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ABSTRACT Reliability prediction has been studied in many industries for managing stocks and reducing
quality assurance costs and production costs. Particularly, in the automotive industry, reliability prediction
is performed based on two automobile reliability perspectives, time and mileage. To maximize cost sav-
ings, researchers attempted reliability prediction with short-term inputs. However, limited information on
short-term inputs resulted in unsatisfactory prediction results for the long warranty periods. Additionally,
the overall evaluation metrics could not reflect the pattern-wise performance, such as the increasing failure
patterns. This study proposes Complementary Reliability perspective Transformer (CRFormer) based on
Transformer encoder to achieve enriched representations from a short-term input sequence. CRFormer
fuses different automobile reliability perspective information and automobile features to compensate for the
limited information on short-term input. The performance of CRFormer is evaluated based on automobile
claim data accumulated over 16 years. Results showed that compared to previous methods in terms of overall,
pattern-wise, and pattern similarity evaluation metrics, CRFormer achieved outstanding performance in time
and mileage reliability prediction. Lastly, visualization results and survival analysis based on accurate model
prediction can be used to support decision-making to reduce quality assurance costs and production costs.

INDEX TERMS Attention mechanism, automobile, reliability prediction, transformer.

I. INTRODUCTION
Automobiles have become the most popular mode of trans-
port, and hence, automobile companies have been developing
diverse strategies to provide competitive services. Among
these services, quality assurance is a strategy to attract and
retain customers. During the assurance period, customers can
receive a repair or replacement from the company for a mini-
mal charge [1]. Furthermore, to consolidate the automobile
market dominance, automobile companies provide quality
assurance service in two aspects, time and mileage, and
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extend the assurance period. Although the service satisfies
customers, automobile companies spend billions of dollars
annually on the service [2]. Since the quality assurance ser-
vice is significantly related to the reliability of the product [3],
the use of reliability prediction has steadily increased to
reduce the cost.

Reliability prediction has been studied in various industries
to manage stocks, determine appropriate warranty periods,
and reduce production costs [4], [5]. Also in the automo-
tive industry, several researchers have utilized reliability pre-
diction after sufficient data related to automobile failure
accumulated [6], [7]. Among these data, the claim data is
commonly used to predict automobile reliability. Researchers
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use the claim sequence, which is failure counts per 1 month
or 1,000 miles from claim data comprising information such
as the date of failure, automotive code, components, and
mileage. By predicting future failures or claims of automo-
biles based on historical claim sequences, researchers can
estimate automobile reliability. However, the limited infor-
mation in claim sequences, especially when targeting early
prediction, makes it challenging to achieve accurate automo-
bile reliability prediction results [8].

In the early days, researchers adopted parametric meth-
ods such as the Weibull distribution [9] and Lognormal
distribution [10] for reliability prediction in the automotive
industry using claim data [11], [12]. However, parametric
methods require strict assumptions [13]. To address the lim-
itations of parametric methods, [13] suggested the applica-
tion of ARIMA model in reliability prediction. Although
ARIMA model can capture sequential patterns, it results in
unsatisfactory prediction results when predicting long-period
failures with short-term inputs [14]. Recently, [14], [15]
applied deep learning models to predict automobile relia-
bility. Lee et al. [14] and Meng et al. [15] used 1-D Con-
volutional Neural Network (CNN) and Recurrent Neural
Network (RNN), respectively, to represent time-series claim
data. Lee et al. [14] showed that RNN outperformed the pre-
vious methods (i.e., parametric, time-series, and machine
learning models) for remaining warranty period failure pre-
diction with short-term inputs. However, problems such as
limited representationsmade by short-term inputs still persist,
due to which the model cannot predict increasing failure
patterns. In addition, evaluation metrics that cannot reflect
failure patterns, such as the failure-increasing pattern, provide
only limited results, which are insufficient to analyze results
in various aspects.

In short, the previous methods had the limitation of
representing sequential information with short-term inputs,
resulting in inaccurate prediction results. In addition, the
evaluation metrics could not reflect the results depending
on claim patterns. In this study, Complementary Reliability
perspective Transformer (CRFormer) is proposed for predict-
ing the time or mileage reliability of automotive components
using claim data. By exploiting two reliability perspectives
and claim feature information (i.e., car code, system, and
components), CRFormer can find long-term failure patterns
even with short-term inputs. CRFormer was evaluated on the
automotive component claim data accumulated over 16 years.
To compensate for the limitation of the previous evaluation
metrics, this study provides both overall, pattern-wise, and
pattern similarity evaluation results, thereby making it feasi-
ble for analyzing the prediction results depending on failure
patterns. Experimental results show that CRFormer achieves
outstanding performance in terms of both time and mileage
reliability predictions.

II. RELATED WORK
This section addresses previous methods of reliability pre-
diction in the automotive industry and their limitations.

Considering reliability prediction is usually regarded as a
time-series problem to predict future failures or claims,
deep learning models for time-series prediction are also
investigated.

A. RELIABILITY PREDICTION IN THE
AUTOMOTIVE INDUSTRY
Research on reliability prediction of automobiles has
traditionally been conducted using parametric methods.
Singpurwalla and Wilson [12] applied the bi-variate war-
ranty forecasting method, which blends the perspectives
of time and mileage. As statistical methods, linear mod-
els [16], Poisson distribution [11], and Weibull distribu-
tion [17] were proposed, but these methods had difficulty
representing long remaining failure sequences with short
initial failure sequences. In addition, reliability prediction
based on distributions required a strict assumption [13] and
showed unsatisfactory prediction results for new car mod-
els [18]. Although time-series models such as ARIMA and
exponential smoothing alleviate the strict assumptions and
capture sequential information of the failure sequence, the
long-term forecasting performance is still disappointing [6],
[19]. Meanwhile, several studies have been conducted based
onmachine learning using field claim data to predict the relia-
bility of parts [20]. Support Vector Machines (SVM) [21] and
gradient boosting models [22] showed better performance
compared to statistical models. Owing to the expandability
of deep learning models into various fields, it was possible
to confirm the effects of deep learning models in reliability
prediction [7]. Recently, [14], [15] suggested the 1-D CNN
and RNN-based time-series models for automobile reliability
prediction. In particular, [14] proved that deep learning mod-
els showed better performance in the reliability prediction
of automotive components compared to existing statistical,
time-series, and machine learning methods.

Although the previous studies contributed to predicting
the reliability of automobile parts based on various methods,
their methods were not sufficient for extracting enriched
representation from short failure sequences. The limitation
has becomemore critical as the importance of early reliability
prediction increases. In addition, the previous methods do
not consider the difference of failure patterns in terms of
both prediction and evaluation phases. The failure patterns
appearing in the claim data are divided into decreasing fail-
ure patterns caused by quality issues at the beginning of
the warranty period, and increasing failure patterns, such as
durability problems that gradually increase failures over time.
Although detecting increasing failure patterns is relatively
more important than detecting decreasing failure patterns,
they appear intermittently and rarely, making them almost
unpredictable in previous studies. The success of early reli-
ability prediction means not only naively predicting failures,
but also detecting increasing failure patterns. Therefore, it is
important to develop a model that can predict intermittent
increasing failure patterns for practical reliability analysis,
thereby indicating that improving the representation of short
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input sequences is an important factor. Furthermore, given
that the importance of failure patterns differs, it is necessary
to provide evaluation metrics that consider the differences in
failure patterns.

B. DEEP LEARNING MODELS FOR TIME-SERIES
PREDICTION
Given that data availability and computing power have
increased, researchers have adopted deep learning models
for time-series prediction owing to the advantage of learn-
ing the representation of complex data without statistical
assumptions [23]. Recurrent Neural Networks (RNNs) [24],
[25], [26], [27] were developed to represent the previous
time information at the current time step. Long Short-Term
Memory (LSTM) [25] mitigates the gradient vanishing prob-
lem of RNN by designing cell states containing long-term
information. Gated Recurrent Unit (GRU) [24] proposed an
improved state update process with fewer gates than LSTM,
and the state update process is as follows:

zt = σ (Wzxt + Uzht−1 + bz) (1)

rt = σ (Wrxt + Urht−1 + br ) (2)

h̃t = tanh(Whxt + Uh(rt � ht−1)+ bh (3)

ht = (1− zt )� ht−1 + zt � h̃t (4)

where xt and ht are the current input and updated output
of time step t , and σ is a sigmoid function. Each zt and rt
denotes an update and reset gate, and a bias for b, respectively.
In contrast, CNN is adopted for time-series models since
it can determine the relationship between past and present
information by applying a filter of a fixed size according
to time sequence. Considering the advantages of RNNs and
CNN, which can capture sequential information, researchers
designed RNNs or CNN-based time-series models [28], [29],
[30]. However, the problems of long-term dependence and
incorrectly accumulated representation from the past steps
still persist as the major problem.

Transformer [31] is an attention mechanism-based model
used in machine translation that uses self-attention to learn
the relationship between sequential information from each
point of view. Transformer has the advantage of con-
sidering sequential information without the constraint of
the sequence step distance via an attention mechanism.
Owing to the added advantage of an attention mechanism
that alleviates the vanishing gradient problem, the sequen-
tial feature extraction ability of Transformer helps achieve
state-of-the-art performance in diverse domains such as
pre-trained language models [32], image-relevant tasks [33],
[34], [35], and a multi-modal task [36]. In the time-
series prediction domain, [37], [38], [39] demonstrated that
Transformer achieved better performance than the previous
time-series models. Park et al. [39] suggested that Trans-
former models achieved higher performance than LSTM
models in vessel fuel consumption prediction and [37],
[38] proved the outstanding of Transformer by comparing
their methods with both statistical methods and RNNs in

influenza and multi-horizon time-series prediction respec-
tively. As previous studies have proven the success of Trans-
former in time-series prediction, researchers have proposed
Transformer-based time-series models that satisfy both effi-
ciency and performance [40], [41], [42], [43]. In particular,
Informer [42] greatly reduced the amount of computation and
improved the model performance by using the ProbSparse
self-attention mechanism, self-attention distilling operation,
and generative style decoder. Informer’s ProbSparse atten-
tion utilizes Kullback-Leibler divergence to measure the
importance of a query and calculates the dot product
by sampling significant Top-u queries. Autoformer [43]
reflected the time-series characteristics to the end-to-end
model through the auto-correlation mechanism and series
decomposition block and increased the computational effi-
ciency. A series decomposition block divides time-series
inputs into trend-cyclical and seasonal parts using the average
pooling technique. Auto-correlation mechanism calculates
auto-correlation by inverse fast Fourier transform after dot
product using fast Fourier transform on query and key of self-
attention mechanism. Then, the Top-k autocorrelations are
used as attentionweights. Although Informer andAutoformer
show state-of-the-art performance in long-term sequence
prediction, they are not optimized for reliability prediction
which needs to predict long-term sequences with short failure
sequences. Furthermore, the time-series characteristics of a
short failure sequence do not last on a long-term sequence.
Owing to differences in the domain and data, this study
proposes a model to represent enriched representations from
short-term inputs while taking advantage of Transformer.

III. METHOD
In this section, Complementary Reliability perspective Trans-
former (CRFormer) is described in detail. As shown in
Figure 1, CRFormer consists of a nested sequence embedding
module, Transformer encoder, Context Attention (CA), and a
prediction layer. CRFormer is designed to predict the relia-
bility of automotive components within warranty periods of
5-year and 60000-mileage, respectively. From the claim data,
a nested sequence that contains both time and mileage-based
information is generated and claim features are extracted.
The nested sequence embedding module extracts sequential
representations of the target reliability, time or mileage, from
the nested sequence. Transformer encoder emphasizes the
target sequential information. Finally, CA and a prediction
layer merge claim features and each sequence step to predict
future claims within the remaining warranty periods.

A. SEQUENCE PROCESSING
As shown in the input data processing in Figure 1, the claim
frequencies and features are extracted depending on unique
combinations of year, car code, system, and components from
the claim data. Based on the claim frequencies, target claim
sequences are generated for each target reliability (i.e., time
and mileage). The time-based claim sequence contains claim
counts per 1 month for 61 months which is the warranty
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FIGURE 1. Pipeline of input data processing and overall architecture of CRFormer.

FIGURE 2. Nested sequence depending on target reliability, time and
mileage.

period of time, 5-year. On the other hand, the mileage-based
claim sequence represents claim counts per 1,000 miles for
60,000 miles which is the warranty period of mileage, 60000-
mileage. Since the warranty period affects the claim obser-
vation period, it is important to set an appropriate warranty
period. Considering the warranty periods of the previous
works [11], [14] and the minimum warranty periods of the
automobile company which provided the data, the warranty
periods in this research are set as 5-year and 60000-mileage,
respectively. The target claim sequence x is defined as x ∈
RLr , where Lr is the total sequence length of each target
reliability within warranty period. r ∈ {t,m} is the set of auto-
mobile reliabilities, where t and m are the time and mileage.
The target reliability parameter r is adopted to decide what
reliability perspective the models predict, therefore the inputs

and outputs are defined by the parameter. Finally, the input
sequence x ∈ Rlr and the output sequence y ∈ RLr−lr are
defined when lr is the input sequence length.
Since x contains only the claim frequencies for each tar-

get reliability, the problem of limited sequence information
increases as the input sequence length decreases. To guaran-
tee the enriched information even in a short input sequence,
a nested sequence is proposed, containing different reli-
ability information as in Figure 2. The nested sequence
represents the claim counts per sub-reliability unit on each
target reliability sequence step. Given L ′r is the total sequence
length of each sub reliability within the warranty period, the
input of the proposed model x is defined as x ∈ Rlr×L ′r .
For the detailed expressions, the inputs x for time and
mileage reliability prediction are defined as x ∈ Rlt×L ′m and
x ∈ Rlm×L ′t .

B. NESTED SEQUENCE EMBEDDING
This study proposes a nested sequence embedding module
that extracts enriched representations of the target reliability
claim sequence by fusing with the subsequence made from a
different reliability perspective. The nested sequence embed-
ding module is composed of GRU and One-sided Cross
Attention (OCA).

To consider the target sequential and subsequential infor-
mation, the nested sequence x ∈ Rlr×L ′r is forwarded into
two paths, as shown in Figure 3. In the target path, the target
path input xT ∈ Rlr×L ′r is defined while maintaining the
original input dimension to consider the target sequential
information. In contrast, the sub-path input is represented as
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FIGURE 3. Nested sequence embedding.

xS ∈ Rlr×L ′r×1 to reflect sequential information of the sub-
sequence. Furthermore, a GRU layer is adopted to consider
each sequential information. Given C is a hidden size, the
outputs of each path, x ′T ∈ Rlr×C and x ′S ∈ Rlr×L ′r×C , are
defined as x ′T = GRU (xT ) and x ′S = GRU (xS ), respectively.
For x ′S , the summation of the average and max pooling on the
subsequence aggregates the subsequential information. The
output x ′S ∈ Rlr×C is defined as below:

x ′S = Average(x ′S )+Max(x
′
S ) (5)

After extracting each sequential information, OCA based
on self-attention [31] conveys the aggregated subsequence
representations x ′S to the target sequence x ′T . For OCA, the
query Q ∈ Rlr×C is represented by linear transformation
with the weight Wq ∈ RC×C and x ′T . To convey the subse-
quence representation, the key and value, K and V ∈ Rlr×C

k,v ,
are represented by linear transformations with each weight
Wk,v ∈ RC×C

k,v and x ′S . Given dk is the scaling size, the
one-sided cross attention weight αCr ∈ Rlr×lr and the target
sequence output x ′T ∈ Rlr×C are defined as follows:

αCr = softmax(
QK>
√
dk

) (6)

x ′T = W (αCrV ) (7)

where W ∈ RC×C is the weight for linear transformation on
αCrV . By considering each reliability perspective sequential
information from the nested sequence and fusing them, the
target reliability claim sequence contains representations of
both automotive reliability perspectives. Since the embed-
ding module represents the nested sequence into the target
sequence, the represented target sequence can be forwarded
into sequence models such as RNNs and Transformer.

C. ENCODER
CRFormer uses Transformer encoder [31] to emphasize the
target claim sequential information represented by the nested
sequence embedding module. Encoder is composed of the
N number of encoder blocks. Each encoder block contains
Multi-head Self-Attention and Feed-Forward Network, each
is followed by residual connection and layer normalization.

Multi-head Self-Attention extracts representations by
dividing theH number of heads and performing self-attention
on each head to consider diverse views. Given xT ∈ Rlr×C

is the target claim sequence, Qi, Ki, and Vi ∈ Rlr×C/H
q,k,v of

each head is represented by a linear transformation with each
weight W q,k,v

i ∈ RC×C/H
q,k,v and xT , where i = {1, 2, . . . ,H}.

The output of Multi-head Self-Attention x ′T ∈ Rlr×C is
obtained by concatenating the self-attention outputs of each
head, given as:

headi=Attention(Qi,Ki,Vi)=softmax(
QiK>i
√
dk

)Vi (8)

x ′T =MultiHead(Q,K ,V)=W ([head1;, . . . , headH ] (9)

x ′T = LayerNorm(xT + x
′
T ) (10)

dk is defined as dk = C/H for the scaling size and W ∈
RC×C is used as a linear transformation for the output. Addi-
tionally, layer normalization and residual connection stabilize
the learning process.

Then, the output of each block is obtained by Feed-
Forward Network, residual connection, and layer normaliza-
tion, which are applied to x ′T . The process is as follows:

FFN (x ′T ) = Wout (ReLU (Win(x ′T ))) (11)

x ′T = LayerNorm(x ′T + FFN (x ′T )) (12)

whereWin ∈ RC×C andWout ∈ RC×C denote the weights of
Feed-ForwardNetwork. The output of the encoder is obtained
after passing through the N number of blocks.

D. CONTEXT ATTENTION AND PREDICTION LAYER
Instead of adopting Transformer decoder to predict future
claims at each step, CRFormer contains Context Attention
(CA) and a prediction layer. CRFormer adopts CA based
on [44] and [45] to emphasize and aggregate sequential infor-
mation using a context vector in the target claim sequence
xT ∈ Rlr×C , which is the output of the encoder block.
Given Cvector ∈ RC×1 is the learnable context vector for
capturing important information of each sequence step, the
context attention weight αc ∈ Rlr×1 and the aggregated
output x ′T ∈ RC which is the average of the sequence of the
attention output are obtained as below:

αc = softmax(Wc(xT )Cvector ) (13)

x ′T = Average(xT � αc) (14)

whereWc ∈ RC×C denotes the weight for linear transforma-
tion on xT .
Regarding feature information of the claim sequence (i.e.,

car code, system, and components), each categorical feature
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xcar,sys,part ∈ RC is transformed by the weightWcar,sys,part ∈

R1×C . To merge the feature representation xcar,sys,part and
the aggregated representation x ′T , each xcar,sys,par is concate-
nated, followed by a summation with x ′T and layer normaliza-
tion. The process is defined as follows, whereWf ∈ R3C×C is
used for the dimension reduction to the concatenated feature
representation.

xf = Wf ([xcar ; xsys; xpart ]) (15)

x ′T = LayerNorm(x ′T + xf ) (16)

The above equations are used when the feature information
is exploited. Then, a linear prediction layer Wp ∈ RC×Lr−lr

on x ′T is applied to predict future claims ŷ ∈ RLr−lr . Since
the outputs are arranged depending on the target reliability
parameter r , time and mileage reliability prediction outputs
are defined as ŷ ∈ RLt−lt and ŷ ∈ RLm−lm , respectively.

IV. EXPERIMENT
A. DATASET
This study uses the claim data provided by an automobile
company. The claim data were collected for 16 years, com-
prising 951,170 claims, from 2006 to 2021. The claim data
are acquired when the claim or failure is reported, and they
contain some information about the claim. The status and
meta information of the car in failure are recorded as the
claim information. As shown in Table 1, the claim data con-
tain three types of information (i.e., automotive, usage, and
sales). Among the automotive information, the system and
components indicate the automotive factors which caused the
failure. Usage information includes the periods and mileage
up to the failure. Sales information refers to the total number
of car sales, where the car is distinguished by car code and
year. To target the prediction of reliability within the warranty
of 5-year and 60000-mileage, the claim data that is over five
years from the release date (i.e., between 2006 to 2016) are
used. In the selected data, the number of unique cars, systems,
and components is 11, 8, and 567, respectively. The failure
proportion of 11 car codes is described in Table 2.
To transform the claim data into claim sequences for model

inputs, the sequence processing described in Section III-A is
applied. After the transformation, the total number of claim
sequences from 2006 to 2016 is 4,663, where the year rep-
resents the release year of the cars. To train and evaluate

TABLE 1. Features of claim data.

TABLE 2. Failure proportion per car code. The car codes are
alphabetically masked.

the models, the train, validation, and test dataset are set as
2006 to 2014, 2015, and 2016 year, respectively. Therefore,
there are 3,440 claim sequence data from 2006 to 2014 as
train data, 676 claim sequence data in 2015 as validation data,
and 574 claim sequence data in 2016 as test data.

B. BENCHMARK MODELS
Benchmark models from previous studies are set for com-
parison with the proposed models. The benchmark models
contain the Weibull distribution and ARIMA for the para-
metric and time-series models, respectively. In particular,
their parameters (i.e., shape and scale for Weibull distribu-
tion and order of auto-regressive model, differencing, and
moving-average model for ARIMA are determined by vali-
dation scores. Additionally, considering that [14] showed the
superiority of LSTM in claim prediction compared to the
previous methods, RNN, LSTM, and GRU are also adopted.
Finally, Transformer is used, which is the base model of the
proposedmodels, and Transformer-based time-series models,
namely, Informer and Autoformer, for comparison.

C. IMPLEMENTATION DETAILS
For training, a batch size of 128 and an epoch of 200 are
used. In addition, l2 loss and Adam optimizer are adopted
to optimize the proposed models. During training, the best
model weights are maintained based on the validation score.
Regarding model hyperparameters, CRFormer has a hidden
dimension size C = 256, the number of encoder blocks
N = 6, and the number of heads in Self-Attention H = 4.
Given the input sequence length lr is 6, the experiments for
comparing the proposed models with benchmark models are
conducted. To verify the complementarity of the proposed
models, the target reliability perspective r is set as each
time t and mileage m. That is, two experiments show each
result of predicting time and mileage reliability. Given the
warranty periods of 5-year and 60000-mileage, each period is
divided by 1 month and 1,000 miles respectively, thus, each
total sequence length Lt and Lm are 61 and 60. In addition,
the proposed models are distinguished by CRFormer and
CRFormer-F (i.e., CRFormer with features) to verify the
influence of the features on the model performance gain.
CRFormer-F uses the automotive information features except
for year information, and sale information is added as features
in the further experiment. Finally, the same level of hyperpa-
rameters is used for the benchmark models.
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TABLE 3. Comparison results of time reliability prediction in terms of claim prediction and pattern metrics. 0, 1, and 2 in RMSE and MAE denote irregular,
decreasing, and increasing patterns, respectively.

D. EVALUATION METRICS
The proposed and benchmark models are evaluated in terms
of claim prediction and pattern similarity. To evaluate future
claim predictions, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) are adopted. The MAE and
RMSE, which calculate the average of errors in each step dur-
ing the predicted warranty period, are defined as the overall
MAE and RMSE. Given lr is the input sequence length and
Lr is the total warranty period, the metrics are calculated as
below:

MAEOVR =
1

n(Lr − lr )

n∑
i=1

Lr∑
t=lr

∣∣yi,t − ŷi,t ∣∣ (17)

RMSEOVR =

√√√√ 1
n(Lr − lr )

n∑
i=1

Lr∑
t=lr

(yi,t − ŷi,t )2 (18)

Above the equations, n and t denote the number of claim
sequences and each step in the claim sequences, respectively.
Furthermore, accumulated MAE and RMSE are adopted to
evaluate the accumulation of predicted claims over warranty
periods. The accumulated evaluation metrics are calculated
as below:

MAEACC =
1
n

n∑
i=1

∣∣∣∣∣∣
Lr∑
t=lr

yt −
Lr∑
t=lr

ŷt

∣∣∣∣∣∣
i

(19)

RMSEACC =

√√√√1
n

n∑
i=1

(
Lr∑
t=lr

yt −
Lr∑
t=lr

ŷt )2i (20)

The claim sequences can be divided into several patterns
(i.e., irregular, decreasing, and increasing), and the previous
metrics can not reflect the pattern-wise evaluation results.
Therefore, to evaluate the models pattern-wisely, Dynamic
Time Warping (DTW) clustering [46] is applied to the
claim sequences, dividing the claim sequences into irregular,
decreasing, and increasing patterns, and MAE and RMSE
are measured depending on the patterns. The pattern-wise
MAE and RMSE are calculated by the Equations 17 and 18
depending on their claim patterns.

In claim prediction, it is important that the predicted claim
sequence has a pattern similar to the real pattern, especially

when the claim sequence has an increasing pattern. There-
fore, to evaluate the predicted claims in terms of pattern sim-
ilarity, the DTWwhich is trained on claim sequences to divide
claim sequence patterns is used to classify the pattern of the
predicted claims, as in [47]. Given ci is the claim sequence
pattern of yi, the claim pattern prediction ĉi is defined as
ĉi = DTW (ŷi). Based on the classification results of the
DTW, the accuracy and f1-score are measured for pattern
similarity evaluation.

E. EXPERIMENTAL RESULTS
The proposed model is verified by conducting experiments
depending on the target reliability. Since the automobile reli-
ability prediction can be performed from a time and mileage
reliability perspective, the experiments are designed to com-
pare reliability prediction results based on each perspective.
The proposed models and benchmark models are compared
in terms of the RMSE, MAE, and pattern similarity. The
RMSE and MAE are divided into 0, 1, and 2 depending on
the claim sequence patterns (i.e., irregular, decreasing, and
increasing) to reflect pattern-wise evaluation results. In addi-
tion, the results contain the accumulated RMSE and MAE
which are the evaluation metrics for accumulated predicted
claims within warranty periods, whereas the overall RMSE
and MAE indicate the average errors of each step during
warranty periods. Each accumulated metric and overall met-
ric is denoted as ACC and OVR, respectively, in the result
table. Regarding the RMSE and MAE of each pattern, the
scores are calculated in the same way as the overall metrics
(OVR) which average errors of each step during warranty
periods. To evaluate the models in terms of pattern similarity,
evaluation metrics include the accuracy and f1 score. Since
the decreasing and increasing patterns account for a relatively
small portion, it is necessary to focus more on the f1 score.
Furthermore, the prediction results are investigated by visu-
alizations.

Table 3 presents the experimental results for predicting
future claim sequences when the target reliability is time.
The results suggest that the proposed model, CRFormer,
generally achieves improved performance compared to the
previous methods in terms of the RMSE, MAE, and f1 score.
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TABLE 4. Comparison results of mileage reliability prediction in terms of claim prediction and pattern metrics. 0, 1, and 2 in RMSE and MAE denote
irregular, decreasing, and increasing patterns, respectively.

FIGURE 4. Prediction results visualization depending on claim patterns and reliability perspectives when the input sequence length is 6. The black
vertical dashed lines show the given input sequence length. (a) Prediction results for time reliability. (b) Prediction results for mileage reliability.

CRFormer shows improved performance in terms of the
overall RMSE and MAE, which are the average errors of
each step over warranty periods, and the superiority is also
revealed through the evaluation result of accumulated pre-
dicted claims. Furthermore, compared to Transformer which
does not apply the nested sequence, CRFormer improves the
performance, and it indicates the effect of the nested sequence
on the performance improvement. Although CRFormer-F
achieves a lower RMSE than Transformer and Informer, the
f1 score is the highest, which indicates CRFormer-F can
follow the actual pattern of the claim sequence. Interestingly,
Autoformer and ARIMA show relatively lower performance
than other models, which implies that the time-series char-
acteristics of the short claim sequence do not last on the
remaining long future claim sequence. In contrast, although
the Weibull distribution and RNNs can capture decreasing

patterns, they showed poor performance in increasing
patterns.

Meanwhile, the comparison result for the mileage reliabil-
ity prediction demonstrates a similar result. Table 4 suggests
that CRFormer is superior to the previous methods also in
mileage reliability prediction. This indicates that the nested
sequence fusing different reliabilities operates complemen-
tarily. As addressed in the experiment results of Table 3, the
comparison between CRFormer and Transformer shows the
effect of the nested sequence. By adopting both reliability
perspectives, CRFormer can predict accurate future claims
with enriched representations. Furthermore, the f1 score of
CRFormer-F increases significantly, whereas the f1 scores of
other models generally decrease compared to time reliability
prediction. By comparing the mileage and time reliability
prediction results, it is observed that the feature information
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is more effective in determining the pattern information of the
mileage-based sequence.

From the above experiments, the results suggested that the
proposed models can extract enriched representations even
with short-term input sequences. Additionally, the nested
sequences contributed to performance improvement regard-
less of the reliability type, and the feature information guides
the capture of the pattern information of the claim sequences.
To investigate the prediction results of the proposed models,
the predicted claims are visualized depending on the reliabil-
ity perspectives and claim patterns. As shown in Figure 4,
the prediction results of the proposed models capture the
real claim patterns better, especially in the decreasing and
increasing patterns, compared to other Transformer-based
models. Regarding increasing patterns in the mileage reliabil-
ity prediction, CRFormer-F can even capture the increasing
patterns, whereas the others can not react at all. The poor
performance of the other models in increasing patterns was
also revealed through the low f1 scores.

F. FURTHER EXPERIMENTS
In the further experiment, the experiments examine the effect
of the proposed methods, scaling, and input sequence length
on the model performance, respectively.

1) ABLATION EXPERIMENT
The ablation experiment investigates the effect of each pro-
posed method on the model performance. Table 5 lists the
prediction results of the diverse model versions based on
Transformer as the base model, depending on the proposed
methods. Each proposed method is accumulated from the
base model. Among the model versions in Table 5, CA & lin-
ear refers to the Context Attention and a prediction layer that
this study proposed instead of Transformer decoder. Nested
sequence represents the nested sequence concept and the
proposed embedding module. Feature represents the usage of
categorical features in the Context Attention and a prediction
layer. As shown in Table 5, CA & linear and nested sequence
generally improve the model performance in terms of the
RMSE,MAE, and f1 score. Furthermore, the nested sequence
contributes to improving the performance regardless of the

TABLE 5. Comparison results of reliability prediction for time and
mileage depending on the proposed methods.

target reliability, which indicates that the nested sequence and
its embedding operate in a complementary manner. Although
the use of features decreases the performance of RMSE and
MAE, it significantly improves the f1 score compared to
other versions, thereby indicating that categorical features are
effective in finding hidden representations of patterns.

2) SCALING EXPERIMENT
The scaling experiment analyzes the effect of the scaling
technique on the performance of the proposed models. For
scaling, sales information is used in Table 1. Given that i is
the unique car made in a specific year and ni is the number
of sales of i, the input sequence xi ∈ Rlr×L ′r and output
sequence yi ∈ RLr−lr is defined as xi = Constant× xi/ni and
yi = Constant × yi/ni, respectively. Constant is used as the
sales unit adjusting scaling and is set as Constant = 10, 000.
The scaled input and output are used in the training phase, and
the prediction results are transformed into the original scale
for a fair comparison. In addition, to investigate the possibility
of using sales information as a feature, not as a scaling fac-
tor, CRFormer-FS uses sales information as a feature while
keeping the claim features. As shown in Table 6, the results
suggest that the performance of the proposed models with
scaling is similar to or worse than that of the models without
scaling in terms of RMSE andMAE. However, when the scal-
ing technique is applied, there is a significant performance
decrease in terms of the f1 score, and a similar tendency of
performance change occurs also in CRFormer-FS. From the
experiment result, it is reasonable to deduce that the scaling
technique can not rather reflect the original scaling difference
of each claim sequence, thereby the effect appears in a lower
f1 score.

TABLE 6. Comparison results of reliability prediction for time and
mileage depending on scaling.

3) SEQUENCE LENGTH EXPERIMENT
In this experiment, different sequence length inputs are used
to verify the proposed models. The input sequence length is
set to 6, 9, and 12 for the proposed models, and examine
the difference in performance achievement depending on the
input sequence length. Table 7 shows that the performance
generally increases as the input sequence length increases.
In particular, a significant performance improvement is
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FIGURE 5. Survival curves visualization depending on claim patterns and reliability perspectives when the input sequence length is 6. The black vertical
dashed lines show the given input sequence length. (a) Estimated survival curve for time reliability. (b) Estimated survival curve for mileage reliability.

TABLE 7. Comparison results of reliability prediction for time and
mileage depending on input sequence length.

observed in the f1 score, which indicates the proposed mod-
els can better find the claim patterns when the sequence is
guaranteed to have sufficient length. Thus, the experimental
result suggests that the proposed models can exploit more
sequential information to predict claims and patterns of the
sequence as the input sequence length increases.

V. RELIABILITY ANALYSIS
In this section, reliability analysis is conducted by the
claim predictions. Since the proposed models, designed for
time-series prediction, only consider the uncensored data
within warranty periods of 5-year or 60000-mileage, the
proposed models do not provide the reliability aspects while

considering the censored data. Although the predicted auto-
mobile component future claims and their patterns can be
used for decision making, considering censored data is nec-
essary to analyze the reliability of automobile components
within warranty periods.

Reliability analysis means analyzing whether the objects
can perform their functions under given conditions. In the
automotive industry, reliability analysis is conducted over
time or mileage. This can be analyzed through the survival
probabilities of automotive components under given condi-
tions by considering both censored and uncensored data [9].
To conduct the reliability analysis, it is necessary to deter-
mine the number of censored data [48], [49]. Given the sales
information of the unique car released in the specific year
in Section IV, the claim frequencies and sales information
within warranty periods can be used for obtaining the cen-
sored and uncensored data.

To conduct a reliability analysis, the Kaplan-Meier estima-
tor is adopted, which is a useful non-parametric method to
estimate the reliability curve in the presence of the censored
and uncensored data [50]. The survival function Ŝ(t) is esti-
mated as follows:

Ŝ(t) =
∏
ti≤t

(
1−

di
ni

)
(21)

where ti is the ith point of time or mileage when failure occurs
and di is the number of failures that occurs at ti. ni is the
individuals known to have survived up to ti.

Based on the above equation, the survival curves of real
and predicted claims are estimated. Figure 5 shows the visu-
alization results of the estimated survival curves depending
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on claim patterns and reliability perspectives. Each case is the
same as that used in Figure 4 for the predicted claim sequence
visualizations. As shown in Figure 5, the proposed models
can follow the actual survival curve. Furthermore, the ability
of CRFormer-F to accurately predict increasing claims is also
revealed in the survival curves. Compared to the survival
curves of CRFormer, the survival curves of CRFormer-F are
similar to the actual curves, thereby indicating that the uti-
lization of claim features is also effective in both the time and
mileage reliability analyses. Based on the above results, it is
confirmed that the outstanding time-series prediction perfor-
mance of the proposedmodels secures the reliability analysis.
Finally, the survival probabilities of automobile components
estimated by reliability analysis can be compared without
constraints of considering the scales of failure frequencies
and sales within warranty periods, and hence, can provide
more practical information to decision-makers.

VI. CONCLUSION
This study proposed CRFormer, based on Transformer
encoder, applied to the automotive component reliability
prediction. Compared to the previous methods, CRFormer
acquired enriched representations evenwith short-term inputs
by designing the nested sequence and its embedding mod-
ule, which fuses the time and mileage-based sequence, and
achieved better prediction performance in both time and
mileage reliability predictions. It indicates that the proposed
models can assist early decision-making with more accurate
information. In addition, through diverse evaluation metrics
(i.e., overall claim prediction, pattern-wise claim prediction
evaluationmetrics, and pattern similarity metrics), the predic-
tion results can be investigated in diverse aspects. Although
using categorical features did not contribute to the improve-
ment of the claim prediction performance, it significantly
affected the improvement of the f1 score which is related to
the accuracy of the increasing pattern. It suggests the pro-
posed models can accurately predict future claims regardless
of sequence patterns unlike the previous models which can
accurately predict only irregular or decreasing patterns. Con-
sidering the importance of detecting automotive components
which will be in failure, the proposed model can provide
more practical information to decision-makers. Furthermore,
visualizations of the prediction results and reliability analysis
based on the survival curve can assist in intuitively under-
standing the prediction results with claim patterns and the
survival probability of the automotive components. Finally,
these predictions and analyses make it feasible not only to
secure the lifespan of automotive components and decide
on appropriate warranty periods but also to provide early
feedback for manufacturers and stock managers, thus, it can
result in reducing warranty and unexpected costs.
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