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ABSTRACT Keyword recognition is the basis of speech recognition, and its application is rapidly increasing
in keyword spotting, robotics, and smart home surveillance. Because of these advanced applications,
improving the accuracy of keyword recognition is crucial. In this paper, we proposed voice conversion (VC)
- based augmentation to increase the limited training dataset and a fusion of a convolutional neural network
(CNN) and long-short term memory (LSTM) model for robust speaker-independent isolated keyword
recognition. Collecting and preparing a sufficient amount of voice data for speaker-independent speech
recognition is a tedious and bulky task. To overcome this, we generated new raw voices from the original
voices using an auxiliary classifier conditional variational autoencoder (ACVAE) method. In this study, the
main intention of voice conversion is to obtain numerous and various human-like keywords’ voices that are
not identical to the source and target speakers’ pronunciation. Parallel VCwas used to accuratelymaintain the
linguistic content. We examined the performance of the proposed voice conversion augmentation techniques
using robust deep neural network algorithms. Original training data, excluding generated voice using other
data augmentation and regularization techniques, were considered as the baseline. The results showed that
incorporating voice conversion augmentation into the baseline augmentation techniques and applying the
CNN-LSTM model improved the accuracy of isolated keyword recognition.

INDEX TERMS CNN-LSTM, data augmentation, speaker-independent keyword recognition, voice
conversion.

I. INTRODUCTION
In recent years, the use of speech for human-machine inter-
actions and devices that support voice communication has
increased rapidly owing to advancements in digital technol-
ogy. Currently, most hand-based human-to-machine inter-
actions are being replaced by computer vision and speech
recognition technology in an advanced way. If the size of
the training data is limited, the speaker-independent keyword
spotting is a very challenging task owing to overfitting prob-
lems. Considering this difficulty, this paper focuses on voice
conversion (VC)-based augmentation to increase the training
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dataset size for deep learning algorithms and to improve
speaker-independent keyword recognition. The identification
of keywords is applicable for controlling robotics, speech-
to-text, home surveillance (door and TV control), military
activities (air force), keyword verification (unknown key-
word detection), personal digital assistance (car driver and
chatbot), Google search by voice, personal virtual assistance
(Siri, Google Assistant, Cortana, andAlexa), aerospace appli-
cations, keyword spotting, and security [1], [2], [3], [4],
[5], [6], [7], [8]. For instance, voice-based automated smart
home surveillance is useful for assisting elderly and disabled
people.

VC has become very sophisticated and has many appli-
cations, such as generating new voices for text-to-speech
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(TTS) [9], [10], hiding the identity of the speaker, music
conversion [11], [12], accent conversion [13], emotion con-
version [14], [15], speech enhancement [16], film indus-
try, gaming technology, and voice restoration [17]. VC is
useful for people who lose their voice organs either due
to nature or disease. Challenges of VC competition have
been initiated and released in recent years to improve
VC performance. Three VC challenges [18], [19], [20]
have been addressed to date. Traditional VC methods
use Gaussian mixture models (GMM), but the converted
speech quality is often degraded owing to over-smoothing.
To overcome this problem, a minimum distance spectral
mapping (MDSM)-based GMM has been proposed [21].
The GMM-based VC is a statistical conversion method
based on the maximum-likelihood estimation of spectral
parameter feature statistics [22]. Recently, researchers who
participated in VC challenges used different neural net-
work approach models, such as the encoder-decoder model
(Zero-Shot Voice Style Transfer with Only Autoencoder
Loss, vector quantized variational autoencoders, cyclic varia-
tional autoencoder), one-shot VC, generative adversarial net-
work (GAN) (CycleGAN-VC, StarGAN-VC, and Adaptive
GAN or AdaGAN), parallel spectral mapping (Tacotron), and
one-shot VC [20].

The basic goal of VC is converting the source speaker’s
accent to the targeted speaker’s accent accurately with the
full linguistic content. A large amount of data is needed for
an accurate voice conversion process. If we convert the voice
accurately, it is not helpful for data augmentation because we
have almost the same existing voice on the limited dataset.
In our scenario, the generated voice should be the modified
accent of the existing voices with the full linguistic content.
Many state-of-the-art VC methods [23], [24], [25] have been
proposed and implemented for parallel and non-parallel VC.
It is possible to train the parallel VC in a limited dataset [26].
If the performance of VC is not precise enough, voice aug-
mentation for VC is possible. Different augmentations tech-
niques for VC were proposed such as attention-based speaker
embeddings for one-shot VC and data augmentation-based
non-parallel VC [27], [28].

The main contribution of this paper is applying the
advanced parallel VC techniques to real applications, specif-
ically to increase the training data size and usage of state-of-
the-art machine learning algorithms for speaker-independent
keyword recognition. We consider that the very high sim-
ilarity between the converted voice and the existing target
voices has no significant implication for data augmentation.
We realized that exact VC is not useful for voice-based aug-
mentation. The converted voice should be a modified version
of the target and source speakers’ pronunciation, while the
linguistic content of the keyword is maintained as it is. The
proposed VC is carried out across a limited number of non-
native English speakers. We reduced the training time of the
VC for reducing the accurate voice conversion performance.
Since the VC model degrades the quality of results for never
seen voices, the trained data has been fed to the trained

model during the conversion phase to simplify the challenge
of the huge training data demands of VC. These techniques
distinguished our approach from the VC-based augmentation
of related works [36], [37], [38]. The test data of VC is
already included in the training data of VC. Several speakers
are not required necessarily for our VC process. Dataset-I
was collected and formulated for three non-native English
speakers’ countries. The test data for dataset-II contained
four different native language speakers, whereas the train-
ing data contained only the same native language speakers.
Both dataset-I and dataset-II were organized for speaker-
independent keyword recognition challenge, which is ardu-
ous relative to the speaker-dependent on limited dataset. The
significance of the proposed voice augmentation technique
was compared with the ordinary voice recognition augmen-
tation and regularization techniques. Although the related
works [30], [31], [33], [34] showed that the CNN model is
an exemplary model for vocabulary-size speech recognition,
we have proven that the fusion CNN-LSTMmodel is superior
to the pure CNN and pure LSTM for two separate datasets.
The LSTM model improved the inconsistent performance
of the CNN model when CNN and LSTM were hybridized
together. Since the LSTM controls the exploding gradient
problems [29], we noted that replacing the fully connected
layer of the CNN with LSTM reduced the vanishing gradi-
ent problem. Finally, we realized that selecting the optimal
mel-spectrogram segmentation frame size values for the time
distributed CNN-LSTM model has a significant impact on
model performance and it needs very critical experimental
investigation to achieve desirable model performance with an
optimized computational time. The mel-spectrogram features
are well-organized in the form of 2-D sequential frames that
is very learnable and suitable for our CNN-LSTM model.
A delicate CNN-LSTM framework is also designed carefully
for feature extraction and classification, which could take
less computation time during model training and testing. The
frame size was obtained using a deep experimental analysis.

The rest of this paper is organized as follows.We described
the related works in Section II. The proposed methodology
is described in Section III. The dataset setup is explained
in Section IV. In Section V, the results and a discussion are
presented. Finally, the conclusion of this study is summarized
in Section VI.

II. RELATED WORKS
Many studies have been proposed for keyword identifica-
tion by applying the CNN model to mel-frequency cep-
stral coefficients (MFCC) and spectrogram speech signal
features. Li and Zhou [30] proved that a CNN outper-
formed a deep feed-forward network for six-command voice
recognition using MFCC feature extraction. The six com-
mands (‘‘up’’, ‘‘down’’, ‘‘left’’, ‘‘right’’, ‘‘unknown key-
word’’, and ‘‘silence’’) were selected and used fromGoogle’s
TensorFlow speech commands dataset for their experiment.
Waqar et al. [31] proposed speech command recognition
using CNN to control popular snake games. The authors used
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TABLE 1. (a) summary of related works for keyword recognition; (b) summary of related works for VC based Augmentation in limited data.

a limited dataset for only four direction speech commands
(‘‘Up’’, ‘‘Down’’, ‘‘Left’’, and ‘‘Right’’). TheMFCC features
of the speech commands and the CNN algorithm were pro-
posed to recognize these four speech commands. The exper-
imental results showed that the proposed algorithm achieved
high recognition accuracy. Similarly, Wubet and Lian [32]
showed that CNN is better than the SVM model for keyword
recognition, and surprisingly, a hybrid of CNN-SVM outper-
formed pure CNN and pure SVM. Cayir and Navruz [33]
investigated the influence of a limited size dataset for voice
command recognition using 12 different voice commands
(‘‘down’’, ‘‘forward’’, ‘‘follow’’, ‘‘go’’, ‘‘left’’, ‘‘on’’, ‘‘off’’,
‘‘right’’, ‘‘stop’’, ‘‘up’’, and ‘‘yes’’). Their experimental
results showed that when the test dataset included native
Turkish speakers, the test accuracy was 94.64% for a large
dataset and 64.81% for a small dataset. In contrast, when
the test dataset included foreigners’ voices, the test accuracy
declined to 63.29% for the large dataset and 33.18% for the
small dataset. They examined and confirmed the above-listed
results using a CNN on the MFCC features. The results
indicated that the test accuracy rates increased as the training
dataset size increased and the accent of the diversified voice
was expanded. Yang [34] compared a speech recognition of
command words performances using a deep neural network
(DNN) and recurrent neural network (RNN) for 10 com-
mand voice recognition using MFCC feature extraction. The
10 commands (‘‘yes’’, ‘‘no’’, ‘‘up’’, ‘‘down’’, ‘‘left’’, ‘‘right’’,
‘‘on’’, ‘‘off’’, ‘‘stop’’, and ‘‘go’’) were selected and used from
Google’s TensorFlow speech commands dataset for their
investigation. The result showed that CNN outperformed
compared to DNN and RNN. Furthermore, Fendji et al. [35]
have mentioned and summarized the last two decades’ study
of automatic speech recognition (ASR) using limited vocab-
ularies and sentences. Overall, most of the recently proposed

models have shown that the CNN model is an exemplary
model for vocabulary-size speech recognition. The compari-
son of the related works and the proposed model are summa-
rized in Table 1 (a). Besides, the related works that employed
VC data augmentation for speech recognition in limited data
are summarized in Table 1 (b).

VC-based data augmentation has been used by several
researchers in recent years. Shahnawazuddin et al. [36] pro-
posed a VC-based data augmentation to improve children’s
speech recognition in limited data scenarios. In this study,
the acoustic attributes of adults were converted into chil-
dren’s speech using a cycle-consistent GAN. Word error
rates (WERs) were significantly reduced by VC-based data
augmentation. However, our VC scenario does not involve
exact VC processing; rather, it is the process of obtain-
ing a human-like modified voice version of the source and
target speakers’ pronunciation. Singh et al. [37] used VC-
based data augmentation for ASR using CycleGAN and
also compared its performance with the baseline system.
The experimental results showed a good improvement after
200 hours of CycleGAN-based new adult speech with a
reduction of 5.58% in WER compared to the baseline sys-
tem. Furthermore, the collection of other augmentation and
CycleGAN-converted adult speech showed the highest reduc-
tion of 7.44% in WER compared to the baseline system.
Baas and Kamper [38] proposed a VC-based augmentation
to improve the speech recognition system for limited data of
the low-resource languages. Authors augmented the unseen
and cross-linguistic low resource-limited data using a good
resource language of the VC training model.

III. PROPOSED MODELS
The proposed model was developed using ACVAE-VC for
voice-based data augmentation and a hybrid CNN-LSTM
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FIGURE 1. Proposed model for improving speaker-independent keyword recognition on limited datasets.

model for feature extraction and classification, as depicted in
Fig. 1. The minimum mean-square error log-spectral ampli-
tude estimator algorithm [39] is applied for noise reduction.
The VC-based augmentation and a hybrid of CNN-LSTM
network are briefly described as follows.

A. VOICE CONVERSION-BASED DATA AUGMENTATION
Data augmentation is the process of creating new, slightly
altered samples from the original samples to escalate the
training set, which can be regarded as a type of regularization
method. Geometric transformation (affine transformation),
generative adversarial networks (GAN), and autoencoder net-
works are common methods for generating more spectro-
gram images to reduce the overfitting problems of speech
recognition in all machine learning algorithms. In addition,
dropout, batch normalization, transfer learning, and one-
shot learning are regularization techniques and exceptionally
common ways of reducing the overfitting problem in deep
neural networks [40]. Most research has shown that affine
transformation has significantly improved the performance of
overfitted models when compared to others. We considered
geometric transformation, batch normalization, and dropout
as the baseline for comparison with the proposed augmenta-
tion technique.

We proposed the ACVAE VC model [41] for VC pro-
cessing. Although Kameoka et al. [41] used ACVAE for
non-parallel VC and they aimed to generate exact accent
translation on phrases and sentence utterances, we prepared
and used the keyword dataset for parallel VC to keep the
linguistic content of voices perfectly and to obtain a moder-
ately modified version of target and source speakers’ accents.
We noted that VC-based voice augmentation should not be
the exact pronunciation conversion, but the linguistic content
of the keywords should be accurately maintained. Our work is

speaker-independent keyword recognition (test data is com-
pletely from never seen speakers) and the number of speakers
is limited. This limited number of training speakers leads
to a limited dataset size for speaker-independent keyword
recognition and an overfitting problem. Therefore, we need
to diversify the training speakers’ accents to make them look
like many different speakers. Consider that we have a limited
number of speakers (A and B) who speak each keyword
several times, as we specified in Section IV. VC among these
speakers is possible to generate new artificial speakers D and
E . Speaker A to B conversion yields speaker D, whereas B to
A conversion gives speaker E .
The proposed VC model uses a sequence of mel-cepstral

coefficients computed from a spectral envelope sequence
obtained using WORLD [42]. In the autoencoder model, the
encoder network generates a set of parameters (mean and
variance) for the conditional distribution Pφ(z|x) of a latent
space variable z from the input data x, whereas the decoder
network generates a set of parameters (mean and variance) for
the conditional distribution Pθ (x|z) of data x from the latent
space variable z. In regular CVAEs, the encoder and decoder
are free to ignore c by finding distributions satisfying Pϕ(z|x,
c) = Pϕ(z|x) and Pθ (x̄|z, c̄) = Pθ (x̄|z). Class category c
can be represented as a single one-hot vector identification
of classes in ACVAE. A gated linear unit (GLU)-based CNN
auxiliary classifier was introduced and applied next to the
decoder to avoid VAEs problems. The classifier predicted the
attribute classes of the decoder outputs [41].

As we mentioned in the introduction Section, we have
found that the exact accent translation is not useful for our
work because our target is acquiring various human-like
voices and keeping the linguistic content for raising the num-
ber of training data. To get these successfully modified voice
versions, the maximum iteration of exact VC was reduced.
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FIGURE 2. VC augmentation samples.

The noise has been reduced before and after the VC process.
If there is any noise in raw data, it highly affects the VC qual-
ity. In this work, the principal goal of VC is for generating a
human-like (natural) and a variant voice. Therefore, we didn’t
give attention to exact VC processing rather gave more cau-
tion to acquire the natural voice and to keep the linguistic
content. Since our target is not designing an accurate model
for VC, we used the trained data on the ACVAE training
model to produce various human-like keyword voices. It was
implemented across non-native English speakers’ accents
each other for all datasets. We considered females to females,
females to males, males to males, and males to females VC
to get a more generalized voice and to reduce the test data
accent variation which is a big tackle of speaker-independent
speech recognition. All selected speakers are both source and
target speakers for ACVAE, but the same speaker cannot be
both source and target at the same time. Finally, the converted
voices and original voices are mixed and converted to a
2-D spectrogram by using a short-time Fourier transform
(STFT) with a 23 milliseconds frame size and at a sample rate
of 16000 Hz. The sample mel-spectrogram image result of
VC-based augmentation is depicted in Fig. 2.

B. PROPOSED HYBRID CNN-LSTM MODEL
The proposed feature extraction and classification model was
developed using a fusion of the CNN and LSTM models.
Although the pure CNNmodel has demonstrated exceptional
achievements in many applications [43], [44], [45], [46], the
LSTM is integrated into it to achieve a good performance.
The 2D CNNs have been proposed for the extraction of deep
features of spectrograms. The 2D mel-spectrogram was split
into an equal-size sequence of 16 frames. All sequences of
frames are still 2D mel-spectrogram features and they are
fed to 2D-CNNs sequentially based on the labeled sequence
number in Fig. 3. First, frame 1 was fed into the CNN,
which extracted the basic features of frame 1 and generated a
flattened vector called Flatten 1. Next, frame 2 was fed into
the CNN, which extracted the basic features of frame 2 and
generated a flattened vector called Flatten 2. Similarly, all
remaining frames were fed into the CNN, and flattened vec-
tors were generated based on their sequence order. Although
the original dimension of the mel-spectrogram was large, it
was resized to 64×64×3 to reduce the computational time
and space. We verified that reducing the original size to

64×64×3 pixels had no significant impact on the accuracy
metrics. As a result, all 16 frames were 64×4×3 in size.

After many inspectionmethods to find an appropriate CNN
architecture, we have found that a CNN architecture with
two convolutional layers and one max-pooling layer was
performed expertly. Because the segmented frame length was
short, it was not possible to use many convolution layers
preceding the max-pooling layers. Max-pooling layers were
placed after the two convolutional layers to downsample the
convolution dimension. A rectified linear unit (ReLU) acti-
vation function was applied between the convolution layers.
In addition to VC–based data augmentation and affine trans-
formation, batch normalization and dropout regularization
were applied to pure CNN, pure LSTM, and CNN-LSTM
to prevent the models from overfitting problems and for
convenient comparison.

In this study, we fused a state-of-the-art LSTM deep
learning algorithm with the sequentially flattened layer of
the CNN. LSTM is employed for deep feature extraction
and classification. It has shown advanced performance for
sequential data prediction and classification in many appli-
cations [47], [48], [49], such as time series trend forecast-
ing, image classification, speech classification, and sentiment
analysis. Similarly, hybrid CNN and LSTM models [50],
[51], [52] have improved pure CNN and pure LSTMmodels.

The LSTM consists of operations, activation functions,
and states for receiving inputs over time. At each time step,
an input vector is fed into the LSTM. We used LSTM
for global temporal information extraction and classification
using the extracted features of the CNNs. In a fully con-
nected (FC) layer of LSTM, a softmax activation function
was applied and used as the classifier. The CNN extracted
features are carefully organized time series data for the LSTM
input time series data for the LSTM input. The flattened
vectors of the CNN are fed to the LSTM with 16 time steps,
as depicted in Fig. 3. The CNN flattened vector output V(t=i)
was assigned to the CNN’s frame i input, where t is the time
step, and i is the frame number. Each flattened vector is fed
to the interconnected LSTM networks as xi at t = i.

LSTM consists of an input gate, a forget gate, and an output
gate, which are represented by it , ft and ot , respectively. It has
a cell state (c) and a hidden state (h), which are the long-term
memory and short-term memory, respectively. In the LSTM
gates, σ is the element-wise sigmoid function and tanh is the
element-wise tangent activation function. The LSTM gates
processed the flattened input vector (xt ∈ RN×1) at t time-
step with the previous short-term memory (ht−1), where
N × 1 is the size of vectors. Finally, the new cell state and
the new short-term memory are computed according to:

ct = ft � ct−1 + it � ĉt (1)

ht = ot � tanh(ct ) (2)

where ct−1 is the previous cell state, ĉt is the candidate cell
state, ct is the new cell state, and� is an element-wise product
operator.
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FIGURE 3. Proposed model for improving speaker-independent keyword recognition on limited datasets.

The spectrogram input was segmented in the vertical direc-
tion, but the horizontal segmentation was not as good as the
vertical direction. When the number of frames is high, the
frame length is too small. Conversely, when the number of
frames is low, the frame lengths are large. Selecting a large
frame length is preferred for a good trainable CNN model,
whereas many segmented frames are required for a good
learnable LSTM model. However, the CNN-LSTM model
requires a good adjustment of the frame size to design a
worthymodel.We simplified the complication by selecting an
optimal and more generalized 2i number of frames per single
spectrogram and frame length for a 64×64×3 spectrogram
image:

Number of Frames = 2i (3)

Frame length =
L
2i

(4)

where i = 0, 1, 2, . . . , 6, and L is the length of the mel-
spectrogram. Because frame segmentation was applied verti-
cally on each spectrogram, the frame width was kept the same
as the spectrogram width. We compared the performance
among all 2i frames experimentally, and we realized that a
frame size of 16×64×4×3 per single spectrogram adjust-
ment is surprisingly the best CNN-LSTM input from other
frame sizes. From the selected frame size, 16 is the number
of frames, 4 is the width of the frames, 64 is the height of the
frames, and 3 is the number of channels (red, green, and blue)
for each spectrogram.

After many inspection methods for finding the optimized
CNN-LSTM architecture, we configured the proposed model
as shown in Table 2. A comparison between CNN, LSTM,
and the proposed model to be persuasive, well-configured
pure CNN, and pure LSTM models with a well-adjusted
parameter setting were also designed.

The parameter settings of the proposed model are listed in
Table 3. In this study, we considered a well-recommended
optimizer and cost function.

TABLE 2. Configuration of the layers of the proposed model.

TABLE 3. Parameter settings of the proposed model.

IV. DATASET SETUP
To ensure the generality of the proposed models, one private
dataset was prepared and one public dataset was selected. The
proposed models were applied separately to both datasets.
The dataset description is as follows:

A. DATASET SETUP I
All keyword voices were collected from non-native English
speakers’ countries, namely, Ethiopia, Taiwan, and India. The
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TABLE 4. Summary of the dataset description.

total number of isolated keywords is 12 (‘‘open’’, ‘‘close’’,
‘‘down’’, ‘‘up’’, ‘‘turn on’’, ‘‘turn off’’, ‘‘bed’’, ‘‘bad’’, ‘‘com-
puter’’, ‘‘hello’’, ‘‘welcome’’, and ‘‘university’’). Most of
these keywords were recorded from environments with back-
ground noise. The keyword voices were recorded at a sam-
pling frequency of 16000 Hz, bit depth of 16 bits, and a
monotype channel. The recording parameters of the datasets
were fixed for all records. The recording time interval for the
English keywords was between 1 and 1.5 seconds. After the
recording, the audio files were stored asWAVfiles. All voices
were recorded on laptop computers and Aver Media Micro-
phone devices. All voices were collected from individuals
with normal health status, and no person spoke emotionally
during data collection. The voices of all but three speakers
were recorded indoors. The total number of speakers was
8 Indian (5 females and 3 males), 10 Ethiopian (7 males
and 3 females), and 12 Taiwanese (8 males and 4 females).
Each keyword was spoken 20 times by all speakers. The
dataset preparation method was purely speaker-independent.
The 24 speakers were selected as limited training data and
half of these limited training data (12 speakers) were assigned
as very limited training data. The remaining six speakers were
for test in both cases. The training and test data were collected
separately, as illustrated in Fig. 4.

In our scenario, 12 speakers (four Taiwanese, four
Ethiopian, and four Indian) and 10 speakers were selected
from dataset setup-I and dataset setup-II for VC process-
ing, respectively. A total of 12×11×12×20 = 31,680
and 10×9×10×50 = 45k new voices were generated for
dataset setup-I and dataset setup-II, respectively, as shown in
Fig. 5 and Table 4.

B. DATASET SETUP II
We also used the AudioMNIST dataset to evaluate the perfor-
mance of the proposed model. Originally, the AudioMNIST

FIGURE 4. Speaker-independent keyword recognition dataset setups.

FIGURE 5. Dataset distribution.

consisted of 30000 audio recordings (9.5 hours) of spoken
digits (0-9) in English, and each digit was spoken 50 times
by 60 different speakers [53]. Since this study aims to
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improve speaker-independent keyword recognition on lim-
ited data, only 10 German speakers (6 male and 4 female)
were assigned to the training data and 8 speakers (5 male
and 3 female) were selected and assigned to the test data.
All training data were selected from German native speakers,
whereas test data were from German (three males and two
females), South African (one male), Tamil (one female), and
Arabic native speakers (one male).

Affine augmentation is a popular data augmentation tech-
nique for image recognition and spectrogram-based speech
recognition using geometric transformations. We have used
this very powerful augmentation technique as a baseline aug-
mentation for evaluating the performance of the VC-based
augmentation techniques. In this baseline augmentation, the
affine transformation parameters are configured carefully for
the comparison to be very convenient and unbiased. The
10 different mel-spectrogram images are generated for each
of the original training samples during the baseline aug-
mentation. For the proposed VC + baseline augmentation,
3 different mel-spectrogram images are generated from each
real sample voice by applying baseline augmentation beside
many voices which are generated using the VC methods.

V. RESULTS AND DISCUSSION
The experimental results were investigated using PyTorch
for VC, Kera framework on the frontend, and Tensor-
Flow framework as a backend for deep learning classifi-
cation models using the Python programming language on
the graphics processing unit (GPU). We used the NVIDIA
GeForce RTX 2080 Ti GPU with 11 gigabytes (GB) of
dedicated memory, where RTX stands for Ray Tracing Texel
eXtreme and T is Titanium. Compute Unified Device Archi-
tecture (CUDA) Toolkit for the GPU-accelerated applications
and NVIDIA CUDA deep neural network (cuDNN) GPU-
accelerated libraries for deep neural networks were installed
and configured on Windows 10 Intel 64-bit operating sys-
tem. The original dataset setup-I is limited by itself, and
half of this limited dataset is removed to further obtain a
very limited dataset. We considered both limited and very
limited as the baseline for comparing it to the proposed
VC-based voice augmentation technique. Many voices were
generated by the VC algorithm using the voices of a few
speakers. The VCmodel was trained two times with the same
model architecture for dataset-I and dataset-II separately.
We assigned 2000 epochs for VC training phases to obtain
a modified accent between the target and source speakers.
A mean opinion score (MOS) subjective evaluation method
[41] is selected for the naturalness and similarity evaluation
of the converted voice. Five persons evaluated the naturalness
and accent similarity between 25 converted sample voices and
target voices. The evaluation score is 5 for excellent, 4 for
good, 3 for fair, 2 for poor, and 1 for bad VC. Since we
used the training data of parallel VC as test data again, the
averageMOS result is good for the naturalness and fair for the
similarity. We examined the proposed model on two separate
dataset setups to ensure that it performed well. In this study,

TABLE 5. Model performance comparison on limited dataset-I.

TABLE 6. Model performance comparison on very limited dataset-I.

TABLE 7. Model performance comparison on dataset-II.

the experiments for dataset-I were carried out for two cases,
which are limited and very limited data.

In limited cases, all collected data (24 speakers) were taken
as the original training data, and all 12 speakers’ voices were
converted to each other. The final dataset contained a mix of
both original and converted voices. Performance comparison
of the models and a summary of the results for limited data
are presented in Table 5 and Fig. 6. The performance of the
model is measured as follows:

Accuracy(%) =
TP+ TN

TP+ TN + FP+ FN
× 100 (5)

where TP is the true positive, TN is the true negative, FP is
the false positive, and FN is the false negative.

For very limited cases, we retained only half of the original
training data (12 speakers). This is used to show how much
VC is very useful for very limited data, as Table 6 and
Fig. 7 show the result summary. The performance of the deep
learning models was significantly improved by the proposed
VC augmentation technique on very limited training data.
Overall, the proposed model performed 94.2 % accuracy for
keyword recognition on dataset setup-I. For dataset setup-II,
all training voices (10 speakers) were selected for VC, and
the results are shown in Table 7 and Fig. 6. The proposed
VC augmentation method and CNN-LSTM model showed
superior results on both dataset setups.

The deep learning models on a mix of original training
data and converted data surprisingly improved the accu-
racy when compared to their performance on pure original
data. For instance, the mix of 12 speakers’ voices and their
converted voices had better performance than the pure 24
speakers in the CNN model, as presented in Tables 6 and 7.
Therefore, instead of collecting a large amount of data from
many speakers, it is possible to compensate for this using
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FIGURE 6. Proposed CNN-LSTM test accuracy graph.

FIGURE 7. CNN-LSTM test accuracy graph on a very limited dataset I.

VC augmentation techniques. The overall results showed
that the pure CNN and pure LSTM models were highly
affected by the limited training dataset size when compared
to our proposed CNN-LSTM model. Table 6 reported that
the pure LSTM and the proposed models’ performance are
superior compared with the CNNmodel for very limited data
without data augmentation techniques. Finally, we conclude
that applying augmentation and regularization techniques to
a mixture of both original and converted data enhanced the
deep learning performance. We observe that the pure CNN
performance has no stability for the testing data at different
training iterations, whereas the proposed model has shown
better consistency.

For good result analysis, we used the popular non-
parametric statistical models’ performance comparison tech-
niques. The Wilcoxon signed-rank test is recommended
for pairwise models’ performance comparison, whereas the
Friedman test, the Friedman aligned ranks test, and the
Quade test for multiple algorithms [54], [55]. We chose
the Wilcoxon signed ranks test for pairwise models’

TABLE 8. Wilcoxon signed-rank test.

TABLE 9. Nonparametric statistical comparisons among CNN, LSTM, AND
CNN-LSTM.

TABLE 10. Execution time comparison.

performance comparison, as Table 8 has reported. The Fried-
man test, the Friedman aligned ranks test, and the Quade
test for three algorithms’ performance comparison is depicted
in Table 9. All these techniques were performed on the
accuracy of all three different datasets. The significant level
(p-value) < 0.05 indicates that one model is better than
the other. All non-parametric statistical model performance
comparisons’ results showed that the proposed models were
better than others.

The execution time analysis is very useful for trade-off
the accuracy and computational time on the given models.
The execution time of each model is shown in Table 10.
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The execution time of the proposed algorithm (CNN-LSTM)
is fast compared to pure CNN and pure LSTM models.
The dataset-I (limited and very limited) and dataset-II train-
ing execution times are reported in 500 and 100 epochs,
respectively.

VI. CONCLUSION
This paper presented a VC-based augmentation and
CNN-LSTM model for robust speaker-independent keyword
recognition. Many new modified versions of the original
training voice were generated to increase the amount of
training data. The experimental results showed that VC-based
augmentation and the hybrid CNN-LSTM model improved
speaker-independent keyword recognition. The mix of the
original training data and converted data has comparable
performance to affine transformation augmentation. The
combination of affine transformations and VC augmentation
has become more robust. The CNN-LSTM model has better
accuracy and consistency than the pure CNN and pure LSTM.
For very limited data without data augmentation techniques,
the CNN model was highly affected compared with the
pure LSTM and the proposed model. Extending this work
for continuous speech recognition in a limited dataset size
is under consideration for future work with some essential
improvements to the current methodology.

REFERENCES
[1] S. Tabibian, ‘‘A voice command detection system for aerospace applica-

tions,’’ Int. J. Speech Technol., vol. 20, no. 4, pp. 1049–1061, Dec. 2017,
doi: 10.1007/s10772-017-9467-4.

[2] A. H. Michaely, X. Zhang, G. Simko, C. Parada, and P. Aleksic, ‘‘Key-
word spotting for Google assistant using contextual speech recognition,’’
in Proc. IEEE Autom. Speech Recognit. Understand. Workshop (ASRU),
Dec. 2017, pp. 272–278, doi: 10.1109/ASRU.2017.8268946.

[3] P. M. Dias and K. Jayakody, ‘‘Virtual assistant in native language,’’
in Proc. IEEE Asia–Pacific Conf. Geosci., Electron. Remote Sens.
Technol. (AGERS), Dec. 2020, pp. 16–18, doi: 10.1109/AGERS51788.
2020.9452751.

[4] X. Lv, M. Zhang, and H. Li, ‘‘Robot control based on voice command,’’
in Proc. IEEE Int. Conf. Autom. Logistics, Sep. 2008, pp. 2490–2494, doi:
10.1109/ICAL.2008.4636587.

[5] T. Q. Nguyen, P. Nauth, and S. Sharan, ‘‘Control of autonomous mobile
robot using voice command,’’ in Proc. ARW OAGM Workshop, Jan. 2019,
pp. 1–3, doi: 10.3217/978-3-85125-663-5-24.

[6] H. Lee, S. Chang, D. Yook, and Y. Kim, ‘‘A voice trigger system
using keyword and speaker recognition for mobile devices,’’ IEEE Trans.
Consum. Electron., vol. 55, no. 4, pp. 2377–2384, Nov. 2009, doi:
10.1109/TCE.2009.5373813.

[7] M. Sidiq, W. T. A. Budi, and S. Sa’adah, ‘‘Vomma: Android appli-
cation launcher using voice command,’’ in Proc. 3rd Int. Conf. Inf.
Commun. Technol. (ICoICT), May 2015, pp. 49–53, doi: 10.1109/
ICoICT.2015.7231395.

[8] R. D. H. Arifin and R. Sarno, ‘‘Door automation system based on
speech command and PIN using Android smartphone,’’ in Proc. Int.
Conf. Inf. Commun. Technol. (ICOIACT), Mar. 2018, pp. 667–672, doi:
10.1109/ICOIACT.2018.8350715.

[9] Z. Kons, S. Shechtman, A. Sorin, R. Hoory, C. Rabinovitz, and
E. D. S. Morais, ‘‘Neural TTS voice conversion,’’ in Proc. IEEE Spo-
ken Lang. Technol. Workshop (SLT), Dec. 2018, pp. 290–296, doi:
10.1109/SLT.2018.8639550.

[10] A. Kain and M. W. MacOn, ‘‘Spectral voice conversion for text-to-
speech synthesis,’’ in Proc. IEEE Int. Conf. Acoust. Speech Signal Pro-
cess. (ICASSP), vol. 1, no. 3, May 1998, pp. 285–288, doi: 10.1109/
ICASSP.1998.674423.

[11] O. Turk, O. Buyuk, A. Haznedaroglu, and L. M. Arslan, ‘‘Applica-
tion of voice conversion for cross-language rap singing transformation,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Apr. 2009,
pp. 3597–3600.

[12] F. Villavicencio and J. Bonada, ‘‘Applying voice conversion to con-
catenative singing-voice synthesis,’’ in Proc. Interspeech, Sep. 2010,
pp. 2162–2165, doi: 10.21437/interspeech.2010-596.

[13] D. Felps, H. Bortfeld, and R. Gutierrez-Osuna, ‘‘Foreign accent conversion
in computer assisted pronunciation training,’’ Speech Commun., vol. 51,
no. 10, pp. 920–932, 2009.

[14] Z. Luo, J. Chen, T. Takiguchi, and Y. Ariki, ‘‘Emotional voice conversion
using neural networkswith arbitrary scales f0 based onwavelet transform,’’
EURASIP J. Audio, Speech, Music Process., vol. 2017, no. 1, pp. 1–13,
Dec. 2017, doi: 10.1186/s13636-017-0116-2.

[15] K. Zhou, B. Sisman, M. Zhang, and H. Li, ‘‘Converting anyone’s emo-
tion: Towards speaker-independent emotional voice conversion,’’ in Proc.
Interspeech, Oct. 2020, pp. 3416–3420.

[16] Y.-J. Chan, C.-J. Peng, S.-S. Wang, H.-M. Wang, Y. Tsao, and T.-S. Chi,
‘‘Speech enhancement-assisted StarGAN voice conversion in noisy envi-
ronments,’’ 2021, arXiv:2110.09923.

[17] H. Doi, T. Toda, K. Nakamura, H. Saruwatari, and K. Shikano, ‘‘Alaryn-
geal speech enhancement based on one-to-many eigenvoice conversion,’’
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 1,
pp. 172–183, Jan. 2014, doi: 10.1109/TASLP.2013.2286917.

[18] T. Toda, L.-H. Chen, D. Saito, F. Villavicencio, M. Wester, Z. Wu, and
J. Yamagishi, ‘‘The voice conversion challenge 2016,’’ in Proc. Inter-
speech, Sep. 2016, pp. 1632–1636, doi: 10.21437/Interspeech.2016-1066.

[19] J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio,
T. Kinnunen, and Z. Ling, ‘‘The voice conversion challenge 2018: Pro-
moting development of parallel and nonparallel methods,’’ in Proc.
Speaker Lang. Recognit. Workshop (Odyssey), Jun. 2018, pp. 195–202,
doi: 10.21437/odyssey.2018-28.

[20] Z. Yi, W.-C. Huang, X. Tian, J. Yamagishi, R. K. Das, T. Kinnunen,
Z.-H. Ling, and T. Toda, ‘‘Voice conversion challenge 2020—Intra-lingual
semi-parallel and cross-lingual voice conversion—,’’ in Proc. Joint Work-
shop Blizzard Challenge Voice Convers. Challenge, Oct. 2020, pp. 80–98,
doi: 10.21437/vcc_bc.2020-14.

[21] G. Jin, M. T. Johnson, J. Liu, and X. Lin, ‘‘Voice conversion based on
Gaussian mixture modules with minimum distance spectral mapping,’’ in
Proc. 5th Int. Conf. Inf. Sci. Technol. (ICIST), Apr. 2015, pp. 356–359, doi:
10.1109/ICIST.2015.7288996.

[22] T. Toda, A. W. Black, and K. Tokuda, ‘‘Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory,’’ IEEE
Trans. Audio, Speech, Language Process., vol. 15, no. 8, pp. 2222–2235,
Nov. 2007, doi: 10.1109/TASL.2007.907344.

[23] S. Desai, A. W. Black, B. Yegnanarayana, and S. Member, ‘‘Networks for
voice conversion,’’ Language (Baltim), vol. 18, no. 5, pp. 954–964, 2010.

[24] B. Sisman, M. Zhang, M. Dong, and H. Li, ‘‘On the study of gener-
ative adversarial networks for cross-lingual voice conversion,’’ in Proc.
IEEE Autom. Speech Recognit. Understand. Workshop (ASRU), Dec. 2019,
pp. 144–151, doi: 10.1109/ASRU46091.2019.9003939.

[25] T. Kaneko and H. Kameoka, ‘‘CycleGAN-VC: Non-parallel voice conver-
sion using cycle-consistent adversarial networks,’’ inProc. 26th Eur. Signal
Process. Conf. (EUSIPCO), Sep. 2018, pp. 2100–2104.

[26] M. Zhang, B. Sisman, L. Zhao, and H. Li, ‘‘DeepConversion: Voice
conversion with limited parallel training data,’’ Speech Commun., vol. 122,
pp. 31–43, Sep. 2020, doi: 10.1016/j.specom.2020.05.004.

[27] B. Chen, Z. Xu, and K. Yu, ‘‘Data augmentation based non-parallel voice
conversion with frame-level speaker disentangler,’’ Speech Commun.,
vol. 136, pp. 14–22, Jan. 2022, doi: 10.1016/j.specom.2021.10.001.

[28] T. Ishihara and D. Saito, ‘‘Attention-based speaker embeddings for one-
shot voice conversion,’’ in Proc. Interspeech, Oct. 2020, pp. 806–810, doi:
10.21437/Interspeech.2020-2512.

[29] G. Van Houdt, C. Mosquera, and G. Napoles, ‘‘A review on the
long short-term memory model,’’ in Artificial Intelligence Review,
vol. 53. Berlin, Germany: Springer-Verlag, May 2020, pp. 5929–5955, doi:
10.1007/s10462-020-09838-1.

[30] X. Li and Z. Zhou. (2019). Speech Command Recognition With Convo-
lutional Neural Network. Stanford CS 229 Projects. [Online]. Available:
http://cs229.stanford.edu/proj2017/final-reports/5244201.pdf

[31] D. M. Waqar, T. S. Gunawan, M. Kartiwi, and R. Ahmad, ‘‘Real-time
voice-controlled game interaction using convolutional neural networks,’’
in Proc. IEEE 7th Int. Conf. Smart Instrum., Meas. Appl. (ICSIMA),
Aug. 2021, pp. 76–81, doi: 10.1109/ICSIMA50015.2021.9526318.

VOLUME 10, 2022 89179

http://dx.doi.org/10.1007/s10772-017-9467-4
http://dx.doi.org/10.1109/ASRU.2017.8268946
http://dx.doi.org/10.1109/AGERS51788.2020.9452751
http://dx.doi.org/10.1109/AGERS51788.2020.9452751
http://dx.doi.org/10.1109/ICAL.2008.4636587
http://dx.doi.org/10.3217/978-3-85125-663-5-24
http://dx.doi.org/10.1109/TCE.2009.5373813
http://dx.doi.org/10.1109/ICoICT.2015.7231395
http://dx.doi.org/10.1109/ICoICT.2015.7231395
http://dx.doi.org/10.1109/ICOIACT.2018.8350715
http://dx.doi.org/10.1109/SLT.2018.8639550
http://dx.doi.org/10.1109/ICASSP.1998.674423
http://dx.doi.org/10.1109/ICASSP.1998.674423
http://dx.doi.org/10.21437/interspeech.2010-596
http://dx.doi.org/10.1186/s13636-017-0116-2
http://dx.doi.org/10.1109/TASLP.2013.2286917
http://dx.doi.org/10.21437/Interspeech.2016-1066
http://dx.doi.org/10.21437/odyssey.2018-28
http://dx.doi.org/10.21437/vcc_bc.2020-14
http://dx.doi.org/10.1109/ICIST.2015.7288996
http://dx.doi.org/10.1109/TASL.2007.907344
http://dx.doi.org/10.1109/ASRU46091.2019.9003939
http://dx.doi.org/10.1016/j.specom.2020.05.004
http://dx.doi.org/10.1016/j.specom.2021.10.001
http://dx.doi.org/10.21437/Interspeech.2020-2512
http://dx.doi.org/10.1007/s10462-020-09838-1
http://dx.doi.org/10.1109/ICSIMA50015.2021.9526318


Y. A. Wubet, K.-Y. Lian: VC Based Augmentation and a Hybrid CNN-LSTM Model

[32] Y. A. Wubet and K.-Y. Lian, ‘‘A hybrid model of CNN-SVM for speakers’
gender and accent recognition using english keywords,’’ in Proc. IEEE
Int. Conf. Consum. Electron.-Taiwan (ICCE-TW), Sep. 2021, pp. 1–2, doi:
10.1109/ICCE-TW52618.2021.9603210.

[33] A. N. Cayir and T. S. Navruz, ‘‘Effect of dataset size on deep learning
in voice recognition,’’ in Proc. 3rd Int. Congr. Hum.-Comput. Interact.,
Optim. Robotic Appl. (HORA), Jun. 2021, pp. 1–5.

[34] X. Yang, H. Yu, and L. Jia, ‘‘Speech recognition of command words based
on convolutional neural network,’’ inProc. Int. Conf. Comput. Inf. BigData
Appl. (CIBDA), Apr. 2020, pp. 465–469.

[35] J. Louis K. E. Fendji, D. C. M. Tala, B. O. Yenke, and M. Atemkeng,
‘‘Automatic speech recognition and limited vocabulary: A survey,’’ 2021,
arXiv:2108.10254.

[36] S. Shahnawazuddin, N. Adiga, K. Kumar, A. Poddar, and W. Ahmad,
‘‘Voice conversion based data augmentation to improve children’s speech
recognition in limited data scenario,’’ in Proc. Interspeech, Oct. 2020,
pp. 4382–4386, doi: 10.21437/Interspeech.2020-1112.

[37] D. K. Singh, P. P. Amin, H. B. Sailor, and H. A. Patil, ‘‘Data augmen-
tation using CycleGAN for end-to-end children ASR,’’ in Proc. 29th
Eur. Signal Process. Conf. (EUSIPCO), Aug. 2021, pp. 511–515, doi:
10.23919/EUSIPCO54536.2021.9616228.

[38] M. Baas and H. Kamper, ‘‘Voice conversion can improve ASR in very low-
resource settings,’’ 2021, arXiv:2111.02674.

[39] Y. Ephraim and D. Malah, ‘‘Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,’’ IEEE Trans. Acoust.,
Speech Signal Process., vol. ASSP-33, no. 2, pp. 443–445, Apr. 1985, doi:
10.1109/TASSP.1985.1164550.

[40] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation
for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi:
10.1186/s40537-019-0197-0.

[41] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, ‘‘ACVAE-VC: Non-
parallel voice conversionwith auxiliary classifier variational autoencoder,’’
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 27, no. 9,
pp. 1432–1443, Sep. 2019, doi: 10.1109/TASLP.2019.2917232.

[42] M. Morise, F. Yokomori, and K. Ozawa, ‘‘WORLD: A vocoder-
based high-quality speech synthesis system for real-time applications,’’
IEICE Trans. Inf. Syst., vol. E99.D, no. 7, pp. 1877–1884, 2016, doi:
10.1587/TRANSINF.2015EDP7457.

[43] J. Qin, W. Pan, X. Xiang, Y. Tan, and G. Hou, ‘‘A biological image clas-
sification method based on improved CNN,’’ Ecolog. Informat., vol. 58,
Jul. 2020, Art. no. 101093, doi: 10.1016/j.ecoinf.2020.101093.

[44] H. Lee and H. Kwon, ‘‘Going deeper with contextual CNN for hyperspec-
tral image classification,’’ IEEE Trans. Image Process., vol. 26, no. 10,
pp. 4843–4855, Oct. 2017.

[45] M. Dawodi, J. A. Baktash, T. Wada, N. Alam, and M. Z. Joya, ‘‘Dari
speech classification using deep convolutional neural network,’’ in Proc.
IEEE Int. IoT, Electron. Mechatronics Conf. (IEMTRONICS), Sep. 2020,
pp. 2020–2023.

[46] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. Wilson, ‘‘CNN architectures for large-scale audio
classification,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2017, pp. 131–135.

[47] Y. Liu, Z. Su, H. Li, and Y. Zhang, ‘‘An LSTM based classifica-
tion method for time series trend forecasting,’’ in Proc. 14th IEEE
Conf. Ind. Electron. Appl. (ICIEA), Jun. 2019, pp. 402–406, doi:
10.1109/ICIEA.2019.8833725.

[48] J. H. Wang, T. W. Liu, X. Luo, and L. Wang, ‘‘An LSTM approach to short
text sentiment classification with word embeddings,’’ in Proc. 30th Conf.
Comput. Linguist. Speech Process. (ROCLING), Oct. 2018, pp. 214–223.

[49] A. Graves, N. Jaitly, and A.-R. Mohamed, ‘‘Hybrid speech recog-
nition with deep bidirectional LSTM,’’ in Proc. IEEE Workshop
Autom. Speech Recognit. Understand., Dec. 2013, pp. 273–278, doi:
10.1109/ASRU.2013.6707742.

[50] M.Alhussein, K. Aurangzeb, and S. I. Haider, ‘‘Hybrid CNN-LSTMmodel
for short-term individual household load forecasting,’’ IEEE Access, vol. 8,
pp. 180544–180557, 2020, doi: 10.1109/ACCESS.2020.3028281.

[51] J. Zhu, H. Chen, andW. Ye, ‘‘A hybrid CNN–LSTM network for the classi-
fication of human activities based on micro-Doppler radar,’’ IEEE Access,
vol. 8, pp. 24713–24720, 2020, doi: 10.1109/ACCESS.2020.2971064.

[52] A. Ankita, S. Rani, A. K. Bashir, A. Alhudhaif, D. Koundal, and
E. S. Gunduz, ‘‘An efficient CNN-LSTM model for sentiment detection
in #BlackLivesMatter,’’ Expert Syst. Appl., vol. 193, pp. 1–8, Jan. 2022,
doi: 10.1016/j.eswa.2021.116256.

[53] S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Müller, and W. Samek,
‘‘Interpreting and explaining deep neural networks for classification of
audio signals,’’ 2018, arXiv:1807.03418.

[54] K. Stapor, ‘‘Evaluation of classifiers: Current methods and future research
directions,’’ in Proc. Ann. Comput. Sci. Inf. Syst., Sep. 2017, pp. 37–40,
doi: 10.15439/2017f530.

[55] J. Demšar, ‘‘Statistical comparisons of classifiers over multiple data sets,’’
J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

YESHANEW ALE WUBET received the B.S.
degree in computer science from Assosa Uni-
versity, Assosa, Ethiopia, in 2015, and the M.S.
degree in electrical engineering and computer
science from the National Taipei University of
Technology, Taipei, Taiwan, in 2019, where he is
currently pursuing the Ph.D. degree in electrical
engineering and computer science.

His research interests include speech recogni-
tion, image processing, embedded computing, and
machine learning.

KUANG-YOW LIAN (Member, IEEE) received
the B.S. degree in engineering science from the
National Cheng Kung University, Tainan, Taiwan,
in 1984, and the Ph.D. degree in electrical engi-
neering from the National Taiwan University,
Taipei, Taiwan, in 1993.

From 1994 to 2007, he was an Associate
Professor, and the Chair of the Department of
Electrical Engineering, Chung Yuan Christian
University, Zhongli, Taiwan. He is currently a

Distinguished Professor with the Department of Electrical Engineering,
National Taipei University of Technology. He also served as the Chair,
from 2009 to 2012. His research interests include smart sensor technol-
ogy, smart living devices, machine learning, robotics, and control system
applications.

Prof. Lian’s awards and honors include the Chinese Automatic Control
Society (CACS) Fellow, in 2015, the CACS Outstanding Automatic Control
Engineering Award, in 2012, the 2014 and 2017 Macronix Gold Silicon Best
Advisor, and the Future Science and Technology Award of the Annual Event
in Taiwan’s Scientific Research, in 2021.

89180 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICCE-TW52618.2021.9603210
http://dx.doi.org/10.21437/Interspeech.2020-1112
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616228
http://dx.doi.org/10.1109/TASSP.1985.1164550
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/TASLP.2019.2917232
http://dx.doi.org/10.1587/TRANSINF.2015EDP7457
http://dx.doi.org/10.1016/j.ecoinf.2020.101093
http://dx.doi.org/10.1109/ICIEA.2019.8833725
http://dx.doi.org/10.1109/ASRU.2013.6707742
http://dx.doi.org/10.1109/ACCESS.2020.3028281
http://dx.doi.org/10.1109/ACCESS.2020.2971064
http://dx.doi.org/10.1016/j.eswa.2021.116256
http://dx.doi.org/10.15439/2017f530

