0

)
τ

=

(
m
m

)
τ

= 1.

After γm(Z) is obtained from Eq. (19), the mth Rogers-Szegő
polynomial is obtained as

νm(Z) =
1

√
(m)τ

γm(Z), (20)

where

(m)τ =
m∏
j=1

(1− τ j).

From [41], τ = e−1 corresponding to the desired weight
function fWN (θs; 0, 1). Utilizing the above interpretations, 37
derives and states that the Ns number of desire Rogers-Szegő
quadrature points can be obtained as the phase of complex
roots of the polynomial

ANs (Z) =
Ns∑
j=0

Bj
[
1+ δ(−1)Nsτ (j−Ns/2)

]
Zj, (21)

where |δ| = 1 and

Bj = (−1)Ns−j
[
Ns
j

]
τ

τ
Ns−j
2 ,

with j ∈ {1, 2, · · · ,Ns}. Let us denote the roots of ANs (Z) as
λj, ∀j ∈ {1, 2, · · · ,Ns}. Then, the jth Rogers-Szegő quadra-
ture point is obtained as χj = 6 λj ∀j ∈ {1, 2, · · · ,Ns}. Sub-
sequently, the weight Wj associated with χj can be obtained
in terms of monic sequence γNs as 37

Wj =
(Ns)τ

2Re[λjγ ′Ns (λj)γNs (λj)]− Ns|γNs (λj)|
2
, (22)

where Re[·] represents the real part of complex number and
γ ′ denotes the first derivative of γ .

After χj and Wj are obtained the univariate integral I10 (Fs)
given in Eq. (15) can be approximated as

I10 (Fs) ≈
∫ π

−π

F(θs)fWN (θs)dθs ≈
Ns∑
j=1

F(χj)Wj. (23)

Table-1 illustrates the complex values of λ, the angular points
χ , and the associated weights W for eight-points univariate
Rogers-Szegő quadrature rule with τ = e−1. Please note that
τ = e−1 is an essential requirement for the proposed RSPF
as mentioned above.
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TABLE 1. Univariate quadrature points and associated weights for
τ = e−1 and Ns = 8.

2) MULTIVARIATE EXTENSION OF ROGERS-SZEGŐ
QUADRATURE RULE
In the above discussion, we introduced the univariate Rogers-
Szegő rule for approximating the univariate integral I10 (Fs).
We now extend the univariate Rogers-Szegő rule for approx-
imating the multivariate integral In0 (F).

The product rule states that given the univariate Rogers-
Szegő quadrature points {χ1, χ2, · · · , χNs} and the associated
weights {W1,W2, · · · ,WNs}, we can approximate In0 (F) as

In0 (F) ≈
Ns∑
s1=1

Ns∑
s2=1

· · ·

Ns∑
sn=1

F
(
[χs1 , χs2 , · · · , χsn ]

) n∏
j=1

Wsj ,

(24)

where s1, s2, · · · , sn ∈ {1, 2, · · · ,Ns}.
Finally, we can approximate the desired intractable integral

In corresponding to fWN(θ; θ̂ ,P), as

In ≈
Ns∑
s1=1

Ns∑
s2=1

· · ·

Ns∑
sn=1

F
(
θ̂ + S[χs1 , χs2 , · · · , χsn ]

) n∏
j=1

Wsj .

(25)

We can rewrite the above expression as

In ≈
Np∑
j=1

F
(
θ̂ + S4j

)
Wj, (26)

where Np = (Ns)n denotes the number of the mul-
tivariate Rogers-Szegő quadrature points, while 4j =[
χs1χs2 , · · · , χsn

]
andWj =

∏n
j=1Wsj , with s1, s2, · · · , sn ∈

{1, 2, · · · ,Ns}, represent the multivariate quadrature points
and weights, respectively. Moreover, S represents the
Cholesky decomposition of P, i.e., P = SST .
We can use the product rule-based multivariate Rogers-

Szegő quadrature rule for approximating the intractable
integrals appeared through Eqs. (5) to (11). Subsequently,
we can construct the proposal density q(θ ik |θ

i
0:k−1, y1:k ) ≈

fWN(θ ik ; θ̂
i
k|k ,P

i
k|k ) by determining the mean θ̂

i
k|k and the

covariance Pik|k from Eqs. (7) and (8), respectively. Consid-
ering that the multivariate quadrature points and weights, i.e.,
4j andWj, ∀j ∈ {1, 2, · · · ,Np}, are available, we refer to [23]
for analytical steps used for implementing the prediction and
update steps discussed in Section III-B.

D. PARTICLE FILTERING WITH WRAPPED PROPOSAL
DISTRIBUTION
We now introduce the proposed RSPF using the wrapped
normal distribution for handling angular data. The RSPF
uses the proposal density determined through the subsec-
tions III-A-III-B in particle filtering. As discussed previously,
we develop two filters, one for local sampling and another for
global sampling. We abbreviate the two filters as LRSPF and
GRSPF, respectively. The previous discussions of this section
provides the formulations for the local sampling, i.e. for
the LRSPF. The formulation for GRSPF is similar, although
simpler due to a single filter at each time step.

1) LRSPF
The implementation of the proposed LRSPF comprises the
following steps.
• Initialization: We initialize the filter at k = 0 with
initial state θ0 and initial covariance P0|0. Subsequently,
we generate the initial set of particles as {θ i0}

N
i=1 ∼ P(θ0)

and the associated weights as {ωi0}
N
i=1 = 1/N .

• Particles and weights calculation at k th instant (k ≥ 1):
Construct the initialization for k th instant from the latest
particles and covariance (assign θ̂

i
k−1|k−1 andP

i
k−1|k−1),

and follow the steps below.
– Propagate θ̂

i
k−1|k−1 and Pik−1|k−1 through Eqs.

(5) to (11) to obtain θ̂
i
k|k and Pik|k for each par-

ticle. Then, the particles are updated by sam-
pling from wrapped normal distribution as θ̃

i
k|k ∼

fWN(θ ik ; θ̂
i
k|k ,P

i
k|k ).

– Subsequently, the weights are updated as

ωik ∝ ω
i
k−1

P(yk |θ̃
i
k|k )P(θ̃

i
k|k |θ

i
k−1)

q(θ̃
i
k |θ

i
0:k−1, y1:k )

. (27)

• Weight normalization: The weights are normalized as

ωik =
ωik∑N
i=1 ω

i
k

, (28)

and determine the effective sample size Neff as

Neff ≈
1∑N

i=1(ω
i
k )

2
. (29)

• Re-sampling: If Neff is below a preassigned threshold
value Nth, then we perform re-sampling [22] and a new
set θ ik ∀i ∈ {1, 2, · · · ,N } is generated from the current

set of particles θ̃
i
k ∀i ∈ {1, 2, · · · ,N }. In general,

we consider Nth = 2/3N . Furthermore, a new updated
weights are obtained as, ωik = 1/N .

• Estimation: Finally, the desired estimate and covariance
are obtained as

θ̃k|k ≈

N∑
i=1

ωikθ
i
k , (30)

P̃k|k ≈
N∑
i=1

ωik

(
θ ik − θ̃k|k

) (
θ ik − θ̃k|k

)T
. (31)
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The LRSPF requires implementing the algorithm discussed
through Eqs. (5) to (11) implemented once for each particle,
which increases the computational demand.

2) GRSPF
In an alternatemethod to the LRSPF, a single proposal density
is globally defined in order to reduce the computational
demand. This single proposal density is used for generating
all particles. The steps for implementing the GRSPF is pro-
vided below.
• Initialization: This step is same as the LRSPF, which can
be followed from the previous discussion.

• Compute the mean and covariance of particles at k th

instant (k ≥ 1):

θ̂k−1|k−1 ≈

N∑
i=1

ωik−1θ
i
k−1, (32)

Pk−1|k−1≈
N∑
i=1

ωik−1

(
θ ik−1−θ̂k−1|k−1

)(
θ ik−1−θ̂k−1|k−1

)T
.

(33)

– Propagate θ̂k−1|k−1 and Pk−1|k−1 through the algo-
rithm discussed in Section III-B to obtain θ̂k|k and
Pk|k for single mean and covariances.

• Compute particles: Generate the desired particles as
{θ̃
i
k}
N
i=1 ∼ fWN(θ̂k|k ,Pk|k ).

• Compute weights: Update the weights

ωik ∝ ω
i
k−1

P(yk |θ̃
i
k|k )P(θ̃

i
k|k |θ

i
k−1)

q(θ̃
i
k |θ

i
0:k−1, y1:k )

. (34)

• The remaining steps are same as those discussed for
LRSPF.

For angular data, the proposed RSPF with wrapped normal
proposal and Rogers-Szegő quadrature rule for integration
is more accurate than the numerical approximation meth-
ods used in the state-of-art particle filters such as the UPF,
CPF, and GHPF under assumed Gaussian density, as amply
illustrated in the next section. The LRSPF is slightly more
accurate than the GRSPF due to the local sampling and may
be preferred if computational budget is available.

For angular data, the wrapped normal distribution is prob-
ably the most appropriately shaped distribution for which
numerical approximation methods to the desired multivari-
ate integrals are available. We have used this intuition to
develop a new particle filtering algorithm. In the next section,
we demonstrate its superior performance on simulation exam-
ples on multivariate nonlinear systems where data is inher-
ently angular.

IV. SIMULATION EXAMPLES
In this section, we validate the performance of the proposed
RSPF for two angular filtering problems. The simulation is
performed in MATLAB on a PC with Intel Core i5, 7th gen
processor running at 3.40 GHz, 32 GB RAM, and a 64-bit
operating system.

We compare the performance of the proposed LRSPF and
GRSPF with various existing filters, including the particle
filter with transition density as its proposal (referred to as
PF) [20], unscented particle filter or the UPF [21], cubature
particle filter or the CPF [22], and Gauss-Hermite particle
filter or the GHPF [23], and the existing nonlinear circular
filter (CF) [19]. The existing filters, UPF, CPF, and GHPF
are implemented with local sampling to characterize them
with their best accuracy. Note that CF is applicable only for
univariate systems. Thus, it will be included in comparison
for the first simulation problem only, as the second problem
is multivariate.

The proposed LRSPF, GRSPF, andGHPF are implemented
with two univariate quadrature points. The κ parameter for
implementing the UPF is assigned as κ = 4. Finally, CF is
applied by considering a three-point wrapped Dirac mixture
distribution.

The performance analysis and comparison are based on
angular root mean square error (RMSE) between the true and
estimated states. Note that the true and the estimated states
may often fall beyond the angle range (−π , π ] due to noise.
In such cases, we perform aliasing to obtain the equivalent
angle within (−π , π ]. The angular root mean square error
(RMSE) is expressed as,

RMSEk=

√√√√ 1
MC

MC∑
i=1

(
min

(
|θ̃ ik|k−θ

i
k |, 2π − |θ̃

i
k|k − θ

i
k |

))2
where θ ik and θ̃

i
k|k are the true and the estimated states at k th

time-step and in ith simulation run, and MC is the number of
Monte-carlo simulations.

A. PROBLEM 1
This is an angle estimation problem of a robot’s arm [19],
which is briefly discussed in the introduction section. The
dynamic state space model of the system is given as [19]

θk = θk−1 + d1 sin(θk−1)+ d2 + ηk−1, (35)

yk =
[
sin(θk )
cos(θk )

]
+ ϑk , (36)

where d1 and d2 are constants.
The initial true and estimated states are taken as θ0 = 0 and

θ̃0|0 = π , respectively, while the initial variance is taken
as P0|0 = 2. We assign d1 = 0.1, d2 = 0.15, Q =

0.1, and R = diag(0.2, 0.2). The simulation is performed
for 200 time-steps and angular RMSEs are computed by
implementing 1000 Monte-Carlo simulations.

Fig. 2 shows the angular RMSE plots and Table-2 shows
the average angular RMSEs of the LRSPF, GRSPF and the
existing filters using different numbers of particles. The fig-
ure and table together indicate that RMSE is significantly
reduced for both the LRSPF and GRSPF, as compared to the
existing choices of proposal densities, viz PF, UPF, CPF and
GHPF. More specifically, Table 2 concludes that the aver-
age angular RMSEs of LRSPF and GRSPF (100 particles)
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FIGURE 2. Problem 1: Angular RMSE plot with time for the proposed and
the existing filters.

TABLE 2. Problem 1: Average angular RMSEs obtained for the proposed
filter and the existing filters with varying number of particles.

TABLE 3. Problem 1: Relative computational times for the proposed filter
and the existing filters with varying number of particles.

are reduced by 26.45% and 18.05%, respectively compared
with the PF. We can observe a similar relative percentage
of improvement for the proposed filters compared with the
remaining existing filters. However, it is also interesting to
note that the existing circular filter CF outperforms the other
existing filters.

The RMSE of the GRSPF is higher than the LRSPF,
as expected. However, even global sampling using wrapped
normal distribution as a proposal (i.e. the GRSPF) leads to
a better estimation accuracy than Gaussian density proposal
filters using local sampling, even as local sampling leads to
a significantly higher computational cost.

Relative computational times of different filters are listed
in Table 3. Thus, the computational time for the proposed
GRSPF is lower than all the algorithms which require local
sampling, while it still delivers a superior estimation per-
formance to PF, UPF, CPF and GHPF. CF is not a particle
filtering algorithm and has a constant computational cost
as well as constant RMSE, relative to the number of par-
ticles. Note that global sampling in UPF, CPF and GHPF
leads to poorer accuracy than that using local sampling, and
hence, the results of the global sampling for these algorithms
are omitted. LRSPF further increases the accuracy of our

FIGURE 3. Problem 2: Angular RMSE plot with time for the proposed and
the existing filters.

FIGURE 4. Problem 1: Comparison of the average angular RMSEs for the
proposed RSPF and the existing filters under three different scenarios.

algorithm, at the expense of somewhat higher computational
cost.

B. PROBLEM 2
The second problem considered is a general multivariate
nonlinear angular estimation problem [14]. In this prob-
lem, the state dynamics are of oscillatory nature, while the
measurement equation is a monotone increasing function of
arguments (e.g. a positive quadratic form or its positive square
root). Similar, system models often appear in sonar-based
bearing measurements and GPS (Global positioning system)-
based information on the angle of arrival. This problem
has been widely used in literature [11], [14], [44], [45] for
validating the filtering performance. The state-space model
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TABLE 4. Problem 2: Average angular RMSEs obtained for the proposed filter and the existing filters with varying number of particles.

FIGURE 5. Problem 2: Comparison of the average angular RMSEs for the proposed RSPF and the existing filters under three different
scenarios.

of this problem can be written as [14],

θk = |2 cos(θk−1)| + ηk−1, (37)

yk =
√
(1+ θTk θk )+ ϑk . (38)

We consider a three-dimensional system (θk ∈ D3, yk ∈
D) and assign the initial true and estimated states as θ0 =

[0,−π, π]T and θ̃0|0 = [−π, π, π/2]T , respectively, while
initial error covariance is taken as P0|0 = 2In. The noise
covariances are assigned asQ = diag([0.05, 0.05, 0.05]) and
R = 0.1. The states are estimated for 200 time-steps and the
results are evaluated by performing 1000 Monte-Carlo runs.

Fig. 3 shows the angular RMSE plots of the three states
obtained using the LRSPF, GRSPF and the existing fil-
ters. Moreover, Table-4 shows the average angular RMSEs
obtained using each filter for varying number of particles.
Note that the figures and table do not include the results
for CF, as this problem is multivariate. As in the case of
problem 1, LRSPF and GRSPF yield lower average angu-
lar RMSE than all the other filters examined. Furthermore,
Table 4 concludes that the average angular RMSEs of LRSPF
and GRSPF (100 particles) are reduced by 22% and 18.25%,
respectively compared with the PF.We can conclude a similar
relative percentage of accuracy improvement for the proposed
filters compared to other filters as well. The order of compu-
tational times of all filters was observed similar to the order
reported for the first problem. In this case as well, GRSPF
gives a better accuracy than existing Gaussian proposal filters
at a lower computational cost.

C. NOISE PARAMETER VARIATIONS
We further study the effect of varying process and measure-
ment noise parameters on the performance of the proposed

RSPF. In this regard, we define three different scenarios by
varying the process and measurement noise covariances Q
and R. For the first problem, the three different scenarios are
defined as: Scenario 1: Q = 0.05, and R = diag(0.02, 0.02),
Scenario 2: Q = 0.1, and R = diag(0.2, 0.2), and Scenario
3: Q = 0.5, and R = diag(1, 1). Similarly, we define
the three scenarios for the second problem as: Scenario 1:
Q = diag([0.05, 0.05, 0.05]) and R = 0.1, Scenario 2:
Q = diag([0.25, 0.25, 0.25]) and R = 0.5, and Scenario 3:
Q = diag([0.5, 0.5, 0.5]) and R = 1. We draw the bar charts
of the average angular RMSEs obtained for the proposed and
the existing filters for all three scenarios in Fig. 4 for Problem
1 and in Fig. 5 for Problem 2. In all the cases, the average
angular RMSE is lower for the LRSPF and the GRSPF as
compared to the other filters.

D. DISCUSSION
The simulation results infer that the proposed RSPF outper-
forms the traditional PF, the existing extensions of the PF
(such as the UPF, CPF, and GHPF), and the circular filter
CF for angular data. Interestingly, the proposed RSPF could
outperform all the existing forms of PF at lower computa-
tional demand. We also introduce two forms of the proposed
RSPF, abbreviated as LRSPF and GRSPF. They can be used
to achieve a different trade-off between the accuracy and
computational demand, particularly if the number of particles
is high. We also observe that the proposed RSPF outperforms
all the existing filters for various noisy environments, which
validates the improved accuracy of the proposed method
under different practical scenarios.

V. CONCLUSION
The particle filtering is a popular and widely accepted non-
linear filtering method available in literature. A crucial deter-
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minant of its performance is the choice of proposal density.
Most existing particle filters use Gaussian proposal and tend
to perform poorly for estimation of angular quantities on a
restricted domain. The proposed RSPF uses wrapped nor-
mal distribution instead of the ordinary normal distribution
as the proposal density. Subsequently, it closely represents
the proposal density for angular data. Further, we propose
to use i) conditional density approximation similar to the
Gaussian filtering case to derive posterior densities and ii)
use Rogers-Szegő quadrature rule along with the product
rule for approximating the integrals involved. We compare
the performance of two variants of the new filter (with local
sampling and with global sampling) with existing Gaussian
filters. On two different simulation examples, the proposed
filter is shown to outperform Gaussian proposal filters com-
prehensively. We show that even a global sampling variant of
our filter is more accurate than the local sampling versions of
existing Gaussian filters, even though global sampling leads
to a significantly reduced computational cost. Local sampling
version of the RSPF can lead to somewhat increased accuracy
at the cost of a higher computational load. Additionally, the
product rule suffers from the curse of dimensionality prob-
lem [46]. However, the practitioners may replace the product
rule with the Smolyak rule [46] and adaptive sparse-grid
method [47] to partially address this problem.

DATA ACCESS STATEMENT
This research did not use any experimentally generated data
or data from any publicly available dataset. Model definitions
(including the specified probability distributions) and param-
eter values (including the initialization parameters) provided
in the paper are adequate for reproducing the exact qualitative
behavior of the algorithms illustrated in the paper.
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