
Received 22 June 2022, accepted 12 August 2022, date of publication 19 August 2022, date of current version 26 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3200477

ShieldRNN: A Distributed Flow-Based DDoS
Detection Solution for IoT Using
Sequence Majority Voting
FARIS ALASMARY 1, SULAIMAN ALRADDADI2, SAAD AL-AHMADI 1, (Senior Member, IEEE),
AND JALAL AL-MUHTADI 1
1Department of Computer Science, King Saud University, Riyadh 11451, Saudi Arabia
2Department of Computer Science and Engineering, Yanbu University College, Yanbu 46435, Saudi Arabia

Corresponding author: Faris Alasmary (faris.alasmary@gmail.com)

This work was funded and supported by the Deanship of Scientific Research at King Saud University through the initiative of the DSR
Graduate Students Research Support (GSR).

ABSTRACT The Distributed Denial of Service (DDoS) attack is considered one of the most critical threats
on the Internet, blocking legitimate users from accessing online services. Botnets have exploited insecure IoT
devices and used them to launch DDoS attacks. Providing IoT devices with the ability to detect DDoS attacks
will prevent them from becoming contributors to these attacks. This paper presents an efficient solution to
defend IoT devices against such inevitable attacks. The proposed solution consists of two parts: an IoT node
detector and a server detector. The IoT node detector is a lightweight classifier to monitor egress traffic.
The server detector is a more accurate classifier that is used by the IoT node if it suspected itself to be a
contributor to a DDoS attack. To develop an accurate server detector, this paper proposes ShieldRNN: a novel
training and prediction approach for RNN/LSTMmodels.We compare ShieldRNNwith other supervised and
unsupervised models on the CIC-IDS2017 dataset and show that it outperforms them. Also, we set baseline
results for DDoS detection on the CIC IoT 2022 dataset.

INDEX TERMS Distributed denial of service (DDoS), anomaly detection, intrusion detection system (IDS),
machine learning, majority voting.

I. INTRODUCTION
The Denial of Service (DoS) attack is one of the most dan-
gerous threats an organization may face. The attack is defined
as an attempt to overload the capabilities of the victim’s
machine and makes it unavailable to other legitimate users
and devices. In this type of attacks, the attacker uses a single
machine to launch the attack. Another variant of this attack
is called the Distributed Denial of Service (DDoS) attack
which involves multiple machines, that are controlled by
the attacker, to launch the attack at the same time on the
victim’s machine [1]. One of the most popular DDoS attacks
was the Mirai Attack that happened in October 2016 when
many popular websites were affected including: Twitter, Net-
flix, Amazon, and Github [2]. This attack was done using
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hundreds of thousands of Internet of Things (IoT) devices [3]
that were infected by the Mirai botnet. A botnet is defined
as a network of infected machines called zombies that are
controlled by a botmaster [1]. Figure 1 shows the botnet
architecture in general. Experts nowadays consider IoT bot-
nets as the new norm of DDoS attacks [3]. There has been
different techniques proposed to detect DDoS attacks that
can be categorized as: Payload-based techniques and Flow-
based techniques. A flow can be defined as the stream of
packets that have common network characteristics such as
the network protocol, source IP and destination port [4].
The flow-based methods inspect the packet header only
while the payload-based methods analyze the information
inside the packet. The flow-based analysis is not as accurate
as the payload-based analysis since it inspects the packet
header and it cannot detect the hidden attacks inside the
packet payload [5], [6]. In DDoS attacks, the number of
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FIGURE 1. This diagram shows a DDoS attack using a botnet.

received packets at the victim’s machine is huge and the
packets have source IP addresses that are nearly random [4].
Moreover, the timing between received packets can play
an important role in detecting incoming or outgoing DDoS
attacks [2]. In this paper, we focus on DDoS attacks detection
based on the traffic flow.

II. RELATED WORKS
Intrusion Detection Systems (IDS) and Intrusion Preven-
tion Systems (IPS) can be classified mainly into rule-based
and machine-learning-based systems. Most of the available
detection systems rely on the signature of the attacks. These
systems match incoming network traffic with a predefined
set of rules to detect attack patterns [7]. One of the most
popular rule-based IDSs is called Snort that was devel-
oped in 1998 by Martin Roesch [8]. Another well-known
rule-based system is called Suricata [9]. Shah et al. [10]
investigated the performance of Snort and Suricate in terms
of utilization of computational resources as well as the pro-
cessing efficiency. They showed that Snort is lighter, i.e.,
it utilizes less computational resources compared to Suricate.
On the other hand, Suricate achieved a higher processing rate,
with slightly highermemory usage, whichwasmore than 82K
packets/second compared to Snort’s rate that was about 60K
packets/second. Thememory usage of both systemswasmore
than 3 GBytes which indicates that they are not suitable to
be implemented in low-resource IoT devices. Zitta et al. [11]
implemented Suricate on Raspberry Pi 3 with some rules to
detect port scanning activities but there was no data provided
regarding the required processing time and the hardware uti-
lization. Researchers in [12] proposed early DDoS detection
in Software-Defined Networking (SDN) using Snort.

The machine-learning-based approaches include classi-
cal machine-learning algorithms such as Support Vector
Machine (SVM), Artificial Neural Network (ANN), and
Naïve Bayes as well as deep-learning algorithms such as
Convolutional Neural Network (CNN), Recurrent Neural

Network (RNN), and Long-Short Term Memory (LSTM).
Machine-learning-based algorithms can guarantee the detec-
tion of known attacks and similar unknown attacks even
if they were not seen before during the training phase [7].
Shafiq et al. [13] explored five well-known machine learning
algorithms and they developed a framework for automatic
effective algorithm selection. They found that the Naïve
Bayes classifier achieved the best performance in anomaly
and intrusion detection in IoT network. Doshi et al. [2]
tested five different machine learning algorithms after they
collected their own dataset and hand-engineered a set of
useful features based on the traffic flow. Another group
of researchers at the University of Chinese Academy of
Sciences [14] proposed a solution based on the Random
Forest algorithm using the NetFlow data to detect DDoS
attacks. Hodo et al. [15] developed an ANNmodel for DDoS
detection on a simulated IoT network. Khater et al. [16]
implemented lightweight intrusion detection using the ANN
algorithm on a Raspberry Pi 3 and reported the energy con-
sumption and CPU utilization while running their system.
Using deep learning algorithms, the papers [17], [18], [19]
showed that the RNN algorithm can improve DDoS detection
compared to the classical machine learning algorithms. The
CNN algorithm has shown that it can be applied for anomaly
detection tasks such as DDoS attacks [20], [21], [22].

Different from the above works, we propose a machine-
learning-based system to be implemented in two stages: an
IoT node detector and a server detector. The IoT node detec-
tor is a lightweight classifier to monitor egress traffic. The
server detector is an accurate deep learning classifier that
is utilized by the IoT node if it detected or suspected that
it is attempting a DDoS attack. Our proposed system aims
to provide a DDoS detection functionality on the IoT node
and minimizes the workload of processing all traffic from all
connected IoT nodes. It helps IoT nodes to recognize if they
are zombies (bots) of a botnet DDoS attack by providing them
with intelligent decision making capabilities. Figure 3 shows
the proposed system architecture. This system architecture
can be beneficial for organizations that have multiple IoT
devices connected to the Internet to analyze the traffic of
each IoT node inside the node itself instead of analyzing
the whole traffic in a central server. For example, it can be
used by an organization that has surveillance cameras which
are connected to the Internet where each camera analyzes
its own traffic to detect abnormal activities and sends the
suspected packets to the accurate detector server to get the
final decision.

III. EXPERIMENT
We setup our experiment to perform and detect four
well-knownDDoS attacks: TCP SYNflood, UDP flood, TCP
PSH+ACK flood, and ICMP flood [23]. We developed a
tool to launch these attacks randomly with a random number
of packets per attack, random source and destination ports,
and a randomly generated (spoofed) source IP address using
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FIGURE 2. The distribution of packets in our dataset.

FIGURE 3. The proposed system architecture. At the beginning, the DDoS
worm compromises the IoT device. Then the attacker sends a command
to the worm to launch the DDoS attack. After that, the lightweight
classifier in the IoT node detects an abnormal behaviour and the IoT
device sends the suspected packets to the ShieldRNN server. Finally, the
ShieldRNN server analyzes the suspected packets and sends the final
decision to the IoT node.

Scapy1 library for packet manipulation. The source code of
the implementation of this paper is available on Github.2

A. DATA COLLECTION
To collect data, we started packet sniffing using Wireshark3

for nearly 24 minutes to collect normal traffic including web
browsing, YouTube watching, and WhatsApp chatting in the
web version. At the beginning, we collected 65,314 packets
of normal traffic. After that, we launched randomDoS attacks
with random number of packets per attack on a victim server
using our own Python script. We collected a mix of normal
and attack packets for more than 102 minutes and we stopped
the attack script. Finally, we collected about 17 minutes of

1https://github.com/secdev/scapy
2https://github.com/farisalasmary/shieldrnn
3https://www.wireshark.org

TABLE 1. Features extracted from each packet.

normal traffic again and stopped Wireshark traffic sniffing.
Figure 2 shows the distribution of packets in the collected
dataset.

B. FEATURE EXTRACTION AND PACKET LABELLING
We used a combination of the features mentioned in [2]
and [24]. The features were extracted from the frame header,
IP packet header, TCP segment header, and UDP datagram
header. Table 1 shows the extracted features from each
packet. In the case of UDP packets, the features tcp.srcport,
tcp.dstport, and tcp.len are replaced with those of the UDP
header information. We selected the top 5 most frequent
protocols from the feature protocol and one-hot encoded
them as ‘‘is_TCP’’, ‘‘is_UDP’’, ‘‘is_SSL’’, ‘‘is_ICMP’’, and
‘‘is_DNS’’. For other protocols, we simply encoded them as
‘‘is_OTHER’’ [2].
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For packets’ labelling, a packet is considered as an attack
packet if its destination IP address was the IP address of the
victim’s server, otherwise, it is considered as a normal packet.

C. DATA PREPROCESSING
As the first task, we kept the dataset in the same order in
which it was captured. Then, the whole 2D dataset matrix was
converted into a 3D tensor such that each consecutive seq_len
packets are considered as a single example that would be fed
into a sequence model like RNN and LSTM. For example,
if the seq_len = 10, it means that every 10 consecutive
packets form a single training example that will be fed to
the sequence model and each packet represents the input
vector for a specific time step t. The final 3D tensor size
is num_examples × seq_len × num_features instead of the
original 2D matrix size total_num_packets × num_features
where num_examples is the number of examples, seq_len is
the sequence length, i.e., the number of packets per exam-
ple, num_features is the number of features which repre-
sents the input size of the model, and total_num_packets =
num_examples×seq_lenwhich is the total number of packets
in the dataset. Before splitting the dataset into a training set
and a testing set, we needed to ensure that the following two
conditions are satisfied:

1) The packets must be in the same order as they were cap-
tured to allow the sequence model to learn the correct
sequence.

2) Shuffling the data before splitting it into a training set
and a testing set so that different normal scenarios and
different attack scenarios can be seen in both sets.

These conditions contradict each other since we can’t pre-
serve the right order while we need to randomly shuffle the
data before splitting it. To solve this problem, we developed
an improved version of the train_test_split algorithm that
takes different seq_len values, e.g. 5, 10, 20, 50, 100, 250,
500, 1000 as in our experiments, converts the 2D data matrix
into a 3D tensor with the largest seq_len in the provided
list, shuffle and split the data into training and testing data,
and convert it back into a 2D matrix to use the training
set in feature normalization and feature selection. The idea
behind splitting data into training and testing datasets after
we created the 3D tensor is that we wanted to preserve the
right order in which the packets were captured and to shuffle
by examples instead of shuffling by packets. Selecting the
largest seq_len to convert the 2D matrix into a 3D tensor
before data splitting ensures the minimal error in the number
of examples that contains out of order packets. This will
be useful later when using smaller values of seq_len during
training. Algorithm 1 and Figure 4 explain these steps in
details.

We split the dataset into a training set (90%) and a testing
set (10%). We chose this data split ratio since the data we
used has a large number of examples. Therefore, we want
to use most of the data for training but not by affecting the
testing phase which will still have a large number of examples
to test the model on. After data splitting, we normalized the

Algorithm 1 improved_train_test_split
Input: S: a list of predefined sequence lengths.

X : a matrix of size m× n contains the packets.
y: a vector of size m× 1 which contains the
labels of each packet.
α: a scalar between 0 and 1 represents the
percentage of the training dataset.
Where m is the number of packets and n is the
number of features.

Output: Xtrain: a matrix of size p× n.
ytrain: a vector of size p× 1.
Xtest : a matrix of size q× n.
ytest : a vector of size q× 1.
Where p← floor(α × m) and q← (m− p)

1 Tlongest ← MAX (S)
2 X3d , y3d ← matrix_to_tensor(X , y,Tlongest )
3 X3d_train, y3d_train, X3d_test , y3d_test ←
train_test_split(X3d , y3d , α)

4 Xtrain, ytrain←
tensor_to_matrix(X3d_train, y3d_train, Tlongest )

5 Xtest , ytest ←
tensor_to_matrix(X3d_test , y3d_test , Tlongest )

6 return Xtrain, ytrain, Xtest , ytest

training set feature-wise across all packets in the training set
to have a zero-mean and a unit-variance. One-hot encoded
features and bit features, e.g. TCP flags bits, were not normal-
ized. Feature normalization was crucial for the models during
training to converge. We applied the same normalization
process on the testing set usingmeans and variances that were
calculated using the training set. In production environment,
we propose to use exponentially weighted moving averaging
(EWMA) and variance (EWMV) [25] estimation to cope with
any changes in DDoS attacks trends using equation 1 and
equation 2:

At = αxt + (1− α)At−1 (1)

Vt = β(xt − At )2 + (1− β)Vt−1 (2)

where xt is the current packet, At−1 and Vt−1 are the previous
EWMA and EWMV, respectively. α and β are controllable
parameters that specify howmuch we depend on the previous
EWMA, EWMV, and the current packet xt to calculate the
current EWMA (At ) and EWMV (Vt ), respectively. We set
A0 to be the average and V0 to be the variance which were
calculated on the training set.

D. FEATURE SELECTION
We trained a logistic regression classifier with LASSO reg-
ularization and applied a grid search with 5-fold cross-
validation to get the best estimate for the regularization
coefficient. Then, we trained another classifier with the best
estimated regularization coefficient and extracted the selected
features by the algorithm. The best estimated regularization
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FIGURE 4. The process of converting the dataset from a 2D matrix into a 3D tensor of sequences of packets and vice versa.

FIGURE 5. The prediction techniques that were explored in this paper.

coefficient was 103. Figures 8a and 8b in Appendix A show
the selected features and the discarded features by LASSO,
respectively.

E. TRAINING THE LIGHTWEIGHT DETECTOR FOR THE IoT
NODE
We trained 12 classifiers: 4 ANNs with a single hidden layer
with sizes: [3, 5, 10, 20] neurons, 1 Logistic Regression (LR)
classifier, 3 Random Forest classifiers with different numbers
of trees: [3, 5, 10], 3 SVM classifiers with kernels: [linear,
RBF, Polynomial with the third degree], and 1 Naïve Bayes
classifier. Random Forest classifiers achieved the best results
compared to other classifiers when they were evaluated on
the testing set. Models’ results are shown in Figure 6.

F. TRAINING THE ACCURATE DETECTOR FOR THE SERVER
We trained multiple RNN and LSTMmodels using two tech-
niques that we developed for training and prediction. The first
technique is to train the sequence model to predict a label
for each packet in the training example, i.e., a sequence-to-
sequence training. The prediction for this technique is done
as a majority voting, i.e., if most of the sequence packets are

FIGURE 6. Comparison between different classifiers to choose the IoT
node detector.

predicted as attack packets, then the final prediction of the
whole sequence is attack, otherwise, the final prediction is
normal. The training procedure is explained in Algorithm 5.
The majority voting prediction is detailed in Algorithm 4 and
shown in Figure 5a.

The second technique is to train the sequence model to
predict the last output of a given training example as attack
if the majority of its ground-truth labels are attack labels.
The idea is to compute the majority of the labels in the
ground-truth and force the model to learn to output the label
of the last output of the given sequence as the label of the
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FIGURE 7. Our models vs. LUCID.

Algorithm 2 Train_RNN_Mix_Seq_lens
Input:M : a vanilla RNN model or its variants.

S: a list of predefined sequence lengths.
X : a matrix of size m× n.
y: a vector of size m× 1 which contains the
labels of each packet.
epochs: the number of epochs to train.
training_mode: the training algorithm to use:
‘‘train_seq_to_seq′′ or ‘‘train_last_output ′′.
where m is the number of packets and n is the
number of features.

Output:M : a trained model

1 S ′← S.copy()
2 for epoch in epochs do
3 T ← random.choice(S ′)
4 X ′← X .copy()
5 y′← y.copy()
6 X3d , y3d ← matrix_to_tensor(X ′, y′, T )
7 if training_mode = ‘‘train_seq_to_seq′′ then
8 Train_Seq_to_Seq(M ,X3d , y3d )
9 else
10 Train_Last_Output(M ,X3d , y3d )
11 end
12 S ′.remove(T )
13 if S ′.is_empty() then
14 S ′← S.copy()
15 end
16 end
17 returnM

majority. This technique is shown in Algorithms 3 and 6,
and in Figure 5b. We trained both LSTM and RNN mod-
els for different values of seq_len to see how the sequence
length affects the accuracy of prediction. In our experiments,
we’ve set seq_len to values: 5, 10, 20, 50, 100, 250, 500,
1000 and trained RNN and LSTM models for each sequence
length. Moreover, we developed Algorithm 2 to train RNN
and LSTM models on a mix of sequence lengths. In the case
of training on a single sequence length, we simply provide

Algorithm 3 Predict_Last_output
Input:M : a pretrained vanilla RNN model or its variants

X : a matrix of size T × n represents a single
example.
T : a sequence length that is considered when
converting matrix into tensor
where n is the number of features per packet

Output: ŷfinal : the prediction of the trained model:
attack or normal

1 X3d ← matrix_to_tensor(X ,T )
2 ŷ3d ← M (X3d )
3 ŷfinal ← ŷ3d [T ] // take the last label
4 return ŷfinal

Algorithm 4 Predict_Majority_Voting
Input:M : a pretrained vanilla RNN model or its

variants.
X : a matrix of size T × n represents a single
example.
T : a sequence length that is considered when
converting matrix into tensor.
where n is the number of features per packet.

Output: ŷfinal : the prediction of the trained model:
attack or normal.

1 X3d ← matrix_to_tensor(X ,T )
2 ŷ← M (X3d )
3 count ← 0
4 for t = 1 to T do
5 if ŷt = ‘‘attack ′′ then
6 count ← count + 1
7 end
8 end
// 50% or more is considered the

majority
9 if (count / T ) ≥ 0.5 then
10 ŷfinal ← ‘‘attack ′′

11 else
12 ŷfinal ← ‘‘normal ′′

13 end
14 return ŷfinal

the algorithm with a set of sequence lengths S that contains
only that single sequence length.

Figure 9 in Appendix B shows the F1-scores calculated
for 18 RNN/LSTM models where the suffix ‘‘_XXX ′′ rep-
resents the sequence length that the model was trained on
it. If the suffix is ‘‘_mix ′′, it means that the model was
trained on a mix of different sequence lengths as described by
Algorithm 2.We tested thesemodels on a randomly generated
list of sequence lengths and we found that the models trained
using the proposed algorithm can generalize better for other
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TABLE 2. The values of true negatives (TN), false positives (FP), false negatives (FN), and true positives (TP) when we evaluated our models on the testing
set of CIC-IDS2017 - Friday [26]. The suffix ‘‘_mix_MV’’ in the model’s name means that the model was trained using the algorithms 2, 4, and 5 where
‘‘MV’’ stands for Majority Voting and ‘‘mix’’ stands for the training using a mix of sequence lengths. The suffix ‘‘_T’’ indicates that the model evaluation is
done on the list of training sequence lengths and the suffix ‘‘_R’’ indicates that the evaluation is done on a list of randomly generated sequence lengths.

Algorithm 5 Train_Seq_to_Seq
Input:M : a vanilla RNN model or its variants

X3d : a tensor of size m× T × n
y3d : the labels for each packet in X3d with size
m× T × 1
where m is the batch size, T is the number of
packets per example (the sequence length), and n
is the number of features

Output:M : the model trained for a single epoch

1 losstotal ← 0
2 for i = 1 to m do
3 ŷ3d ← M (X3d [i])
4 losssum← 0
5 for t = 1 to T do
6 yt ← y3d [i][t]
7 ŷt ← ŷ3d [t]
8 loss← MSE(yt , ŷt )
9 losssum← losssum + loss

10 end
11 lossavg← losssum / T
12 losstotal ← losstotal + losssum
13 end
14 losstotal_avg← losstotal / m
15 grads← compute_gradient(M , losstotal_avg)
16 M ← update_weights(M , grads)
17 returnM

sequence lengths even if they were not trained on them.
Appendix C shows the F1-scores of the models.

We found that our proposed training and prediction
algorithms 2, 4, and 5 achieved the best F1-score where it
achieved 100% correct predictions for all examples in the
randomly generated list of sequence lengths: 77, 329, 597,
643, 877. Hyper parameters of all models were fixed. Each
model had a single bidirectional hidden layer of size 20 that
was trained for 3000 epochs with a batch size 64, a learn-
ing rate of 0.001, and a dropout of 50%. We compared the

Algorithm 6 Train_Last_Output
Input:M : a vanilla RNN model or its variants

X3d : a tensor of size m× T × n
y3d : the labels for each packet in X3d with size
m× T × 1
where m is the batch size, T is the number of
packets per example (the sequence length), and n
is the number of features

Output:M : the model trained for a single epoch

1 losstotal ← 0
2 for i = 1 to m do
3 ŷ3d ← M (X3d [i])
4 ŷlast ← ŷ3d [T ] // take the last label
5 count ← 0
6 for t = 1 to T do
7 yt ← y3d [i][t]
8 if yt = ‘‘attack ′′ then
9 count ← count + 1
10 end
11 end

// 50% or more is the majority
12 if (count / T ) ≥ 0.5 then
13 ytrue← ‘‘attack ′′

14 else
15 ytrue← ‘‘normal ′′

16 end
17 loss← MSE(ytrue, ŷlast )
18 losstotal ← losstotal + loss
19 end
20 losstotal_avg← losstotal / m
21 grads← compute_gradient(M , losstotal_avg)
22 M ← update_weights(M , grads)
23 returnM

performance of our algorithms with LUCID [22]. We trained
LUCID on our dataset with time window = 10 and packet
flow length = 10. We found that our models achieved higher
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TABLE 3. The values of true negatives (TN), false positives (FP), false negatives (FN), and true positives (TP) when we evaluated our models on the testing
set of CIC-IoT2022 [27].

TABLE 4. The evaluation results of ShieldRNN and the state-of-the-art
models on the CIC-IDS2017-Wednesday [26] dataset.

TABLE 5. The evaluation results of different settings of ShieldRNN
compared to the state-of-the-art models on the
CIC-IDS2017-Friday [26] dataset.

scores compared to LUCID when we tested them on the test
set. Figure 7 shows the results of our models compared with
LUCID [22].

IV. STATE-OF-THE-ART COMPARISON
For a fair comparison between our solution and the state-
of-the-art, we focus our comparison on solutions that used
the CIC-IDS2017 [26] dataset. We prepared the data and
extracted the features as we described in previous sections.
Then, we trained different LSTM and RNN models using
the algorithms: improved_train_test_split (Algorithm 1),
Train_Seq_to_Seq (Algorithm 5), Predict_Majority_Voting
(Algorithm 4), and Train_RNN_Mix_Seq_lens (Algo-
rithm 2) with similar settings as described in the accurate
classifier training section III-F. We used the traffic trace of

TABLE 6. A comparison between ShieldRNN and unsupervised
techniques on CIC-IDS2017 Wednesday.

TABLE 7. Summary of ShieldRNN (LSTM_mix_MV_T) results on the
CIC-IoT2022, CIC-IDS2017 Wednesday, and CIC-IDS2017 Friday datasets.

Friday 7 (CIC-IDS2017-Friday) as it was used by [22], [32],
and [33]. The total number of packets in the traffic trace
was 9,997,874 where 926,978 packets were attack packets
and 9,070,896 packets were normal packets. In the testing
phase, we computed True Negatives (TN), False Positives
(FP), False Negatives (FN), and True Positives (TP) for each
sequence length in the training list of sequence lengths as
well as on the list of randomly generated sequence lengths
as shown in Table 2. After that, we calculated the metrics:
F1-score, Accuracy, Precision, and Recall using the total
TN, FP, FN and TP from Table 2. The reason to use the
total TN, FP, FN and TP is that we wanted to evaluate the
overall performance of our models against the state-of-the-
art solutions. Table 5 shows the performance of our models
against the state-of-the-art models.We repeated the same pro-
cess to train and evaluate the model LSTM_mix_MV_T on
the traffic trace of Wednesday 5 (CIC-IDS2017-Wednesday).
The suffix ‘‘_mix_MV_T’’ in the model’s name means that
the model was trained using the algorithms 2, 4, and 5 and
it was evaluated using the list of training sequence lengths.
The total number of packets in the PCAP traffic trace of CIC-
IDS2017-Wednesday was 13,788,878 where 1,383,651 pack-
ets were attack packets and 12,405,227 packets were normal
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FIGURE 8. LASSO feature selection when applied on our dataset.

packets. The results of the LSTM_mix_MV_T model on
CIC-IDS2017-Wednesday compared to the state-of-the-art
models are shown in Table 4. Also, we compared ShieldRNN
(LSTM_mix_MV_T) with unsupervised techniques on CIC-
IDS2017-Wednesday dataset and we found that ShieldRNN
achieved the best results among all models. Table 6 shows
the results of unsupervised learning models compared to the
results of ShieldRNN.
Moreover, we evaluated our techniques on the recently

released CIC-IoT2022 [27] dataset which contains the normal
traffic of multiple IoT devices in different scenarios that
simulate the real life usage of IoT devices such as the traffic
generated during the power on of the IoT device, while the

IoT device is idle, and during human interaction with the IoT
device. Also, the dataset contains the traffic of simulated DoS
attacks performed on IoT devices. The total number of pack-
ets, used in building and evaluating the models, is 55,541,583
where the number of normal packets is 27,571,720 and the
number of attack packets is 27,969,863. We prepared the data
and trained the ShieldRNN models following the same steps
as in the previous experiments. Our results set a baseline
for DDoS detection on IoT devices using CIC-IoT2022 [27]
dataset. Table 3 shows the details of the results of our models
on CIC-IoT2022 [27] dataset. Table 7 summarizes the perfor-
mance of our models on all of the CIC datasets that were used
in this work.
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FIGURE 9. The F1-score results of 18 models on the testing set after using our training techniques. The values in the X-axis represent the sequence
lengths that each model was tested on. Figure 9a and 9b show the results of the models when they were tested on a randomly generated list of sequence
lengths. Figure 9c and 9d show the results of the same models when they were tested on the same sequence lengths that they were trained on.

V. CONCLUSION
This paper proposes a system architecture to better detect
DDoS attacks originated from IoT devices that are infected
and controlled by a botnet. The system is composed of two
types of machine learning classifiers: a lightweight classifier
that is deployed on the IoT node, and a more accurate classi-
fier that is deployed on the server to do further analysis. For
the IoT lightweight classifier, we trained 12 classifiers and
we found that a simple Random Forest classifier with only

3 trees achieved 99.983% accuracy and 99.979% F1-score
when we tested it on the test set which made it possible to
implement such a simple classifier on an IoT device with lim-
ited resources. For the accurate classifier, we developed new
algorithms of training and prediction for RNN that we called
ShieldRNN. We found that using ShieldRNN, i.e., using a
mix of sequence lengths combined with seq2seq training and
majority voting prediction (Algorithms 1, 4, and 5) achieved
the highest F1-score of values: 99.919%, 99.822%, 100%,

88272 VOLUME 10, 2022



F. Alasmary et al.: ShieldRNN: A Distributed Flow-Based DDoS Detection Solution

FIGURE 10. F1-scores of all RNN/LSTM models on the test set when they were tested on a randomly generated list of
sequence lengths other than the list that the models were trained on. Each row shows the name of the model and its
results when it was tested on the sequence length shown at the top of the column. The model name consist of two parts
separated by an underscore: the first part shows the model name and the second part shows the sequence length that the
model was trained on. For example, the model name: LSTM_10 means that the model was LSTM and the sequence length
was 10 which means that each 10 consecutive packets are fed to the model as a single example to train the model. In case
the model name has the suffix _mix prefix instead of a number, it means that the model was trained on various sequence
lengths each one was used to train the model for a single epoch.

99.834%, 100%, 100%, 100%, and 100% when it was tested
on our dataset with the randomly generated list of sequence
lengths: 26, 57, 77, 212, 329, 597, 643, and 877, respec-
tively. Also, we found that using the same sequence length
in both training and testing tends to achieve higher scores
compared to testing on sequence length different than the
sequence length in the training phase.Moreover, we evaluated
ShieldRNN on CIC-IDS2017 [26] dataset to compare it with
others algorithms and we found that it outperformed all of

them. Finally, we set baseline results for DDoS detection
using ShieldRNN on the CIC-IoT2022 [27] dataset.

APPENDIX A
FEATURE SELECTION BY LASSO
See Figure 8.

APPENDIX B
MODELS PERFORMANCE
See Figure 9.
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FIGURE 11. F1-scores of all RNN/LSTM models on the test set when they were tested on the same list of sequence lengths
that they were trained on.

APPENDIX C
MODELS RESULTS TABLES
See Figures 10 and 11.
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