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ABSTRACT Terahertz time-domain spectroscopy enables the extraction of electrical properties from
materials. An extraction of the complex permittivity can be carried out with measurements in transmission or
reflection geometry enabling the identification of materials. To perform an exact identification, the sample
thickness, and the angle of incidence of the terahertz radiation must be known. However, when those
parameters are unknown and additionally the materials show strong absorbances, a precise differentiation
betweenmaterials is challenging. A promising approach is the use of a neural network for automatedmaterial
classification of terahertz images from different materials. Here, we show that a trained neural network can
differentiate between 16 3D printed dielectric materials with a high accuracy of 98 % from measurements
taken in transmissionmode. For unknown thicknesses, the accuracy is reduced to 35%. As the constitution of
the dataset has a big impact on the accuracy, various data preparations were investigated as well as the number
of traces needed for achieving a well-trained network was determined. Finally, the trained neural network
was evaluated with different sample thicknesses, revealing the huge impact of the materials absorbance on
the extrapolation ability. This approach can be used in security application to classify harmful substances as
well as for the automated generation of material maps.

INDEX TERMS Material classification, terahertz, artificial neural network, polymers, 3D-printing.

I. INTRODUCTION
Terahertz radiation has the potential to be used in many
common security applications with the goal to detect hid-
den weapons or harmful substances [1]. Mostly, images are
taken in reflection geometry at one frequency, leading to
a monochrome image [1]. An enhancement of this method
is the mapping of certain materials to parts of the taken
image. This can be achieved by using terahertz time-domain
spectroscopy (THz-TDS), where broadband information such
as frequency depended refractive index and absorption coef-
ficient can be obtained [2].

Some materials like drugs, explosives, and other com-
plex chemicals have unambiguous spectral fingerprints in
the terahertz frequency range [3], [4]. Simple methods like
comparing frequencies where spectral absorption lines are
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present enable an automatic differentiation between materi-
als with a high accuracy [3]. As many dielectric materials
do not have spectral fingerprints in the terahertz frequency
range, simple classification fails. Often, a high classification
accuracy was achieved for materials which strongly differ
like organic materials against metals and polymers [5] or
minerals against organic materials [6]. As the used materials
have significantly different dielectric properties, high accu-
racy levels can be achieved with establishedmethods.Most of
the approaches perform an extraction of features either with
statistical methods [5], [6] or linear feature mapping [7], [8].
Rather uncommon is the use of raw data [9], time-domain
features [10], and filtered data. Support vector machines
(SVM) and neural networks are widely used for automatic
learning of relationships inmeasurement data [5], [6], [7], [8],
[9], [10], [11].

Common issues of most of the presented methods are the
size of the dataset and the evaluation method. The amount
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of data used for training and testing of the algorithms is low
and often consists of just 3-25 THz-TDS traces per category
[5], [7], [8], [10]. In consequence, the low amount of data
may not show the generalization ability of the presented
methods. Also, an evaluation was not carried out on different
sample thicknesses, limiting the approaches to a narrow field
of applications. Siuly et al. highlight the importance of gener-
alization of the approach on different sample thicknesses [6].

In contrast to many different dimensionality reduction
methods, the use of a neural network is a simple approach for
classifying individual terahertz traces [12]. Neural networks
have the capability of performing a dimensionality reduction
on their own and learning relations in a dataset, outperform-
ing separation methods like SVMs [13], [14]. While algo-
rithms can be applied to the data directly, neural networks
need in general a high amount of training data before they
reach a reliable classification accuracy [14].

In [15] and [16] we have demonstrated that a neural net-
work can differ between materials either in reflection or
transmission geometry. However, an investigation of different
data preparation techniques, material thicknesses as well as
an investigation into the amount of data required for a gener-
alization of the method did not take place.

In this paper, a generalized approach for material mapping
with neural networks of THz-TDS measurements in trans-
mission geometry is proposed. The method is intended to
provide a general solution and is focused on a variety of
similar dielectric materials without any spectral fingerprints
to consider a challenging scenario for material classification.
As the preprocessing of the measurement data might have
an impact on the classification accuracy, various data prepa-
ration techniques are implemented and evaluated regarding
their influence on the classification accuracy. In addition,
the amount of data required to successfully train the neural
network is examined. Finally, the approach is evaluated for
different sample thicknesses. Additionally, the performance
of the trained neural network is compared to an SVM.

II. EXPERIMENTAL SETUP
For obtaining THz-TDS data from different materials in one
measurement run, an automated measurement setup is real-
ized. In addition, the manufacturing of samples from different
materials and thicknesses was carried out. To include statis-
tical influences, multiple repeated measurements were done
for each material thickness.

A. SAMPLE FABRICATION AND PROPERTIES
To make the classification as realistic as possible, we decided
to study 16 different polymers without spectral fingerprints in
the considered frequency range. Here, 3D printing by fused
deposition modeling (FDM) is a well-established fabrication
method for terahertz devices [17], [18], [19]. 3D printing of
polymers enables an accurate sample fabrication with high
reproducibility. This enables the fabrication of samples with
well-defined thicknesses.

FIGURE 1. Models for the manufactured sample holder and samples.
a) Sample holder with a total width and height of 142.5 mm and a
window size with a clear aperture of 30.5 mm × 30.5 mm. b) Sample
model with one thickness. The sample was manufactured with
thicknesses of 1 mm and 5 mm. c) Sample with different steps with a
height of 1 mm, 2 mm, 3 mm, and 4 mm for verification.

For automated measurements of multiple samples,
we designed a 3D printed sample holder shown in Fig. 1. The
sample holder was coated with conductive paint to enhance
the image contrast and can be loaded with 16 cuboidal shaped
samples with the size of 32 mm × 32 mm (cf. Fig 1). Two
sample sets and holders were fabricated for a thickness of
1 mm and 5 mm to investigate the influence of the sample
thickness on the classification accuracy.

By a simple raster scan of the sample holder, a large amount
of data from the 16 samples can be generated. Since the
position of the samples within the sample holder is known, the
data can be easily labelled. The clear aperture of the sample
holder is 30.5mmx 30.5mmper sample window. To get mea-
surement data from samples with different thicknesses in one
measurement run, a second sample structure was designed
that has four different stages with thicknesses of 1 mm, 2mm,
3 mm, and 4 mm (cf. Fig 1). Since edge effects occur at
steps, the multistep samples (from now on called verification
samples) are not suitable for training but will be used later for
verification.

The samples and the sample holder were fabricated by the
3D printer Ultimaker S5. The company offers a variety of
materials with predefined printing parameters. Printing with-
out optimized parameters can result in nonuniform samples
and hence varying material properties [20]. An overview of
the used materials together with the refractive index n and
the absorption factor α at 1 THz is given in Table 1. Two
materials, COC, and HIPS are non Ultimaker materials. The
two materials were added because they are highly interest-
ing for the fabrication of terahertz devices due to their low
absorption losses [21]. The printing parameters for the two
materials have been carefully optimized to ensure a high
printing quality and reproducibility.

For the fabrication of the samples, a nozzle size of 0.4 mm
was used. A filament with a diameter of 2.85 mm is printed
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TABLE 1. Polymers for sample fabrication.

FIGURE 2. Sketch of the experimental setup. Terahertz radiation is first
collimated and then focused with TPX lenses with a focal length of
50 mm. A translation stage moves the sample holder through the focus
point in y- and z-direction, enabling the scan of different positions and
the generation of THz images in transmission mode.

on a heated glass bed. To keep the complexity of the samples
as low as possible, a simple infill structure was chosen. The
infill structure is the zigzag pattern which was rotated by
90-degree for each layer. While printing, the cohesion to the
glass printing surface was improved with a small layer of
glue. Samples were cleaned after printing to remove residues
of the glue and other materials.

B. MEASUREMENT SETUP
To collect THz-TDS traces from the whole sample holder
in an automated measurement run in transmission mode,
a focused setup is used as depicted in Fig. 2. Here, the fiber-
coupled terahertz spectrometer Tera K15 fromMenlo Systems
is utilized for the generation and detection of broadband
terahertz radiation: a femtosecond laser source excites free
carriers in a biased photoconductive antenna. The accelerated
carriers generate a broadband terahertz pulse. A part of the
optical pulse is used to gate a photoconductive antenna which
acts as the receiver. Here, a photocurrent is measured that
is proportional to the incident terahertz field. A delay line
in the receiver arm enables optical sampling of the terahertz
trace [2].

TABLE 2. Performed measurement types.

To obtain a fine spatial resolution, the terahertz radiation
is focused. Planoconvex TPX lenses with a focal length of
50 mm collimate the emitted terahertz radiation. Another set
of identical lenses focus the collimated terahertz beam on the
receiver. Positioning the sample holder on a translation stage
enables, as shown in Fig. 2, the measurement of terahertz
traces at varying positions in y- and z-direction with the
focused terahertz beam in transmission mode.

A measurement can be considered as a terahertz image
which is made by stepwise moving the translation stages and
scanning the whole area. A step size of 1 mm in each axis
and a fixed time window of 100 ps is used for every THz-TDS
trace. If no sample is present in the terahertz path a single shot
bandwidth> 4 THz with a peak dynamic range of 56 dB was
obtained.

C. PERFORMED MEASUREMENTS
Since the training of neural networks requires in general a
large amount of data, we recorded six terahertz images of
each printed sample set. In this way, different datasets can
be combined from the measurements.

A summary of the measurement data is given in Table 2.
To keep the training data clean from edge effects, an area
of 20 mm × 20 mm was chosen for each training sample.
For each height step of the verification samples an area of
8 mm × 8 mm was chosen. In this way, 400 traces can be
obtained for each training sample and 64 traces per thickness
for each verification sample. In total, 101,376 useable THz-
TDS traces were collected, distributed on 2,400 traces per
thickness and material from Measurement 1 and Measure-
ment 2 and 384 THz-TDS traces per thickness and material
from Measurement 3.

III. DATA PREPARATION
While dealing with neural networks and other classification
algorithms, the data preparation is important as it directly
affects the interpretation of the measurement data. The pres-
ence of unwanted signal components or false correlations in
the THz-TDS traces may lead to a lower classification accu-
racy. To characterize the influence of different data prepa-
rations, the neural network will be trained with differently
processed data. As a neural network is capable of processing
not only time-domain but also data in the frequency-domain,
another interesting aspect is the comparison between both
domains. FromFourier theory, the information present in both
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domains is identical for periodic signals or signals ranging
from −∞ to ∞. However, the nonperiodic nature of the
recorded signals affects the transformation. Therefore, data
preparation will be performed for both domains.

A. GENERAL DEPENDENCIES
The transmitted spectrum Êt (ω) of a THz-TDS pulse through
a dielectric sample (relative permeability µr = 1) depends
on the sample specific complex and frequency dependent
permittivity by:

ε (ω) = ε′ (ω)+ jε
′′

(ω) . (1)

For normal incidence and dielectrics with low losses, the
transmitted spectrum can be calculated as [2]:

Êt (ω) = Ê0 (ω) t̂12 t̂21e−
a(ω)d

2 e
jn(ω)dω
c0 . (2)

where α(ω) is the absorption coefficient, n(ω) the refractive
index, t̂12, t̂21 the Fresnel coefficients, and d the sample
thickness. The material parameters can be reformulated into
the complex permittivity with

ε′ (ω) = n (ω)2 −
(
a (ω) c0
2ω

)2

(3)

and

ε
′′

(ω) =
n(ω)a (ω) c0

ω
. (4)

As the terahertz pulse propagates through a sample, it is
delayed due to the reduced phase constant in the medium
(see equation (2)). The time shift directly correlates with
the refractive index and the thickness of the sample. Here,
different combinations of thicknesses and refractive indices
may lead to an identical delay. A similar situation can be
constructed for the absorption coefficient. In addition, the
absolute delay can only be determined, if a reference terahertz
pulse through air is measured.

For evaluating a general data preparation approach,
a neglection of the time shift must take place. By shifting each
recorded THz-TDS trace’s zero-crossing point (cf. Fig. 3) of
the main pulse to the same position, the time shift is removed,
and all THz-TDS traces are comparable.

As each terahertz trace not only contains the sam-
ple’s information but measurement dependencies like sys-
tem characteristics or environmental influences, a reference
measurement (terahertz path without sample) is considered.
By dividing the sample measurement with the reference
measurement in the frequency-domain, i.e. calculating the
transfer function, the complex permittivity can be directly
extracted [2].

The different absorption coefficients of the samples result
in different bandwidths of the measured THz-TDS traces
(cf. Fig. 3). Calculating the transfer function results in high
values for the magnitude outside of the valid bandwidth due
to the normalization and noise. A fixed windowing in the
frequency domain is not possible as the high noise compo-
nents will lead to a distorted time-domain pulse. To solve this

FIGURE 3. THz-TDS trace, magnitude spectrum and phase plot of a
free-space measurement. The zero-crossing point can be determined for
every THz-TDS trace and is used for moving every trace to the same
position. The Tukey window is applied to all traces regarding the
zero-crossing point to neglect the influence of multiple reflection.

problem, a valid bandwidth is selected for each transfer func-
tion by Tukey windowing the range in the frequency-domain
where a linear phase exists. The filtered transfer function can
be transformed back into the time-domain and results in the
impulse response. Here, the time shift is once again removed
with the above-described method and the signal represents
the impulse response function of the sample.

B. NOISE FILTERING AND SIGNAL-TO-NOISE RATIO
For every transmitted terahertz pulse through a plan-parallel
sample with low losses, reflections occur. The received tera-
hertz signal consists hence not only of the direct transmitted
pulse but of a sum of transmitted and multiple reflected
pulses. To ensure that each THz-TDS trace contains just the
initially transmitted pulse without any reflections, a win-
dowing takes place in the time-domain. The Tukey window,
as shown in Fig. 3, is applied on every THz-TDS trace, reduc-
ing the relevant datapoints to 450 points (15 ps window). The
window starts 150 datapoints before the zero-crossing point
of the main pulse and has a width of 450 points. The flat
rooftop has a width of 95 % with a weight of 1.

As the system shows a high peak dynamic range of about
56 dB for free-space transmission, a complex preprocessing
for enhancing the signal-to-noise ratio (SNR) is not consid-
ered. The removal of unwanted noise components containing
DC, low- and high- frequency noise is a main part of the data
preparation. The removal is achieved by windowing in the
frequency-domain. A Tukey window starting at 200 GHz and
ending at 4.5 THz discards the unusable frequency compo-
nents in all filtering approaches, where a division with the
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reference is not conducted. The flat rooftop with a weight
of 1 and a width of 95 % enables a flat bypass of all rel-
evant frequency components. The harmonic attenuation at
the edges leads to a good suppression of harmonics for the
retransformed time-domain data.

C. NORMALIZATION
In this approach, all material properties are unknown param-
eters for the neural network. Thus, an amplitude change
(frequency- or time-domain) depends on the thickness as well
as on the absorption coefficient of the material. In addition,
a change of the amplitude is evoked by the Fresnel coeffi-
cients depending on thematerial-air-interfaces and are related
to the difference of the refractive indices. To evaluate the
imprinting of false correlations as well as the over imprinting
of the thickness, a normalization to the maximum amplitude
of all THz-TDS traces is considered.

D. DIMENSIONAL REDUCTION
In some approaches, THz-TDS traces are not only filtered, but
are reduced by the principal component analysis (PCA) [8] or
by the extraction of statistical values [5], [6]. The PCA is a
common approach for feature reduction, where a datapoint
mapping to orthogonal vectors is performed [22]. It can be
used for a reduction to relevant datapoints while trying to
keep the information content unchanged. With a reduced
number of datapoints, the training time is accelerated, as well
as the classification process. To compare this approach with
the presented filtering techniques, a reduction of the raw data
with the PCA is considered.

E. DATA PREPARATIONS
Finally, all used approaches for the data preparation are
depicted in Fig. 4. Here, all imprints of different correlation
which might occur are covered. Except for the PCA, all tera-
hertz traces are moved to the same temporal position and are
windowed in the time-domain. For half of the preparations,
the filtered frequency-domain spectrum is built. ‘‘frequency-
domain (FD)’’ thus contains the attenuation coming from
the Fresnel coefficients and the slope from the absorption
coefficient. ‘‘FD normalized’’ is the normalized spectrum,
where just the slope of the absorption coefficient is coded in
the data. As the absolute value is built for the spectrum, the
phase slope coming from the refractive index is neglected.

Without building the absolute value, ‘‘time-domain (TD)’’
contains after applying the inverse fast Fourier transform
(IFFT) also the phase information, where ‘‘TD normalized’’
neglects the attenuation of the Fresnel coefficients. The
transfer function is built after dividing each trace with a
measurement specific reference while windowing a valid
spectrum. Thus, just the sample information is left and sys-
tematic influences coming from the measurement setup are
removed. In the frequency-domain for ‘‘transfer function’’
the phase information is neglected considering just the atten-
uation from the absorption coefficient. ‘‘impulse response’’

FIGURE 4. Filter step diagram for different data preparation techniques.
FFT is the Fast Fourier Transform, IFFT the inverse FFT. ABS stands for the
absolute value and norm normalizes all values to the maximum value.
Ref. is a reference THz-TDS trace with an empty transmission path.

is the time-domain representation of the transfer function,
containing the possible phase information.

IV. NEURAL NETWORK ARCHITECTURE
Data processing with neural networks enables many appli-
cations like the extraction of features and classification of
patterns or categories. Data is propagated through layered
and differently connected neurons, enabling a weighted data
flow. In this paper, a classification is performed with a feed
forward neural network, where the input data is reduced to
an output value which indicates the material type of the input
data. While calculating gradients based on a metric for the
accuracy of the network, the weights are updated through
backpropagation [13]. As the material type of each recorded
THz-TDS trace is known, a supervised training is performed.
By comparing the calculated result with the known state,
a better calculation of the gradients can be achieved.

A. ARCHITECTURE
Following common design rules for neural networks, a clas-
sification is realized by adding up multiple fully connected
layers (dense layers) of neurons [13]. The layer count of the
dense layers was chosen to three as this enables the learning
of relations from the data [13]. For a higher count of dense
layers, the training time increases significantly whereas the
accuracy remains the same. The number of neurons per layer
was also chosen according to general design rules, which pro-
vide for a high number of neurons in the first layer, decreasing
in the following layers to allow for higher performance in
feature elaboration. One layer of neurons with one neuron for
each material class in the output layer enables a multinomial
classification [14].

For achieving a trainable network with a high generaliza-
tion ability, a 50% dropout as a regulating element was added
to prevent the network from overfitting while training [23].
The nonlinear activation function for all dense layers was
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FIGURE 5. Structure of the neural network. The Softmax activated output
layer with 17 neurons enables a multinomial classification. Three dense
layers with a decreasing count of neurons (512, 256, 128) condense the
input values. All dense layers are activated by the Gelu function, and a
Dropout is added as a regularization for the network while training.

chosen to be the Gelu function [24], as it shows a higher
performance over other more traditional activation functions
like ReLu [24]. The output layer is activated with the Softmax
function [13] to normalize the output values to the range
[0, 1] whereas the sum of all output neurons is 1. The final
structure of the neural network can be seen in Fig. 5 and was
implemented in the programming language Python with the
TensorFlow framework [25] and Keras [26].

B. TRAINING AND VALIDATION
To achieve a well-trained neural network, not only the struc-
ture was optimized. Several so called hyperparameter were
adapted, which control the training process. For the training,
the Adamax optimizer was used for the calculation of the
gradients with an initial learning rate of 0.005. The learning
rate schedule Reduce Learning Rate on Plateau lowers the
learning rate by a factor of 10 % when no progress while
training occurs. Here, the optimization was carried out over
the loss function, determined by the output’s binary cross
entropy. The batch size determines the count of traces prop-
agated through the network before the gradient is calculated.
A batch size of 512 leads here to a sweet spot between training
speed and training quality.

Before training, the trainingmeasurements are additionally
split up into training data and validation data. After each
training epoch, the loss is calculated for the training and
validation data resulting in a train loss and validation loss.
In addition, the training data is shuffled before continuing
with the next epoch. When training is complete, the holdback
test data unknown to the neural network is used to determine
overall accuracy.

As a training with a rising count of traces per material class
should take place, the influence of an increasing number of
traces must be analysed. An increasing trace count results in
an increasing batch count, as the batch size is fixed. Each
additional batch has an influence on the training as a partwise
calculation of the gradient is performed after each batch.
Therewith, accuracy jumps may occur, while the trace count
gets higher. To overcome this problem and prevent overfit-
ting, training is stopped prematurely when the validation loss
stops at one level and shows no progress [27].

FIGURE 6. Prediction accuracy plot of classified hold back measurement
for optimal trained neural networks with different data preparation and
THz-TDS trace counts per material class. FD stands for data in
frequency-domain and TD stands for data in time-domain.

After selecting the best performing data preparation,
a cross validationwill be performed. Therefore, the prediction
accuracy for each possible selection of the retained measure-
ment is calculated for 1 mm and 5 mm.

V. RESULTS
For testing the functionality of the trained neural network,
one measurement for each measurement type containing
400 unknown traces per material and thickness is hold back
and not used for training. The 5 remaining measurements
per material thickness are filtered with all presented data
preparation techniques. Finally, the neural network is trained
with all filtered datasets of the thicknesses 1 mm and 5 mm.
To obtain information about the amount of terahertz traces
needed for achieving a high accuracy for each filtered dataset,
the networkwas trainedwith a rising number of traces starting
from 25 traces per material going to 4000 traces per material.

A. TRAINING ACCURACY AND AMOUNT OF DATA
The training was stopped according to the introduced stop
criteria and the accuracy was evaluated with the holdback test
measurement. Fig. 6 shows the prediction accuracy for the
test data over a rising THz-TDS trace count per material for
different data preparations.

The trained neural networks show a high accuracy for every
data preparation between 90.6 % (PCA) and 98.1 % (TD) for
the maximum count of traces per material. In contrast, the
amount of data needed for reaching high accuracies differs.
Traces in the time-domain reach for 100 traces accuracies
90.71 % (TD) and 94.2 % (TD-normalized) whereas 86.5 %
are reached for FD and 75.2 % for FD-normalized.

For 2000 traces per material a saturated accuracy is
reached, and an increase of traces does not lead necessarily to
an increase of accuracy. In general, trained neural networks
with data in the frequency-domain tend to need more traces
until an equal accuracy with regards to trained neural net-
works with data in the time-domain is reached.

The class-wise evaluation of the neural network trained
with the data preparation ‘‘transfer function’’ yields the
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FIGURE 7. Confusion matrix for holdback test data and classification of
17 classes. The rows are the actual classes, and the columns are the
predicted classes. The used neural network is ‘‘transfer function’’ which
could achieve an accuracy of 96.93%.

confusion matrix shown in Fig. 7. Most of the materials are
classified with a 100 % accuracy. A 100 % differentiation is
not possible for most of the PLA materials. Since they share
the same base material, the dielectric properties are similar
(see Table 1). An overall differentiation is possible since an
accuracy over 86 % was achieved.

As the similarity between COC and free space is high due
to the low absorption of COC and the dielectric properties
of ABS, CPE, and CPE+ are comparable, we hypothesize
that all errors are related to the similar physical properties of
the materials. As the classification errors seem to be based
on physical properties, the structure of the neural network is
well constituted for this classification problem.

B. INTERPOLATION AND VERIFICATION
For evaluating the performance with unknown thicknesses,
the trained network is tested with the verification measure-
ments, containing the unknown thicknesses 2 mm, 3 mm,
and 4 mm. The results can be seen in Fig. 8. As the network
was trained with 1 mm and 5 mm, an approximation of the
thicknesses in between as a kind of interpolation is possible.

The overall accuracy varies for the different filter tech-
niques while the count of traces per material has no big
influence on the accuracy. This indicates that the trained
neural networks perform an estimation on the unknown thick-
nesses. The data with the applied PCA performs worst with
accuracies below 10 %. A possible reason is the linear form
of the decision regions for PCA analysed data. As the PCA
of the different thicknesses leads to different positions in the
spanned space, the calculated principal components are more
likely to be outside of the learned linear decision regions.

FIGURE 8. Accuracy plot of classified verification data of the thicknesses
2 mm, 3 mm, and 4 mm from optimal trained neural networks with
different data preparation and THz-TDS trace counts per material class.
FD stands for data in frequency-domain and TD stands for data in
time-domain.

FIGURE 9. Confusion matrix for holdback verification data and
classification of 17 classes. The rows are the actual classes, and the
columns are the predicted classes. Used neural network is ‘‘transfer
function’’ which could achieve an accuracy of 33.31 %.

The neural network trained with data in the time-domain
performs with 34.5 % accuracy for 4000 traces better than
neural networks trained with data in the frequency-domain,
whose accuracy is only between 20 % and 25 %.

As the material response for low absorption coefficients is
similar for different sample thicknesses (cf. Fig. 9), a thick-
ness independent classification is possible. For higher absorp-
tion coefficients a measurement in transmission mode leads
to stronger variations in the signal for different thicknesses.
Thus, the neural network’s ability for interpolation is depen-
dent of the absorption coefficients of the materials under
investigation. A training with data from different thicknesses
for materials with higher absorption coefficients will possibly
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lead to a better interpolation and classification accuracy of
unknown thicknesses.

C. MATERIAL MAPPING
For evaluating the influence of edge effects and possible
manufacturing problems, the complete terahertz images were
classified with the data preparation ‘‘impulse response’’ since
it delivered the best overall performance. The classified
images are depicted in Fig. 10 for the holdback test measure-
ments of thicknesses 1 mm (Fig. 10a) and 5 mm (Fig. 10b).
Both subfigures show a very accurate material map. The
sample holder is identified as the material PLA G. This is
reasonable as the attenuation of the coated sample holder is
comparable to the attenuation of PLA G. An influence of the
edge effects can also be seen, as the classified material ran-
domly differs at the outmost pixels of the quadratic sample.
This confirms the expected effect that the transition between
two materials and the changes of height between the sample
and sample holder have a huge impact on the classification.
The positions of false material classification are not related
to a pattern, indicating that either noise or structural changes
in the 3D printed samples occur.

The classified verification measurement 3, as seen in
Fig. 10 c, also reveals the false classifications at the edges
of the samples. All samples and its thicknesses are aligned
as follows: the upper right part is the 1 mm thickness, lower
right is 2 mm, upper left is 3 mm and lower left is 4 mm.
For materials with a higher absorption coefficient (i.e. PLA
materials), the false classifications due to edge effects are
stronger since also a change of thickness is present.

A map of the values for the selected output neuron of the
classified verification measurement 3 can be seen in Fig. 11.
It was created by considering the output value for the gen-
erated material map. The values for the output layer range
between zero and one, as the neural network has a Softmax
activated multinomial output. If the selected highest value is
not close to one but lower, a higher unsureness of the neural
network is given. While for safely identified materials the
values are around one. The values tend to be under 0.3 for the
gray and black marked areas. This unsureness map highlights
themissing interpolation ability of the trained neural network,
as not only the edges in the samples show a great unsureness,
but also complete parts of the sample. For each classified
THz-TDS trace, this unsureness can be calculated. Therewith,
not onlymaterial maps can be generated, but also assessments
of the accuracy are provided.

D. CROSS VALIDATION
Now, a cross validation takes place where the holdback mea-
surement is varied for training. The data preparation ‘‘impulse
response’’ and ‘‘transfer function’’ are used for training with
the maximum THz-TDS count per material. The selected
measurement per thickness for holding back is varied over
all measurements. The calculated prediction accuracy can be
seen in Table 3 and Table 4.

FIGURE 10. Material map for the holdback test measurement of materials
with the thickness (a) 1 mm and (b) 5 mm and (c) verification
measurement 3. Used data preparation is ‘‘impulse response’’. The
thicknesses in each individual sample (c) are as following: the upper right
part is the 1 mm thickness, lower right is 2 mm, upper left is 3 mm, and
lower left is 4 mm.

The mean deviation for the predicted test data is 0.3 % for
the impulse response and 0.26 % for the ‘‘transfer function’’.
This indicates that the trained neural networks do not overfit
and the method generalizes in terms of the present variations
in the measurements.
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FIGURE 11. Unsureness plot for the material map of verification
measurement 3. The grayscale indicates the unsureness where black
represents total unsureness and white represents total sureness. The
used data preparation is ‘‘impulse response’’. The corresponding material
numbers can be seen in Fig. 10. The thicknesses in each individual
sample are as following: the upper right part is the 1 mm thickness, lower
right is 2 mm, upper left is 3 mm, and lower left is 4 mm.

TABLE 3. Cross validation for impulse response.

TABLE 4. Cross validation for transfer function.

The mean deviation for the predicted verification test data
is 1.28 % for the ‘‘impulse response’’ and 0.83 % for the
‘‘transfer function’’ showing a slightly higher variation. How-
ever, the interpolation ability of the network does not seem
to be greatly affected by the variations in the measurement,
indicating the generalizability of the method.

E. COMPARISON WITH SVM
Finally, the performance of the trained neural network is com-
pared with the performance of a standard SVM. Therefor the

FIGURE 12. Prediction accuracy plot of classified hold back measurement
for trained neural network and SVM. The used data preparation is
‘‘impulse response’’.

FIGURE 13. Confusion matrix for the SVM with holdback test data and
classification of 17 classes. The rows are the actual classes, and the
columns are the predicted classes. Used data preparation is ‘‘impulse
response’’. The overall accuracy is 88.73 %.

overall best performing data preparation ‘‘impulse response’’
is used. The SVM is trained with a Gaussian kernel as
suggested in [28] to be the best kernel for the analysis of
THz-TDS data so far.

Figure 12 shows that the neural network performs much
better than the SVM. The overall accuracy reached is 88.73 %
being lower than the performance of the neural network with
the data preparation ‘‘PCA’’. However, as the accuracy shows
an improvement for a rising THz-TDS trace count, higher
prediction accuracies may be possible for a higher trace
count.

The low accuracy in separating similar materials,
e.g. PLA-based materials or CPE+ and ABS (cf. Figure 13),
results in an overall low accuracy. This shows that SVM have
an overall high prediction accuracy in separating materials
with different dielectric properties. For materials with similar
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dielectric properties, neural networks perform better than
SVMs. In addition, a smaller amount of training data is
required for the neural network here.

VI. CONCLUSION AND OUTLOOK
In this paper, we presented an approach for material classi-
fication of terahertz transmission measurements with neural
networks. After training the neural networks with five mea-
surement sets of dielectric samples with the thicknesses of
1 mm and 5 mm, holdback unknown test measurements were
classified with an accuracy of 100 % for most of the mate-
rials. The differentiation between materials with shared base
materials is more challenging. Here, an accuracy of 86 % and
more was be achieved for the best trained network resulting in
an overall accuracy of 98 %. The best results were achieved
for data preparation techniques in the time-domain. As the
results for the classification of the impulse function leads
to an overall high accuracy also with the verification data,
this method should be preferred as additionally a comparison
between different systems is possible.

For 2000 traces per material, the neural networks are well
trained, and the accuracy has reached its maximum for all
data preparations in the time-domain. The here used data
preparations in the frequency-domain tend to need more data
to reach equally high accuracies. For the impulse response
and transfer function as well as the data preparations in the
frequency- domain even 4000 traces per material seem to be
not enough to reach the maximum accuracy. indicates that
more traces may lead to higher accuracies.

The other filter techniques not only need more data to
perform equally well as the data in time-domain, but also
perform worse while interpolating to different material thick-
nesses. Here, all filter techniques in the time-domain perform
slightly better by reaching an overall accuracy of 26 %-35 %.
This shows that an interpolation in small thickness ranges
is possible but depends strongly on the absorption of the
material.

One possiblemethod to overcome the influence of different
thicknesses, are measurements carried out in reflection mode.
As the time-of-flight for all traces is the same after shifting,
this approach should work with the same high accuracies as
the thickness does not play a role in measurement in reflec-
tion geometry. Reflections from the backside of the sample
can be filtered in the time-domain. Also, a reference free
material characterization can be carried out using an ellip-
sometry measurement setup [29]. As the presented approach
is capable of a classification in a certain thickness range,
a training with more thicknesses leads possibly to a well-
trained network capable of classifying all materials within the
trained range. In addition, this method can be combined with
lensless imaging to classify the material of arbitrary shaped
objects at unknown orientation and distance [30], [31].

APPENDIX
The raw data of all measurements are available as well as
the labelled data used for training the neural network. Each

measurement file is named after the measurements listed in
Table 2. All raw data contain an array of 150×150 THz-TDS
traces for each step of the translation stage. Each pixel is also
labelled with the corresponding material name. Not used data
for training is labelled with the category ‘‘Undefined’’. The
sampling period in the time-domain is 33.34 fs. The data is
available at the following doi: 10.17185/duepublico/76495.
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