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ABSTRACT In this paper, we propose a novel white balance adjustment for multi-illuminant scenes,
called ‘‘N-white balancing,’’ in which N source white points are mapped into a ground truth one. Most
white balance adjustments focus on adjusting single-illuminant scenes. Several state-of-the-art methods for
adjusting multi-illuminant scenes have been proposed, but they need to know the number of segments or the
number of light sources in advance. Multi-color balance adjustments have been investigated to improve the
performance of white balancing, but they also suffer from color distortion due to the rank deficiency problem.
In contrast, the proposed method, N-white balancing, can correct multi-illuminant scenes even when we
do not know the exact number of segments or light sources in a scene. In an experiment, the proposed
method was demonstrated to outperform state-of-the-art methods under various illumination conditions such
as single and multiple illuminants including non-uniform light sources.

INDEX TERMS Color constancy, color correction, image processing, white balance adjustment, multi-
illuminant scene.

I. INTRODUCTION
Image segmentation and object recognition are required to
decompose an image into meaningful regions. A typical
approach to this problem assigns a single class to each pixel
in an image. However, such hard segmentation is far from
ideal when the distinction between meaningful regions is
ambiguous, such as in the cases of objects with motion blur or
color distortion caused by illumination or in the case of image
enhancement [1], [2], [3], [4], [5]. Accordingly, we aim to
reduce lighting effects in an image.

A change in illumination affects the pixel values of an
image taken with an RGB digital camera because the values
are determined by spectral information. In the human visual
system, it is well known that illumination changes (i.e., light-
ing effects) are reduced, and this ability keeps the entire color
perception of a scene constant. In contrast, since cameras do
not essentially have this ability, white balancing is applied to
images [6], [7], [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Callico .

Most traditional white balancing attempts to remove light-
ing effects on the assumption that a scene is captured under
a single light source. Such white balancing for single illumi-
nants (i.e., single-illuminantWB) requires two steps: estimat-
ing a source white point and mapping the estimated source
white point into a ground truth white point without lighting
effects, where ‘‘source white point’’ is a set of tristimulus
values that represents the color of a white region when a light
source strikes thewhite region, ‘‘white region’’ is a region that
reflects all of the light, and ‘‘ground truth white point’’ is a
source white point measured under an ideal light source such
as the CIE standard illuminant D65 [9]. Accordingly, a source
white point represents the color of illumination. In general,
a source white point is calculated as a representative (e.g.,
the mean or median) value from the pixel values of the white
region, and it is denoted by a set of tristimulus values such as
(X,Y,Z) in the XYZ color space [10]. The phrase ‘‘source
white point’’ is sometimes referred to as ‘‘illuminant.’’ Many
studies have focused on automatically estimating a source
white point in an image [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
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[28], [29], [30], [31], [32], [33], [34]. Also, some meth-
ods automatically select the most appropriate algorithm for
illuminant estimation depending on the content of individ-
ual images [35], [36], [37]. However, single-illuminant WB
cannot reduce lighting effects under multiple illuminants.
Mixed and non-uniform light sources are examples of mul-
tiple illuminants.

Multi-color balance adjustments [8], [38], [39] have been
proposed to consider correcting various colors. In these meth-
ods, multiple colors are used for designing a matrix that
maps multiple colors into ground truth colors. However,
multi-color balancing may cause the rank deficiency prob-
lem to occur as a non-diagonal matrix is used, unlike white
balancing [40].

To address this problem, state-of-the-art white balance
adjustments for mixed light sources (i.e., multi-illuminant
WB) have been proposed [25], [41], [42], [43], [44], [45].
By using a segment-wise estimation of a source white point,
these methods can adjust lighting effects under single or
mixed light sources. However, in some cases, the number
of segments or the number of light sources needs to be
known in advance [46]. Wrong assumptions result in color
distortion in an image [45].Moreover, thesemethods consider
multiple illuminants as mixed light sources, so non-uniform
illumination such as shading cannot effectively be adjusted.
Barnard et al.’s method [47] considers non-uniform illumi-
nation. However, it assumes that the illuminant transition
is smooth. Several approaches [26], [27], [48], [49] based
on the human vision system (HVS) have been proposed,
and some of them [48], [49] can be applied for adjusting
multi-illuminant scenes. Also, methods based on machine
learning [46], [50], [51], [52] have been studied. However,
both HVS- and learning-based methods have problems such
that any previously studied illuminant estimation algorithm
cannot be used.

Accordingly, in this paper, we propose a novel white
balancing called ‘‘N-white balancing’’ for adjusting images
taken under single and multiple illuminants. N is the number
of source white points, not the number of light sources. Under
a general single-illuminant scene, N source white points
have almost the same set of values. In contrast, under a
multi-illuminant scene, source white points calculated from
N different positions are generally different. The proposed
method aims to simply adjust N source white points to
corresponding ground truth ones. Hence, the method can
reduce lighting effects under various illumination conditions
even when N is a larger number than the number of light
sources in a scene. Therefore, N-white balancing relieves
us of needing to accurately select such parameters. Addi-
tionally, color distortion due to a rank deficient matrix is
never caused in N-white balancing because a diagonal matrix
is used.

In experiments, the proposed method was compared
with single-illuminant WB, multi-color balancing, and
multi-illuminant WB on the basis of the reproduction angular
error [53].

TABLE 1. Differences among color balance adjustments.

The rest of this paper is organized as follows. In Section II,
we review related work. In Section III, we present our
N-white balancing for single and multiple illuminants.
In Section IV, we evaluate the effectiveness of the proposed
method. In Section V, we conclude our research.

II. RELATED WORK
We summarize conventional methods for color constancy
to clearly show problems with these methods. Conven-
tional methods are categorized into three types: single-
illuminant WB, multi-color balancing, and multi-illuminant
WB. In Table 1, the differences among the color balance
adjustments are summarized in terms of the number of light
sources and the selection of source points. The proposed
method is a type of multi-illuminant WB.

A. LIGHTING EFFECTS ON PIXEL VALUES
On the basis of the Lambertian model [54], the pixel values of
an image taken with an RGB digital camera are determined
by using three elements: spectra of illuminationE(λ), spectral
reflectance of objects S(λ), and camera spectral sensitivity
RC for color C ∈ {R,G,B}, where λ spans the visible
spectrum in the range of [400, 720]. A pixel value PRGB =

(PR,PG,PB)> in the camera RGB color space is given by

PRGB =

∫ 720

400
E(λ)S(λ)RC (λ) dλ. (1)

Eq. (1) means that a change in illumination E(λ) affects the
pixel values in an image. In the human visual system, the
changes (i.e., lighting effects) are excluded, and the overall
color perception is constant regardless of illumination differ-
ences, known as color constancy. Tomimic this human ability
as a computer vision task, white balancing (WB) is typically
performed as a color adjustment technique.

B. WHITE BALANCING FOR SINGLE ILLUMINANT
Under a single light source, single-illuminant WB can reduce
lighting effects on colors in an image. A two-step procedure
is required to perform single-illuminant WB: 1) estimate a
source white point, and 2) map the estimated source white
point into a ground truth white point. Many studies on color
constancy have focused on the first step (i.e., source white
point estimation) [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34].

Methods for estimating a source white point are catego-
rized into three types. The first type is methods that need
the locations of white regions to calculate a source white
point from white regions. Yang et al. proposed a method for
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estimating a source white point under the framework of the
Grey-Pixels adjustment [25], and the method belongs to this
first type. The second type is methods that determine a source
white point from pixels satisfying a specific condition [11],
[12], [15], [19], [24], [26], [27], [30], [55]. For example,
the White-Patch algorithm assumes that the maximum pixel
values in RGB channels represent a perfect reflectance of
the light source [11]. These methods do not require that the
locations of white regions be estimated, unlike the estimation
method of the Grey-Pixels adjustment. The third type is meth-
ods that determine a source white point by using machine
learning [13], [14], [16], [17], [20], [21], [22], [23], [28],
[29], [32], [33], [34], [56], [57]. These approaches can also
compute a sourcewhite point without estimating the locations
of white regions. Therefore, the estimation methods of the
second and third types enable us to estimate a source white
point without white regions. Alternatively, they approximate
the pixel values of white regions by using other pixel values
in an image such as the maximum pixel value in the image.
Performing both the first and the second steps is called ‘‘auto
white balance adjustment’’ because white balance adjustment
can be fully automated. In contrast, we may decide a source
white point by manually pointing out a white region with
remaining lighting effects under some conditions, which is
called ‘‘manual white balance adjustment.’’ Under these con-
ditions, the error in illuminant estimation is ignored.

After obtaining illuminant information automatically or
manually, the second step is performed by

PWB =MWBPXYZ, (2)

where PXYZ = (XP,YP,ZP)> is a pixel value of an image in
the XYZ color space [10], and PWB = (XWB,YWB,ZWB)> is
that of a white-balanced image [58].MWB in (2) is given as

MWB =MA
−1

ρD/ρS 0 0
0 γD/γS 0
0 0 βD/βS

MA. (3)

MA with a size of 3 × 3 is decided in accordance with an
assumed chromatic adaptation transform [58]. (ρS, γS, βS)>

and (ρD, γD, βD)> are calculated from an obtained source
white point of a light source (XS,YS,ZS)> in an input image
and a ground truth white point (XD,YD,ZD)> asρSγS

βS

 =MA

XSYS
ZS

 ,
ρDγD
βD

 =MA

XDYD
ZD

 . (4)

Using the 3 × 3-identity matrix as MA indicates that white
balancing is performed in the XYZ color space. Otherwise,
von Kries’s [59], [60] and Bradford’s [61] chromatic adap-
tation transforms, which were also proposed for reducing
lighting effects on all colors under the framework of white
balancing [62], can be used. For example, under the use of
Bradford’s model,MA is given as

MA =

 0.8951 0.2664 −0.1614
−0.7502 1.7135 0.0367
0.0389 −0.0685 1.0296

 . (5)

Single-illuminant WB is a technique that maps a source
white points under a single light source into a ground truth
one as in (3). However, most techniques for single-illuminant
WB do not consider the adjusting of spatially varying colors
caused under mixed or non-uniform light sources. Accord-
ingly, it suffers from such multiple illuminants in terms
of color constancy. To address this problem, state-of-the-
art white balance adjustments that assume multi-illuminant
scenes have been proposed, as described in Section II-D.

C. MULTI-COLOR BALANCING
Multi-color balance adjustments [8], [38] have been proposed
to consider adjustingmultiple colors under single illuminants,
while single-illuminantWB considers adjusting a single color
(i.e., white). In these methods, multiple colors are used for
designing a non-diagonalmatrix that maps themultiple colors
into ground truth colors. Hence, source white points under
multiple illuminants may also be adjusted by using multi-
color balancing. However, when we include multiple source
white points as multiple colors, the non-diagonal matrix will
be rank deficient. To avoid the rank deficiency problem, var-
ious chromatic colors in addition to white should be selected
for the matrix design. However, automatic estimation of chro-
matic colors under illumination is difficult, unlike auto white
balance adjustments.

D. WHITE BALANCING FOR MULTIPLE ILLUMINANT
Only a handful of methods [41], [42], [43], [44], [45], [46],
[47], [50], [51], [52], [63], [64] have been proposed to cor-
rect multiple source white points under mixed light sources.
Because multi-illuminant WB is a type of white balancing,
illuminant estimation may be used; moreover, the rank defi-
ciency problem is never caused. Early work in [42], [43],
and [44] uses a segment-wise illuminant estimation that
divides images into small segments. In these methods, esti-
mated illuminants are clustered by using K-means clustering.
However, it is difficult to exactly set the parameters of clus-
tering in general scenes. Yang et al. proposed the Grey-Pixels
adjustment for multiple illuminants [25] in addition to that
for single ones. However, the Grey-Pixels adjustment used for
single illuminants is different from that used for multiple illu-
minants, so this method is not applicable if it is difficult to dis-
tinguish single-illuminant scenes frommulti-illuminant ones.
Moreover, the method has to use the illuminant estimation
algorithm proposed for the Grey-Pixels adjustment. Hussain
et al.’s method [45] splits an input image into multiple seg-
ments using the K-means++ algorithm to improve the accu-
racy of the color adjustment. However, the authors reported
that the number of segments significantly affected the accu-
racy [45]. Therefore, the conventional multi-illuminant WB
requires the exact number of segments or light sources in
advance [46]. Wrong assumptions may cause incorrect color
correction in the methods. Additionally, non-uniform light
sources (e.g., shading) are not considered in these methods.
Zhang et al. and Gao et al. proposed multi-illuminant WB
based on the HVS [48], [49]. These methods do not need to
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FIGURE 1. Overview of scenario (N = 2). (a) Single light source, (b) mixed
light source, and (c) non-uniform light source.

set the number of clustering depending on the number of light
sources. However, a more accurate mimic of realistic retinal
mechanisms is required to improve the color correction per-
formance, which has not been achieved yet [48]. Moreover,
previously studied illuminant estimation algorithms cannot
be used in these HVS-based methods since the HVS does not
have the ability to estimate source white points directly.

A number of neural network-based methods have also
been studied for multi-illuminant WB [46], [51], [52].
The performance of these methods is almost the same
as that of multi-illuminant WB without a neural network.
However, they suffer from two difficulties compared with
multi-illuminant WB without a neural network: needing to
collect a massive amount of images captured under multiple
illuminants as training datasets and needing to implement a
neural network in a camera system [46], [48].

Accordingly, this paper presents ‘‘N-white balancing’’ as
a novel multi-illuminant WB. In the proposed method, N
source white points are mapped into a ground truth one.
Hence, the method does not need illuminant clustering. Also,
N source white points can be manually decided or automati-
cally estimated with every type of illuminant estimation algo-
rithm. The proposed method focuses on simply correcting
N source white points, for which we do not need to choose
the correct number of light sources or segments as N , but
some other adjustments for multi-illuminant scenes need it.
Moreover, the method does not include complex tasks such
as an accurate mimic of realistic retinal mechanisms, com-
pared with methods based on the HVS [48], [49]. Therefore,
the method can adjust images with no distinction between
single- and multi-illuminant scenes, unlike the Grey-Pixels
adjustment.

III. PROPOSED METHOD
Here, our novel multi-illuminant WB method, ‘‘N-white bal-
ancing,’’ is proposed.

A. OVERVIEW OF PROPOSED METHOD
Even when the color of an object is white, it may be different
from thewhite under a light source. If we select several source
white points in a general single-illuminant scene, they may
have almost the same set of values in general (see Fig. 1 (a)).
In contrast, in a multi-illuminant scene such as one with
mixed and non-uniform light sources, the values of source
white points calculated from white regions in spatially differ-
ent positions are generally different. (see Figs. 1 (b)–(c)). The
proposed method individually adjusts N source white points

to a ground truth one. Hence, the method can stably reduce
lighting effects even when N is a larger number than the
number of light sources in a scene. Colors among N source
white points are also corrected by using N weights.

B. N-WHITE BALANCING
The proposed method is carried out by using N source
white points, and they are combined with weights. In the
method, a pixel value PXYZ = (XP,YP,ZP)> is adjusted to
P ′WB = (X ′WB,Y

′

WB,Z
′

WB)
> as

P ′WB =M′WBPXYZ. (6)

In general, ground truth white points have the same value as
G1 = G2 = · · · = GN , soM′WB in (6) is designed in a similar
way to white balancing:

M′WB =MA
−1

ρ′D/ρ′S 0 0
0 γ ′D/γ

′

S 0
0 0 β ′D/β

′

S

MA, (7)

whereρ′Sγ ′S
β ′S

 = MA
(
k1S1 + k2S2 + · · · + knSN

)
, and

ρ′Dγ ′D
β ′D

 = MA
(
k1G1 + k2G2 + · · · + knGN

)
. (8)

Sm = (XSm,YSm,ZSm)> is the mth source white point (m ∈
{1, 2, · · · ,N }) in the XYZ color space, and km is a weight
of Sm and Gm. In a manner like the conventional white
balancing, MA is used for accurately adjusting colors other
than achromatic colors. The 3 × 3-identity matrix is used as
MA when the proposedmethod is performed in theXYZ color
space. von Kries’s model or Bradford’s one may also be used
as MA. As mentioned in Section II-B, the effectiveness of
MA has been confirmed for single-illuminant scenes. In this
paper, we verify the effectiveness ofMA for multi-illuminant
scenes in Section IV.

When the spatial pixel coordinate of PXYZ is closer to that
of source white point Sm than the other ones, Sm should more
contribute to adjusting PXYZ than the rest of the source white
points. Hence, to measure the distance between the coordi-
nates of PXYZ and Sm, the Euclidean distance is calculated
as

dm =
√
(xSm − xP)2 + (ySm − yP)2, (9)

where (xSm, ySm) is a pair of coordinates of Sm, and (xP, yP)
is that of PXYZ. A smaller dm means that (xP, yP) is closer to
(xSm, ySm). Because km in (8) should be larger under a smaller
dm, the inverse proportion to dm is calculated as

d ′m =
1
dm
. (10)

To reduce the total value of weights to 1 in (8), km is given as

km =
d ′m

d ′1 + d
′

2 + · · · + d
′
N
. (11)

89054 VOLUME 10, 2022



T. Akazawa et al.: N-White Balancing: White Balancing for Multiple Illuminants Including Non-Uniform Illumination

FIGURE 2. Procedures with automatically estimated source white points
(N = 4). (a) Applying block-wise illuminant estimation, and (b) deciding
coordinates of source white points.

Note that, in (11), km will be infinite if the pixel coordinate
of input pixel PXYZ is equal to that of Sm (i.e., dm = 0).
In this case, let km be a value of 1, and let the other weights
be a value of zero. In the proposed method, the use of the
Euclidean distance derives from the Grey-Pixels adjustment
for multi-illumination [25]. However, the calculations are
different from theGrey-Pixels adjustment as in (10)–(11), and
there is no parameter such as the weighting sensitivity that
Grey-Pixels has.

C. PROCEDURE OF N-WHITE BALANCING
To perform the proposed method, three sets of data are
prepared: a ground truth white point G = (XG,YG,ZG)>,
N source white points Sm = (XSm,YSm,ZSm)> (m ∈

{1, 2, · · · ,N }), and the pixel coordinates (xSm, ySm)
corresponding to the N source white points.
The procedure of the proposed method is carried out
as below.

1) Decide a ground truth white points as G.
2) Prepare white regions in various locations of a camera

frame to compute Sm.
3) Obtain the pixel coordinates (xSm, ySm) of Sm.
4) Apply N-white balancing, following Section III-B.

N-white balancing is a kind of multi-illuminant WB, so illu-
minant estimation algorithms can be used instead of prepar-
ing white regions in step 2). For example, to automatically
estimateN source white points, block segmentation is applied
to an image, and a block-wise illuminant estimation algorithm
can be used (see Fig. 2 (a)). In this paper, the cosine similarity
between Sm and the pixels of each block is calculated, and
the coordinates of the closest pixel to Sm are decided as
(xSm, ySm) (see Fig. 2 (b)).

In the proposed method, the locations of N source white
points are used, which are decided from estimated source
white points and the pixels of each block. The method does
not need the locations of white regions, unlike theGrey-Pixels
adjustment [25]. As discussed in Section II, this is because
some methods that estimate a source white point without
white regions have been proposed, and these methods can
be applied to the illuminant estimation part of the proposed
method.

D. PROPERTIES OF N-WHITE BALANCING
The properties that the proposed N-white balancing has are
summarized here.

FIGURE 3. Images taken under different lighting conditions. (a) Single
artificial light source, (b) two artificial (i.e., mixed) light sources,
(c) non-uniform light source, (d) three artificial light sources with
non-uniformity (i.e., complex light source), and (e) ground truth image.

(a) The rank deficiency problem is never caused since a
diagonal matrix is used as in (7), unlike multi-color
balancing.

(b) N does not need to correspond to the exact number of
light sources or segments.

(c) Source white points may be selected manually in addi-
tion to automatically estimating them.

(d) Any previously studied algorithm can be used for the
illuminant estimation part of N-white balancing.

In N-white balancing, we apply block segmentation to decide
N source white points as described in Section III-C, so the
proposed method is effective in adjusting multi-illuminant
scenes including non-uniform illumination. In addition, when
using a fixed-point camera, source white points may manu-
ally be decided, so that the performance is improved and the
process is simplified.

IV. EXPERIMENTS
We conducted experiments to confirm the effectiveness of the
proposed method.

A. EXPERIMENTAL SETUP
In the first experiment, we used five images taken under
various illumination conditions such as single, mixed, and
non-uniform light sources, where each image included a color
rendition chart (see Fig. 3). In this experiment, source white
points were manually decided from the white regions in the
color rendition charts or automatically estimated by using an
illuminant estimation algorithm. We also confirmed that the
performance of N-white balancing was maintained regardless
of N . Note that the proposed method and single-illuminant
WB were combined with Bradford’s model [61]. The per-
formance of each method was evaluated by using the repro-
duction angular error [53] between a mean-pixel vector of
an adjusted object’s region P and that of the corresponding
ground truth one Q. The reproduction error between P and Q
is given by

Erep =
180
π

cos−1
(

P · Q
‖P‖‖Q‖

)
[deg]. (12)
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In the second experiment, we used the two-illuminant
dataset [43], which consists of 58 laboratory images taken
under close-to-ideal conditions and 20 real-world images.
Similarly to the previous experiment with color rendition
charts, we demonstrated that the proposed method was
also effective in adjusting images taken in general scenes.
In this experiment, our error metric per image was the mean
pixel-wise angular error between estimated illuminant i and
the corresponding ground truth one j, given as

Eang =
180
πnp

np∑
i=1

cos−1((ii)> · j i) [deg], (13)

where np is the number of pixels in an image.
In the third experiment, we used two state-of-the-art

datasets: the LSMI dataset [65] and Afifi et al.’s mixed-
illuminant test set [46]. The LSMI dataset consists of natural
scenes in the real world, and it has three subsets named
‘‘galaxy,’’ ‘‘nikon,’’ and ‘‘sony.’’ In this experiment, we used
1,124 two-illuminant scenes in the galaxy subset, and the
performance of each method was evaluated by using the
mean pixel-wise angular error as in (13). Afifi et al.’s mixed-
illuminant test set includes 150 synthetic images rendered by
3Ds Max. In this dataset, the reproduction angular error as
in (12) was used to evaluate each method.

B. EXPERIMENTAL RESULTS WITH MANUALLY DECIDED
SOURCE WHITE POINTS
The effectiveness of N-white balancing was confirmed under
the use of manually decided source white points.

1) EVALUATION OF SINGLE AND MULTIPLE ILLUMINANTS
In this experiment, we first confirmed that the proposed
method is effective for correcting both single- and multiple-
illuminant scenes. By using source white points decided from
the white regions in a color rendition chart, the proposed
method was compared with single-illuminant WB and multi-
color balancing [8].

Figure 4 shows the adjusted images for Figs. 3 (a)–(d).
The heat map below each image indicates the reproduction
angular error for every color patch, where P in (12) is the
representative pixel value of one of the color patches in an
adjusted image for Figs. 3 (a)–(d), and Q is that for the
ground truth image (see Fig. 3 (e)). The mean value of the
pixel values in a color region (i.e., color patch) was used
as a representative value. Also, the mean value (Mean) and
the standard variation (Std) of all color patches are shown
next to each heat map. Note that patches whose color is pure
black were excluded from the calculation of Mean and Std
because the metric cannot precisely measure errors against
low surface reflectances. Source white points were decided
from white regions represented as the green rectangle in the
figures.

As shown in Fig. 4, the proposed method reduced both
single- and multi-illuminant effects, and it had the lowest
mean error in all situations. In contrast, the multi-illuminant

scenes were not adjusted by single-illuminant WB, although
the single-illuminant scene was corrected as well as the pro-
posed method. Also, multi-color balancing caused the rank
deficiency problem to occur, and the chromatic colors were
distorted.

2) INFLUENCE OF SELECTING N
Figure 5 shows the relationship between mean errors and N
(i.e., the number of source white points). In Figs. 3 (a) and (b),
the scene was taken under a single light source and two differ-
ent light sources, respectively. As shown in Fig. 5 (b), whenN
was below the number of light sources in the scene, N-white
balancing could not correctly adjust the images. However,
when N was larger than the number of light sources, the per-
formance of N-white balancing was maintained. Therefore,
N does not need to correspond to the exact number of light
sources.

C. EXPERIMENTAL RESULTS WITH AUTOMATICALLY
ESTIMATED SOURCE WHITE POINTS
In this section, the effectiveness of N-white balancing is
demonstrated under the use of automatically estimated source
white points.

1) EVALUATION OF SINGLE AND MULTIPLE ILLUMINANTS
First, the proposed method with manually decided source
white points was compared with automatically estimated
ones. In this experiment, the White-Patch algorithm [11] was
used for estimating source white points. Also, a block size
of 3 × 3 was decided for the proposed method as the per-
formance of the method is maintained when N is larger than
the number of light sources in a scene (see Section III-C).
Figure 6 shows a comparison between manual white bal-
ancing and automatic white balancing. The performance of
color correction did not significantly differ between using
manually decided source white points and using automati-
cally estimated ones in these images. Also, the use of source
white points manually selected from white regions (i.e., man-
ual white balance adjustments) slightly improved the perfor-
mance of the color adjustments. Therefore, the effectiveness
of property (III-D) in Section III-D was confirmed, while the
conventional multi-illuminant WB can only be used for auto
white balance adjustments.

In following experiments, we confirmed that the proposed
method is effective as an automatic white balance adjustment
in adjusting images under single and multiple illuminants.
In this experiment, the proposed method, single-illuminant
WB, and multi-illuminant WB [25], [42], [45], [46], [48]
were tested by using the White-Patch algorithm [11], which
is a typical illuminant estimation method. The number of
illuminants was set to two in Gijsenij et al.’s and Yang et al.’s
method [25], [42], and the number of segments was set to
four in Hussain et al.’s method [45], and these settings were
recommended by the respective authors.

Table 2 shows the Mean and Std of the reproduc-
tion angular errors for the white balance adjustments.
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FIGURE 4. Adjusted images for Figs. 3 (a)–(d). (a) No adjustment, (b) single-illuminant WB, (c) multi-color balancing, (d) proposed method, and (e) color
bar of heat maps. In (a)–(d), four images correspond to Figs. 3 (a)–(d), respectively.

The proposed method outperformed the conventional single-
andmulti-illuminantWB in terms of mean errors. In addition,
the effectiveness of single-illuminant WB was confirmed for
the single-illuminant scene, which showed the same trend
as that seen in Section IV-B1. The multi-illuminant WB
without a neural network [25], [42], [45], [48] had unsta-
ble performance depending on the illumination conditions,
while the proposed method stably adjusted images under
such conditions. The multi-illuminant WB based on a neural
network by Afifi et al. [46] suppressed single- and multi-
illuminant effects; however, the Mean and Std of the angu-
lar errors were higher than those for the proposed method.

Therefore, the effectiveness of the proposedmethod for single
and multiple illuminants including non-uniform light sources
was confirmed.

2) INFLUENCE OF USING SAME N FOR VARIOUS
ILLUMINATION CONDITIONS
As mentioned, in the proposed method, N does not need
to correspond to the exact number of light sources or the
exact number of scene segments. In this section, the proposed
method was compared with multi-illuminant WB [42], [45]
without a neural network by changing parameters.
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FIGURE 5. Mean reproduction angular error in N-white balancing. (a) Mean errors of adjusted images for
Figs. 3 (a) and (b) those for Fig. 3(b).

FIGURE 6. Images from Figs. 3 (a)–(d) adjusted by using manually decided source white points or automatically estimated ones. (a) Proposed
method with manually decided source white points, (b) proposed method with White-Patch algorithm, and (c) color bar of heat maps.

Figure 7 shows adjusted images for Fig. 3 (a). Two differ-
ent parameters were tested in Gijsenij et al.’s method [42]
as shown in Figs. 7 (b) and (c); the number of illuminants
was modified from two to one because only one light
source illuminated the scene. Figure 8 shows adjusted images
for Fig. 3 (b). Two different parameters were tested in
Hussain et al.’s method [45] as shown in Figs. 8 (b) and (c);
the number of segments was reduced from four to
two because there were two light sources. Comparing
Figs. 7 (b) and 8 with Figs. 7 (c) and 8 (c), respectively, the
conventional multi-illuminant WB [42], [45] may require the
exact number of light sources or segments, and accurately
adjusting the parameters significantly contributed to improv-
ing the performance. In contrast, the proposed method could
be carried out without changing N .

3) EVALUATION WITH TWO-ILLUMINANT DATASET
In Sections IV-B, IV-C1, and IV-C2, we prepared five images
taken under various illumination conditions. However, the

images were far different from those taken under general
scenes. To test the proposed method under usual photograph-
ing conditions, we used the two-illuminant dataset [43]
and compared the proposed method with single-illuminant
WB [58] and multi-illuminant WB [25], [42], [43], [45],
[48], [49], [51]. Also, the proposed method, single-illuminant
WB [58], and methods for multi-illuminant scenes [42], [43]
were carried out with nine illuminant estimation algorithms:
White-Patch (WP) [11], Grey-World (GW) [12], Shades-
of-Gray (SoG) [15], 1st-order Grey-Edge (GE1) [19], 2nd-
order Grey-Edge (GE2) [19], PCA [24], Grey-Pixels for
single-illuminant estimation [GP(std)] [25], Mean-Shifted
Grey-Pixels (MSGP) [31], and Quasi-Unsupervised Color
Constancy (QUCC) [32]. Table 3 shows the angular errors
for images in the two-illuminant dataset. From the table, the
proposed method outperformed single-illuminant WB, and it
had almost the same performance as multi-illuminant WB.
In particular, the proposed method had a lower angular error
than Gijsenij et al.’s method [42], MIRF [43], Grey-Pixels
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TABLE 2. Mean and standard variation of angular errors (deg) of adjusted images for Figs. 3 (a)–(d), where bold denotes minimum angular error in each
column. Conventional methods and proposed method were applied by using automatically estimated source white points.

FIGURE 7. Images for Fig. 3 (a) adjusted using Gijsenij et al.’s method with two different parameters. (a) No adjustment, (b) Gijsenij et al.’s method where
number of illuminants is two, (c) Gijsenij et al.’s method where number of illuminants is one, (d) proposed method, and (e) color bar of heat maps.

FIGURE 8. Images for Fig. 3 (b) adjusted using Hussain et al.’s method with two different parameters. (a) No adjustment, (b) Hussain et al.’s method
where number of segments is four, (c) Hussain et al.’s method where number of segments is two, (d) proposed method, and (e) color bar of heat maps.

for multiple illuminants [25], Zhang et al.’s method [48],
and BU-MCC [49]. For the laboratory set, Hussain et al.’s
method [45] had a slightly lower error than the proposed
method because the optimal number of segments (= 4)
was prepared for this experiment. However, if a differ-
ent number of segments were chosen, the performance of
Hussain et al.’s method would decrease [45]. In contrast, the
proposed method can maintain a high accuracy under various
N values as described in Figs. 7 and 8. For the real set,
TD-MCC [49] and Bianco et al.’s method with a neural net-
work [51] also obtained competitive performance compared
to the proposed method because a large amount of carefully
prepared training data could be used.

In addition to the angular error, adjusted images should be
subjectively compared. Figure 9 shows adjusted images for
four sample images from the dataset. When we subjectively

compared the proposed method with the conventional
multi-illuminantWB [42], [45], the proposedmethod showed
amore improved color constancy than the conventional meth-
ods despite some of the higher angular errors. Therefore,
we confirmed that the proposed method is also effective for
images where general scenes are captured.

4) EVALUATION WITH STATE-OF-THE-ART DATASETS
In this experiment, we evaluated the performance of the
proposed method by using the LSMI dataset [65] and
Afifi et al.’s mixed-illuminant test set [46]. In this exper-
iment, the method was compared with single-illuminant
WB [58], multi-illuminant WB [25], [42], [45]. Also,
Zhang et al.’s method was compared with the pro-
posed method on Afifi et al.’s mixed-illuminant test set.
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TABLE 3. Mean and median angular errors (deg) for conventional
methods and proposed method on two-illuminant dataset, where bold
denotes minimum angular error in each column.

TABLE 4. Mean and median angular errors (deg) for conventional
methods and proposed method on the LSMI dataset, where bold denotes
minimum angular error in each column.

The proposed method and single-illuminant WB [58] were
carried out with five illuminant estimation algorithms:
White-Patch (WP) [11], Grey-World (GW) [12], 1st-order
Grey-Edge (GE1) [19], PCA [24], and Grey-Pixels for
single-illuminant estimation [GP(std)] [25]. Tables 4 and 5
show experimental results on the LSMI dataset and
Afifi et al.’s mixed-illuminant test set, respectively. From the
tables, the proposed method outperformed the conventional
methods. Therefore, the effectiveness of the proposedmethod
was confirmed under the use of the state-of-the-art datasets.

FIGURE 9. Adjusted images from two-illuminant dataset. (a) No
adjustment, (b) Gijsenij et al., (c) Hussain et al., (d) proposed method,
and (e) ground truth. Note that images were converted to sRGB color
space. Captions of each image denote mean angular error in image.

TABLE 5. Mean and median reproduction angular errors (deg) for
conventional methods and proposed method on Afifi et al.’s
mixed-illuminant test set, where bold denotes minimum angular error in
each column.

V. CONCLUSION
In this paper, we proposed a novel white balance adjustment
for single and multiple illuminants including non-uniform
light sources. The proposed method, called ‘‘N-white balanc-
ing,’’ maps N source white points into a ground truth one.
While traditional single-illuminant white balancing considers
adjusting a source white point under a light source, N-white
balancing can reduce lighting effects under multiple illumi-
nants in addition to single ones. Only a handful of methods
have been proposed to correct multi-illuminant scenes; how-
ever, in several methods, the exact number of light sources
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or the exact number of scene segments need to be known
in advance. In contrast, in the proposed method, N does
not need to correspond to the exact number of light sources
or segments. Additionally, color distortion is never caused
in the proposed method because a diagonal matrix is used,
unlike multi-color balancing. In experiments, the proposed
method and the conventional methods were evaluated by
using various illumination conditions. The results show that
N-white balancing outperformed the conventional methods.
By improving the accuracy of color correction under various
illumination conditions, the proposed method is expected to
contribute to increasing the number of color-based applica-
tions in the future. In future work, we would like to demon-
strate object recognition and other applications by purposely
using the color information adjusted by the proposed method.
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