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ABSTRACT Motors are the higher energy-conversion devices that consume around 40% of the global
electrical generated energy. Induction motors are the most popular motor type due to their reliability,
robustness, and low cost. Therefore, both condition monitoring and fault diagnosis of induction motor faults
have motivated considerable research efforts. In this paper, a comprehensive review of the recent techniques
proposed in the literature for broken bar faults detection and diagnosis is presented. This paper mainly
investigates the fault detectionmethods in line-fed and inverter-fedmotors proposed after 2015 and published
in most relevant journals and conferences. The introduced review has deeply discussed the main features of
the reported methods and compared them in many different aspects. Finally, the study has highlighted the
main issues and the gaps that require more attention from researchers in this field.

INDEX TERMS Artificial intelligence, data-driven modeling, fault detection, fault diagnosis, frequency-
domain analysis, induction motors, parameter estimation, signal processing, time-domain analysis, variable
speed drives.

I. INTRODUCTION
Induction motors (IMs) are the most widespread electric
motor type across a broad range of industries involving oil
and gas, cement, petrochemicals, electric traction, etc., due
to their robustness and low cost. In addition, this type of
motor accounts for about 85%of the industrial sector’s energy
consumption [1]. Therefore, an effective fault detection and
diagnosis (FDD) system becomes an inevitable requirement
for the industry to avoid catastrophic unplanned shutdowns,
minimize maintenance costs and reduce downtime.

Failures of IMs can be originated from faults in the stator,
the rotor, the motor mechanical system including bearing
and shaft, or external sources [2], [3]. Many surveys were
conducted to estimate the percentage of failures related to
each motor component. It was found that these percentages
varied with motor size, application type, manufacturing
standard,. . . etc. For example, medium voltage motors are
more vulnerable to broken bar and end ring faults than small
motors [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

Rotor faults comprise both end ring and broken bar faults
(BBFs). Examples of BBFs are shown in Fig. 1 and Fig. 2.
These types of faults are mainly caused by one or a combina-
tion of the following reasons [4], [5], [6]:

- Dynamic stresses due to pulsating torques, concentrated
centrifugal forces, and shaft torsional oscillation.

- Thermal stresses those caused by hot spots, overloads,
sparking due to imperfect fabrication of the rotor, heavy
and frequent starting, and plugging transients.

- Mechanical stresses caused by loose laminations, etc.
- Environmental stresses due to the contamination by
chemicals.

- Magnetic stresses because of unbalanced electromag-
netic forces.

Once a full BBF is introduced, the bar current that would
flow in the broken bar transfers to the adjacent bars causing
more thermal and magnetic stresses on these bars [7], [8], [9].
In addition, the backward magnetic field increases due to
rotor circuit asymmetry which is reflected in the stator current
harmonic content and other motor quantities [10]. Thus, the
BBF reduces motor efficiency and reliability [3]. Also, the
BBF causes the vibration of the shaft that may lead to bearing
and rotor eccentricity faults [11]. As a consequence of these
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extra stresses, the adjacent bars and bearing become more
susceptible to faults, the motor may not be able to develop
the required torque, and eventually, a complete motor failure
may occur [8], [9], [12], [13]. A sudden motor failure may
cause severe consequences such as unplanned shutdown, loss
of production, financial losses,. . . etc [3], [14]. Therefore, the
early detection and diagnosis of BBFs become crucial to the
modern industry.

A case of a complete rotor failure of a 380 kW, 6.6 kV
motor is illustrated in Fig. 2. The rotor of this motor has
58 bars, 20 of them are damaged, so it could not deliver
the required torque to drive the load which accounts for a
complete rotor failure (based on the angle of the photo taken,
only four broken bars are shown in Fig. 2).

FIGURE 1. Rotor of 460 kW, 6.6 kV motor with one broken bar marked
with red color (the photo is taken by the authors).

In the last two decades, many review papers have attempted
to analyze different FDD techniques of IMs and drives’
faults in the literature such as [15], [16], [17], [18], [19],
and [20]. However [15], [16], [19], and [20] provided broad
reviews of FDD techniques of motor-drive systems includ-
ing several electric machine types, faults types (BBF, stator
faults, eccentricity, . . .), and power electronics were pro-
vided. They discussed a limited number of researches related
to BBF, perhaps due to the wideness of the review scope
and the paper length limitations. Lastly, these references
did not discuss methods proposed after 2015. Similarly, a
comprehensive survey of FDDmethods for the four major IM
faults: broken bar faults, stator inter-turn faults, eccentricity
faults, and bearing faults was provided in [17]. In this article,
different FDD methods before 2016 were introduced and
compared in several aspects. In contrast, and in an attempt
to give more concern to IMs broken bar faults taking into
account the paper length limitation, a more detailed review
of detection and diagnosis methods before 2017 is achieved
with mathematical representation in [18]. However, some
significant points were not extensively reviewed concern-
ing the detection of BBFs in inverter-fed IMs, diagnosis of
non-adjacent BBFs in IMs, and also flux-based detection
techniques. Additionally, the authors of [21] and [22] pro-

FIGURE 2. Rotor of 380 kW, 6.6 kV motor with multiple broken bars
marked with yellow-colored arrows (the photo is taken by the authors).

vided an overall comprehensive review of FFD for different
devices and systems such as engines, motors, batteries,. . . etc.
These two studies have proposed main frameworks for FDD
techniques classification. A comparison with these seminal
state-of-the-art papers is introduced in Table. 1.

So, this work is dedicated to filling the time gap between
recent research studies and the latest available review articles
and to help researchers to realize the current trends in this
field (as shown in Table. 1). Also, the paper discusses the
main BBF detection methods categories and considers the
most common BBF signatures in the literature compared to
other state-of-art and review papers. To enrich our review,
integrate with previous works, and avoid duplications, most
of the papers covered in this review were published after
2015 andmore emphasis is placed on some highlighted points
such as:
• Detection and diagnosis of BBFs in inverter-fed IMs.
• Classifying detection methods, including recent meth-
ods, into main groups and subgroups as demonstrated in
Fig. 3 to help readers to comprehend the development of
those methods.

• Holding extensive comparisons between different meth-
ods to show their merits and drawbacks.

• Assessing the usage of the data-driven approach in the
detection and diagnosis of BBFs.

The rest of the paper is organized as follows: an overview
of the nature of the BBF fault and the challenges that accom-
panied BBFs diagnosis are presented in Section II, and the
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TABLE 1. A comparison between this article and most of the previous state-of-art and review articles.

effect of BBF on motor variables is presented in Section III.
Model-based methods are fully discussed in Section IV. Sig-
nal processing-based methods are reviewed comprehensively
in Section V. Data-driven based methods are discussed in
Section VI. Finally, the conclusions are drawn in Section VII
in addition to some suggested future works.

II. MODELING OF BBF AND DIAGNOSIS CHALLENGES
In this section, the nature of the BBF and the diagnosis
challenges will be discussed.

A. MODELING OF BBF

The broken bar fault is considered a type of asymmetry
in the IM rotor circuit. This asymmetry results in increasing
the backward magnetic field that already exists due to the
inherent asymmetry of the rotor circuit [7], [12], [17]. The
rotor’s inherent asymmetry originates from the imperfection
of the rotor casting, non-sinusoidal distribution of the rotor
bars, etc. [7], [12], [23]. The increased backward field due
to the fault deforms the motor magnetic flux density spatial
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FIGURE 3. BBF detection and diagnosis methods classification.

distribution by creating undesirable highly saturated regions
around the broken bar [7], [24].

A full broken bar can be modeled in the equivalent circuit
by a virtual current source [7], [17]. The magnitude of this
current source is equal to that of the current that would flow in
the broken bar in the healthy case [7]. The current generated
from this current source passes through the rotor bars adjacent
to the broken bars besides their original current, causing more
stress to these bars. This increase in the adjacent bars currents
is because of the cancelation of the armature reaction created
by the broken bar in the healthy condition [7], [13]. So, if the
BBF is not diagnosed and cured early, the severity of the fault
increases, and accordingly the rotor is susceptible to complete
failure [12], [13].

It is worth mentioning that the partial broken bar can be
represented as a less severe case of a full broken bar where a
portion of the bar current can still flow because the connection
is not fully broken as in the case of BBF [7].

B. CHALLENGES OF BBFs DIAGNOSIS
The types and modes of supply represent a major challenge
for many fault detection and diagnosis methods. Therefore,
in the next few lines, we will discuss different types of IM
supply. These supply types can be classified into two main
groups [7], [17]:
• Line-fed mode.
• Inverter-fed mode.
In the first type, the IM is energized by a constant-

frequency sinusoidal voltage supply whereas, in the second
type, the supply voltage fundamental frequency can be varied,
and the voltage supplied to the IM is rich in harmonics
[7], [17], [25], where these additional harmonics may mask
the fault-related harmonics [25].

Also, in inverter-fed mode, many motor’s mechanical and
electrical variables are subject to continuous changes, while
the variation in line-fed mode is mainly dependable on load-
ing level [12]. Accordingly, the process of fault detection and
diagnosis in inverter-fed mode represents a more sophisti-
cated challenge.

Generally, the BBFs diagnosis challenges were discussed
separately in several reported papers in the literature,

however, these challenges will be briefly offered in the fol-
lowing points to provide a complete review of FDD.

FIGURE 4. Classification of the sources of false diagnosis in the case of
BBFs.

- The source of false diagnosis of BBFs can be classified
into false positive and false negative sources as indicated
in Fig. 4. Despite the high efficiency of many detection
methods proposed in the literature, their accuracies may
deteriorate under many motor designs, fault locations,
and operating conditions [26], [27], 28].

- Related to motor design, the axial rotor air ducts are the
most common cause of false detection of broken bars.
Such ducts, which are used mainly for cooling, produce
frequencies in the stator current spectrum similar to
those induced in the case of BBFs [26], [27].

- A closed rotor slot is another obstacle related to motor
design that undermines the performance of many fault
detection methods [29].

- Besides, the non-adjacent broken bar is a typical fault
location that is commonly misdiagnosed [30], [31].

- Also, a fault in the outer cage of a double cage motor can
be hardly detected [28], [32].

- Erroneous speed estimation can lead to misdiagnosis for
methods that require speed measurement.

- At the same time, the operating conditions and the
mechanical load characteristics that negatively affect the
FFD methods’ accuracy include:

- Low-frequency load oscillations [33], [34].
- Light and zero loading conditions [18], [35].
- Inverter-fed mode with closed-loop control
strategies [36].

- Short starting duration [13].

III. SIGNATURES OF BBF
Even though all motor variables are affected by BBF, some
variables are more fault-sensitive [12]. These effects result in
the appearance of certain patterns in the temporal evolution
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of the signal, in its spectrum or its spectrogram. These pat-
terns are widely known in the literature as fault signatures.
Moreover, the measurement of some motor variables is more
straightforward than others [12], [37]. In other words, the
measurement requirements vary from simple non-invasive
sensors with simple sampling techniques like current and
voltage sensors to invasive sensors with especially sampling
techniques like air-gap flux sensors [12]. Although air-gap
flux sensors are the most reliable and fault-sensitive sen-
sor types, current sensors are the most common to detect
this fault due to their availability and ease of installation
[12], [18], [38]. Therefore, there are two main trends:

- Increasing the reliability of the non-invasive methods
through the development of post-processing techniques.

- Development of new non-invasive sensors that can mea-
sure more fault-sensitive motor variables.

An example of the first trend is the application of the
dragon transform to a motor current signal to detect broken
bar faults in an inverter-fed motor [38]. On the other hand, the
usage of stray flux sensors represents the other trend [10].

Other fault signatures such as torque signatures do
not attract researchers due to their low sensitivity and
complexity [12].

In this paper current, voltage, flux, vibration, and acoustic
signatures will be investigated.

A. BBF CURRENT SIGNATURE
As discussed in Section II.A, the BBF induces a backward
magnetic field whose frequency equals sfs and rotates in a
reverse direction to the motor main flux, where s describes
the motor slip and fs is the supply frequency [7], [12]. This
backward magnetic field finally develops a current compo-
nent whose frequency equals (1 − 2s)f s [7], [12]. The new
current component generates torque and speed ripples that
generate another current component whose frequency equals
(1 + 2s)f s [7]. The (1 + 2s)f s current component produces
another (1−4s)f s component and the sequence continues [7].
More details and mathematical interpretation can found in [7]
and [12].

Therefore, the characteristic frequencies of BBF fbbf in the
stator current are:

fbbf = (1± 2ks)f s, k = 1, 2, 3, . . . (1)

The fault-related harmonics can be recognized in the side-
band around the supply frequency. The most significant fault-
related harmonics for BBF detection in the literature are the
first-order ones where k = 1 in equation (1). The sideband at
(1 − 2s)f s is called left sideband harmonic (LSH) whereas,
the sideband at (1 + 2s)f s is called right sideband harmonic
(RSH). The magnitude and frequency of the LSH and RSH
mainly depend on loading conditions, motor slip, load inertia,
and the location of broken bars [39]. The effects of loading
level and fault severity on the LSH and RSH in the motor
current spectrum are shown in Fig. 5. Therefore, the detec-
tion of BBF under light and zero loading level using stan-
dard spectrum analysis methods would be impossible as the

fundamental current component (FC) masks sideband har-
monics at low slip as described by equation (1).

FIGURE 5. (a) Loading level effect and (b) fault severity effect Effects on
LSH and RSH frequencies in the motor current spectrum (developed by
authors and obtained by simulation test).

Based on Equation (1) and if we only consider the first-
order sideband then, the stator current (Ia) can be expressed
by:

Ia =
√
2 Icos (wst − α)

+
√
2Ilcos ((1− 2s)wst − αl)

+
√
2Ircos ((1+ 2s)wst − αr ) (2)

where I , I l and Ir are the r.m.s of the FC, LSH, and RSH cur-
rent components respectively. Whereas, α, αl and αr are the
phase angles of the FC, LSH, and RSH current components
respectively.

According to equation (2), the BBF induces periodic fluc-
tuations into the stator current envelope in the time domain as
shown in Fig. 6. Actually, as the fault severity increases, the
amplitude of fluctuations increases [7].

In contrary to steady-state, the BBF detection under tran-
sient conditions is less sensitive to loading level and hence is
more capable to detect such fault under zero loading condi-
tions [13]. However, the BBF detection under transient con-
ditions is influenced by load inertia since the inertia directly
affects the starting time [13].

Nevertheless, the detection and diagnosis of BBF in
inverter-fed induction motors are undisputed and more
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FIGURE 6. Steady-state stator current waveform in case of (a) Healthy
motor and (b) motor with three broken bars (developed by authors and
obtained by simulation test).

sophisticated in both steady-state and transient conditions
since the high-frequency switching of the inverter produces
several undesirable harmonics in the motor current and air
gap flux [36].

In addition, the motor speed is no more dependable on the
slip so, the BBF-related attributes are significantly different
from those in line-fed cases [40]. The control strategies of
the inverter have a great influence on sideband harmonics’
magnitude and energy [36], [38]. The closed-loop control
strategies such as field-oriented control system (FOC) and
direct torque control (DTC) slightly increase the amplitudes
of (1 − 2ks)f s [41], [42]. Whereas, the open-loop control
strategies such as constant voltage/frequency (CV/F) signifi-
cantly increase the main sideband frequencies [41].

As shown in Fig. 7, the LSH in line-fed mode has a unique
V pattern in the time-frequency domain during motor starting
that facilitates the detection of BBF. On the other hand, both
the LSH and RSH are strictly close to the fundamental current
component (FC) in the case of starting an inverter-fed motor.
Consequently, the detection of BBF under these conditions is
complicated.

Also, the BBF induces other frequency components around
winding harmonics as expressed in [35]:

fbbf = fs

((
k
p

)
(1− s)± 1

)
, k/

p = 1, 3, 5, . . . (3)

where p is the number of pole pairs and k is an integer. This
criterion was analyzed in steady-state and time-varying con-
ditions in many papers to detect BBF such as in [43] and [44]
when the diagnosis based on conventional harmonics LSH
and RSH is not conclusive. The BBF occurrence increases
the magnitude of many high-frequency components such as
(5− 4s)f s and (7− 6s)f s [45]. These high-frequency current
components are generated from the interaction of the spatial
harmonics with the asymmetry due to broken bars.

FIGURE 7. Theoretical trajectories of LSH and RSH of an induction motor
in time-frequency plane (a) line-fed starting and (b) Inverter-fed starting
(developed by authors and obtained by simulation test).

As discussed in Section II.B, low-frequency load oscil-
lations can induce frequencies in the stator current
spectrum similar to that produced from the BBF [33],
[34]. Many papers discussed this problem such as
[34], [46], [47], [48], [49], and proposed different methods
that can discern BBFs from load oscillations. These methods
will be discussed later.

B. BBF VOLTAGE SIGNATURE
As discussed before, the BBF gives rise to asymmetrical rotor
flux distribution. So, after disconnecting the main supply,
the induced voltage in the motor stator winding reflects the
rotor flux distortion [18]. Mainly the spectrum analysis of
the induced voltage shows BBF-related components that can
be used for fault detection and diagnosis [18]. The major
drawback of this fault signature is that disconnection of the
motor from the supply is required, which is not applicable
in industrial applications. Besides, other faults such as stator
winding faults induce fluctuations in the stator-induced volt-
age also [12].

Another BBF voltage signature is investigated in the lit-
erature to overcome the source disconnection requirement
and provide continuous motor monitoring. It depends on
measuring and analysis of the motor-neutral voltage that
reveals fault-related information [50], [51]. The difficulty
of measuring neutral voltage ranges from a simple connec-
tion in a star-connected winding motor to more advanced
connections in the case of inverter-fed motors [51], [52].
In delta-connected winding motors, an alternative to the neu-
tral voltage called stator circular current is used for fault
detection and diagnosis [51]. However, the neutral-voltage
signature provides one of the most accurate, robust, and
reliable fault-related information for line-fed and inverter-fed
motors [18].

In contrast to the effect of open and closed-loop control
strategies on the current signature, the control strategies
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have less effect on the voltage signature especially on
zero-sequence voltage components [52].

C. BBF FLUX SIGNATURE
The motor air-gap flux is the coupling between the stator
circuit and the rotor circuit, so any fault in the stator or the
rotor appears in the air-gab flux. Hence, it is one of the most
accurate and reliable motor fault-related signatures [28]. The
BBF does not represent an exception to this rule; this fault
increases the magnitude of flux density components whose
frequencies depend on sfs [53].

The variation of motor flux distribution due to BBF during
starting is displayed in Fig. 8. The air-gap flux is measured
using one search coil or more embedded in the air gap so,
it is an invasive technique [28], [54]. Essentially, the induced
voltage on the search coil is measured and analyzed to extract
the fault signature. This fault signature can be used for fault
detection in steady-state and starting conditions under line-
fed and inverter-fed supply modes [12], [28]. This fault sig-
nature is immune from low-frequency load oscillations and
unbalanced voltage supply [53].

To keep the advantages we got from air gap mag-
netic flux usage and avoid the invasive requirements for
measuring air-gap flux, the motor stray flux is recently
used in the literature. A coil or more is installed outside
the motor in an axial or radial direction to capture the
stray flux [10]. The BBF increases the magnitude of
flux components in the axial direction whose frequencies
equal sfs and 3sfs [28], [55]. It raises the magnitude
of flux components in the radial direction whose fre-
quencies equal (5− 4s) fs, (5− 6s) fs, (7− 6s) fs, (7− 8s) fs
[28], [55]. Then, the coil’s induced voltage is analyzed to
detect BBF [10], [28]. However, stray flux monitoring can
provide nearly the same advantages as air-gap flux, the mag-
nitude of the external stray flux is very low and depends on
motor frame material [53], [56]. Moreover, a high-frequency
resolution is required to distinguish the fault-related frequen-
cies in the spectrum [53], [56]. Furthermore, the captured
signal is susceptible to interference from other sources since
the external search coil acts as a low-frequency antenna [53].

It is worth mentioning that the inverter control strategies
have a considerable impact on the detectability of BBFs
using stray flux. Generally, the inverter generates additional
noise that may hide the fault-related frequency, especially
at low slip [57]. Moreover, the compensation effect of the
closed-loop control strategies suppresses some fault-related
frequencies which makes the detection of such faults more
challenging.

D. VIBRATION AND ACOUSTIC SIGNATURES
The vibration analysis is widely used for machines’ health
conditions monitoring. The vibration is generally produced
by electrical, mechanical, and magnetic forces [18]. Based
on the fact that the BBF results in unbalanced magnetic
force conditions in addition to speed fluctuations [58], [59].
Therefore, vibration analysis can be used to detect such faults.

FIGURE 8. Magnetic flux distribution during starting of 11 kW IM
(a) Healthy and (b) with one BBF (developed by authors and obtained by
simulation test).

The vibration can be measured using different types of vibra-
tion sensors placed in axial or radial directions [58].

The spectrum analysis of vibration signals is usually used
for fault detection purposes [58]. The BBF produces sideband
harmonics around the rotational frequency [58], [59]. How-
ever, the detection methods based on vibration analysis were
found experimentally to be more sensitive to bearing faults
than BBF [58]. It is worth mentioning that the amplitude of
the sideband harmonics depends on motor speed more than
loading conditions [18], [58]. The inverter control strategies
-especially closed-loop control such as FOC- have minor
effects on the vibration signature [60]. However, the detection
of BBF using vibration signature may require more advanced
signal processing tools under low load operation conditions
and variable loading conditions [60].

On the other side, the acoustics-based methods are very
attractive to researchers for machine fault diagnosis as they
contain less noise and interference within the frequency
band of interest [18], [58]. In addition, they are noninva-
sive techniques as the acoustic signatures are captured by
using a set of microphones [58], [61]. The BBF appears in
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TABLE 2. Fault frequency components for different fault signatures.

the frequency spectrum as sideband harmonics around the
driving frequency [58]. Unfortunately, the acoustic spectra
cannot demonstrate explicit differences between healthy and
BBF cases. Consequently, the acoustics-based methods are
considered the least sensitive methods to BBFs [58].

E. CONCLUSION AND DISCUSSION ON BBF SIGNATURES
In a conclusion to this section, the BBF causes variations in
all motor quantities with different degrees. These variations
are reflected in motor measures such as current, voltage,
flux, vibration, and acoustics, known as fault signatures.
Table 2 illustrates the frequencies of interest for BBF detec-
tion and diagnosis for different signatures.

The BBF signatures can be measured using invasive or
non-invasive techniques and require different conditions.
In Table 3, a comparison between different BBF signatures
was held to illustrate the differences between these signatures.

The sensitivity of different signatures to BBF is divergent.
For example, the sensitivity of the air-gap flux signature to
the BBF is superior to that of other signatures, but measur-
ing this quantity requires an invasive technique [12], [28],
[54]. On the other hand, the current signature analysis is the
most common technique in the literature for BBF due to its
non-invasive nature and simplicity.

IV. MODEL-BASED-METHODS FOR BBF DETECTION
AND DIAGNOSIS
As illustrated in Fig. 3, this section is dedicated to dis-
cussing the conceptual basis of the model-based approaches.
Generally, in model-based approaches, the IM is modeled
to simulate its real behavior. A schematic diagram of the
observer-based failure detection is displayed in Fig. 9. The
observer or the state estimator can use the process inputs to
estimate measurement variables [62]. The residual between

the measured values and the estimated ones is used to identify
the error [62].

FIGURE 9. General scheme of the model-based fault methods [62].

There are three main approaches to these methods:
• Resistance estimation-based methods,
• Other parameter estimation-based methods,
• Digital twin-based methods.
The conceptual basis of the first approach is to use a state

estimator to estimate the rotor resistance and compare it to
a known value of rotor resistance for error detection. The
deviation of the estimated resistance from a known value is
used as an error severity indicator.

In contrast, the second approach estimates the parameter
rather than the rotor resistance and compares it to the known
value of the parameter. In this case, the severity of the error
is assessed using these parameters. In general, this approach
is suitable for mixed and simultaneous fault identification.

Finally, the digital twin technology offers a very promising
tool for detecting BBF. This is because the technology can
automatically estimate engine parameters and behavior based
on online data.

A. RESISTANCE ESTIMATION-BASED METHODS
The problem of BBF detection for a sensorless vector-
controlled induction motor drive was discussed in [66]. The
used technique of control was based on the FOC in which
the BBF effect in the speed is compensated. In this paper, the
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TABLE 3. Comparison between different BBF signatures types.

extended Kalman filter (EKF) was used to estimate the speed
of a sensorless vector control induction motor. In addition,
EKF is applied to estimate in real-time the equivalent rotor
resistance of the reduced multi-winding model of IM in
healthy and faulty conditions under both transient and steady-
state operation.

The estimated rotor resistance was proposed as a fault indi-
cator. In addition, the spectrum analysis of stator current and
quadratic current using fast Fourier transform was introduced
for further confirmation of fault occurrence. The proposed
method was validated experimentally as well as the results
showed a good performance. Despite the effectiveness of the
proposed method, 3-ph current and 3-ph voltage measure-
ments besides motor parameters were required. Furthermore,
EKF suffers from linearization error as well as the compu-
tational burden is high [67]. A comparative study between
Unscented Kalman Filter (UKF) and EKF was introduced in
[68] as promising methods to estimate the equivalent rotor
resistance of the motor model. The two methods were tested
using computer simulations under the same conditions. The
test results illustrated that UKF had a better performance
than EKF regarding computational burden, complexity, and
mathematical stability. However, UKF may not converge in
high-dimensional systems [67].

Later, Square–Root Transformed Cubature Quadrature
Kalman Filter (SR–TCQKF) was proposed in [67] to over-
come the EKF shortcomings, provide more accurate results,
and ensuremathematical stability. The SR–TCQKF can accu-
rately estimate the equivalent rotor resistance of the IM
model. The change in the estimated rotor resistance from
the reference value was utilized as a BBF fault indicator.
This method was validated using a line-fed induction motor
testbed under low loading conditions. The test results demon-
strated that the proposed method precisely detected the BBF.
Nevertheless, 3-ph current and 3-ph voltage measurements
besides motor parameters were required.

B. OTHER PARAMETERS ESTIMATION-BASED METHODS
In [69], a model based on Park’s model for BBF and stator
inter-turn faults was developed for IMs. The faulty parameters
were estimated using this model and sequential electrical
data samples with the help of the output error technique to
indicate fault level, while the other motor model parame-
ters did not change. This method was validated using a set

of experiments. Although this method showed very good
accuracy and was suitable for inverter-fed IMs with FOC
algorithms, 3-ph current, 3-ph voltage, and speed mea-
surements besides motor parameters were required. These
requirements may be not available in a real case.

Furthermore, the model-based approach was applied
in [62] to detect incipient BBF and inter-turn faults. The
dynamic nonlinear unknown input observer (DNUIO) was
presented to overcome motor nonlinearity problems and load
variations effects. The DNUIO was used to predict the rotor
equivalent resistance of a highly nonlinear model of IM.
This method was verified using simulations to illustrate its
effectiveness and asymptotic stability. However, 3-ph current,
flux, and speedmeasurements besidesmotor parameters were
required.

On the other hand, an analytical model that can represent
IM with stator inter-turn faults and BBFs occurring simulta-
neously or alone was presented in [70]. The proposed method
can detect motor faults in real-time by utilizing the pendulous
oscillation phenomenon of the magnetic field with the aid
of particle swarm optimization. The experimental validation
of the proposed method using a line-fed induction motor
illustrated that the method is immune to load variations, volt-
age unbalance, and voltage distortion. Contrary, the proposed
method is susceptible to false classification. Like the previous
method, 3-ph current and 3-ph voltage measurements were
required.

C. DIGITAL TWIN-BASED METHODS
Another trending technology is called digital twin (DT),
which is the creating and sustaining of a digital representation
of physical objects and supporting their performance through
digital simulation and optimization tools that are continu-
ously fed with real-time and updated data [71].

Normally, the digital twin architecture typically consists
of five main components; the physical entity in the real
world, the virtual entity, the services entity, the data, and
the connections [71], [72]. The virtual entity simulates
the physical object from different approaches and provides
multi-functions for the digital twin such as fault identifica-
tion, optimization, simulation, and control strategies [72].
The data drives the complete system and updates the digital
model. The service entity acts as a platform with a variety
of services. Also, it reacts to requests from both physical and
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virtual entities [72]. The DT automatically measures and esti-
mates motor parameters and quantities based on online data,
which generally makes it a very efficient tool for detecting
motor faults [72]. On the other hand, the DT faces many
challenges such as developing comprehensive multi-physical
modeling with a suitable calculation burden for online
simulation, worthless complexity, expensive technology,
etc. [72], [73].

The DT termwas used in the field of broken bar fault detec-
tion only in [74], but in a way represents a misconception
of definitions in [71] and [72]. In [74], a 3-D finite element
model was introduced to simulate a 5-hp motor. The stator
current obtained by the simulation was used to test artificial
neural networks (ANN) accuracy to classify BBF.

D. DISCUSSION ON MODEL-BASED METHODS FOR BBF
DETECTION AND DIAGNOSIS
To conduct some comparative analysis between different
methods introduced in the literature, some abbreviations are
used as defined in Table. 4. Accordingly, a detailed compar-
ison among different model-based methods is illustrated in
Table. 5.

It can be concluded that the model-based methods require
a relatively large number of sensors and a detailed knowledge
of motor models and parameters compared to other BBF
detection methods. Also, a precise selection of the observer’s
type is essential for rigorous results in both resistance esti-
mation and other parameter estimation-based methods. Fur-
thermore, the rotor temperature estimation accuracy is largely
dependent on the identification accuracy. However, most of
these methods can provide accurate results under zero in
addition to low loading conditions, unbalanced voltage sup-
ply, mixed faults, and closed-loop inverter fed modes which
represent a stumbling block for most of the other methods.

The digital twin-based methods represent a trending tech-
nology for efficient monitoring and accurate fault detection
and diagnosis of IMs. However, it may not be the best solution
for monitoring small motors due to the cost of implementa-
tion and complexity. Nowadays, developing a multi-physical
model for the IM with a compromised computational bur-
den and accuracy for online simulations takes researchers’
attention.

V. SIGNAL PROCESSING–BASED METHODS FOR BBF
DETECTION AND DIAGNOSIS
The concept of these methods is to use a variety of different
techniques to extract the fault-related features from the mea-
sured signals. These features can be extracted from the time,
frequency, or time-frequency domain.

A. TIME-DOMAIN-BASED METHODS FOR BBF DETECTION
AND DIAGNOSIS
In this subsection, FDDmethods that are based on processing
data obtained from the measured signals in the time domain
are presented.

A straightforward algorithm to automatically detect BBFs
even at the incipient phase under starting conditions was pro-
posed in [75]. Firstly, the starting current signal was filtered
and segmented before being processed. In the processing
stage, the segmented current was compared with a set of
reference current signals that represent healthy and different
fault conditions. This algorithm can efficiently diagnose the
BBF however, reference current signals were required.

A method based on the spectral analysis of the air gap
flux measured by a hall effect sensor embedded between two
stator slots was proposed in [76] to diagnose BBF in IMs
running at very low slips. In this method, multiple statistical
features were extracted from the time domain and frequency
domain of the air-gap flux to be fed to different artificial
intelligence classifiers for BBF detection and classification.
However, an invasive technique was used to measure the air
gap flux and large data was used to train the classifier.

TABLE 4. Abbreviations used in Tables 5, 6, 7, 8, and 9.

In contrast, in [77], the information entropy analysis of
the current waveform at either starting or steady-state was
utilized as an index for BBFs. Although the low complex-
ity and the high efficiency of the proposed method under
starting and steady-state, several trials were required to deter-
mine the thresholds in a process similar to the training
process.

The investigation of vibration and current monitoring for
effective mechanical and electrical fault prediction in IMs
was introduced in [78]. Three statistical features extracted
from current and/or vibration in the time domain were
employed in [78] in conjunction with a multiclass support
vector machine to detect BBFs in addition to different elec-
trical and mechanical faults. The proposed scheme was val-
idated experimentally. The test results showed that a high
accuracy could be achieved using the current signal only.
Another objective of this paper was to hold a comparison
between vibration signal and current signal as a media for
detecting different electrical and mechanical faults. It was
found that the vibration signal and current signal provided
information-rich media for detecting mechanical and electri-
cal faults respectively however, both signals were required
for efficient detection of combined mechanical and electrical
faults.

On the other hand, an invasive method was presented
in [79] that was based on a differential measurement of the
air-gap magnetic field captured by two series search coils
installed on the stator tooth. The resultant induced voltage at
the series coils terminals was employed as a fault indicator.
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TABLE 5. Comparison among different model-based methods discussed in Section IV.

Later in [80], a method is introduced that could effectively
discriminate both BBF and eccentricity fault and then esti-
mate the severity of each fault. In this method, the air-gap
flux density was acquired using 36 flux sensors installed in
the air gap. The analysis of the air-gap flux density in both
time and space was the base of BBF detection and diagnosis
in that study.

Furthermore, the homogeneity of one phase stator current
during the starting was suggested in [81] to be used for early
detection of BBF with a relatively low computational burden.
The proposed method was experimentally validated as an
online tool that can detect and classify BBFs even in the early
stages. This method could achieve a high accuracy reaching
99.7%, however, a considerable amount of data was required
to define acceptance and rejection regions. Although the pro-
posedmethod successfully diagnosed faults of different levels
of severity up to two broken bars, we think that diagnosing
faults of higher severity will be challenging for this method.
Aswith the increase of the fault severity over two broken bars,
the density function of the homogeneity in the case of fault
resembles that in the healthy cases.

The orthogonal Component Decomposition technique
(OCD) was utilized to efficiently detect BBF in both line-fed
and inverter-fed modes in [82]. It was found that the
decomposition products of currents and voltages are rich
in fault-related data in both the two operation modes. The
proposed technique is supported by support vector machines
to detect and classify faults with accuracy that reached 100%
and 98.76% in the case of line-fed and inverter-fed modes
respectively.

The differential measurement of the air-gap magnetic field
was employed again in [53] to detect BBF even under load
torque oscillations, unbalanced voltage source, and non-
adjacent BBF. The time-domain analysis of the differential
induced voltage at two search coils per phase was introduced
as a fault indicator.

The chaos theory-based method was proposed in [83] as a
prospective solution to detect and classify BBF under low slip
conditions and variable loading conditions with the minimum
window length. The analysis of only one chaotic variable
called density of maxima could efficiently indicate BBF
occurrence.

A Histogram of Oriented Gradients (HOG), a widely used
image-processing tool, is used in [33] to detect the BBF of
an IM running at low slip conditions without the need for
slip measurement. The HOG extracted features were fed to a
multilayer perceptron neural network and Bayesian classifier
for fault detection and classification. The proposed method
was validated under no-load conditions and in the existence
of oscillatory loads.

Finally, a detailed comparison among different time-
domain-based fault detection methods introduced in the lit-
erature is presented in Table. 6.

B. FREQUENCY-DOMAIN-BASED METHODS FOR BBF
DETECTION AND DIAGNOSIS
In these methods, various signal processing techniques are
applied to extract fault-related features from the signals in the
frequency domain.

1) FAST FOURIER TRANSFORM-BASED METHODS
In these methods, the frequency spectrum of several quanti-
ties such as current, magnetic flux, power, etc. is used for fault
detection. This frequency spectrum is calculated primarily
using fast Fourier transform (FFT).

Motor current spectrum analysis using FFT is one of the
most common and early techniques used to detect BBFs.
However, the FFT is valid only for steady-state operation.
Also, it suffers from several limitations like spectral leakage
and low-frequency resolution. Therefore, different solutions
were presented in the literature to overcome these limitations.
In [84], to overcome the problem of detecting BBF in large
IMs running at very low slip, the resultant magnetic flux
density was analyzed instead of the current using FFT to
avoid the high-frequency resolution requirement in the case
of current spectrum analysis under low-slip operation, how-
ever, a special arrangement was required for the installation
of the flux sensor. Furthermore, the air-gap and radial leakage
flux were analyzed by FFT in [85], where the attenuation of
the fr sidebands component was used as a fault indicator. The
aim of the proposed method was to overcome motor-current-
signature analysis (MCSA) drawbacks and to discriminate
BBF from other fault and load defects. In [34], the magnitude
of certain frequencies in the frequency spectrum of the stray
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TABLE 6. Comparison among different time-domain-based fault detection methods discussed in Section V-A.

flux that was calculated using FFT was used to detect BBFs.
In [86], the frequency spectrum that was obtained by FFT
was processed using the independent component analysis
(ICA) to extract FFT-ICA features for fault detection and
diagnosis in an inverter-fed motor. A similar approach to
detect BBFs in a line-fed motor was introduced in [87], where
the ICA was supported by artificial neural networks (ANN).
Furthermore, the frequency spectrum obtained by FFT was
fed to an intelligent multi-agent system for BBFs detection
and diagnosis as presented in [88].

In another attempt to overcome the detection BBF in IMs
working at very low slip, such as large machines with a very
small rated slip or unloaded IMs in off-line tests, an enhanced
discrete Fourier transform (DFT) based on zero-padding of
the sampled stator current was used in [89] to minimize
original FFT spectral leakage. Moreover, DFT with a sliding
window and its related sidelobes leakage phenomenon was
utilized to detect and diagnose BBFs in [90]. In [59], the FFT
followed by the orthogonal matching pursuit algorithm was
applied to analyze the vibration signal for BBF detection.
In [91], an efficient index to detect BBF under variable
loading and different inertia conditions was proposed through
the monitoring of the LSH and RSH phase angle variation.
Also, another index was proposed to estimate fault severity.

In [46], [47], and [48], the fast Fourier transform was
applied to the stator current in the d-q frame to provide a
robust basis to discern broken bar from mechanical oscilla-
tions. In [46], the magnitude of some frequency components
in the active and reactive current spectrum was utilized as a
fault indicator. A more advanced fault indicator based on the
variation of the magnitude and phase angle of the active and
reactive current spectrum was proposed in [47]. Later in [48],
it was proved that the d-component of the current is immune
from load oscillations and suggested to use of its spectrum as
a fault indicator. However, these methods provided efficient
methods to detect BBFs under the presence of load oscilla-
tions, the three-phase current measurements were required in
[46] and three-phase current and voltage measurements were
required in [47]. On the other hand, a method was introduced

in [34] to avoid the false alarm of BBF and discriminate
the BBF from eccentricity fault and load oscillations. In this
method, the frequency spectrum of the stray flux collected
using a flux sensor was proposed to overcome this problem.
In [49], it was proved that the 5th sideband harmonics of the
rotor speed in stray or air gab flux are immune to this problem
and some other causes of misdiagnosis. But the rotor speed
measurement is still a requirement for these methods.

The frequency analysis of the instantaneous power was
used for BBFs detection. The BBF-related frequency com-
ponents are shifted from (1 ± 2ks)f s in the current spectrum
to 2ksfs in the instantaneous power spectrum far from the
fundamental frequency component. Moreover, the results of
this method were confirmed in [92]. In addition, it was
proved in [92] that the frequency analysis of the instanta-
neous active and reactive power and their derived signals—
the power factor and its phase angle could provide a robust
base for differentiating BBF and eccentricity faults from load
oscillations.

2) ENVELOP SPECTRUM ANALYSIS-BASED METHODS
Another solution to discriminate the sideband harmonics
from the fundamental current component was proposed in
[93], [94], and [95]. This solution was based on applying
the Hilbert transform (HT) to the sampled current to cal-
culate the current analytical signal or the current envelope.
The spectrum analysis of the analytical signal using FFT
showed that the main sideband harmonic transferred to 2sfs.
Furthermore, ANN was used in [94] and [95] to identify
BBFs in inverter-fed motor and line-fed motor respectively.
Also, [96] provided a solution for detecting BBF under
light loading conditions with a relatively small number of
samples. In this method, the analytic current signal (current
envelope) obtained by a low-cost time-shift-based method
was processed using multicoset sampling method at a very
low sampling rate. On the other hand, HT was applied to
starting current to get its envelope and the standard devi-
ation of this envelope is utilized for fault detection and
diagnosis in [97].
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3) HIGH-FREQUENCY RESOLUTION-BASED METHODS
To overcome FFT spectral leakage drawbacks especially at
low loading conditions and under mixed faults conditions,
high-resolution frequency or frequency estimator techniques
are used such as multiple signal classification (MUSIC) in
[98] and estimation of signal parameters via rotational invari-
ance techniques (ESPRIT) in [99] but, the high-frequency
resolution comes at high computational burden. A proposed
solution to decrease the computational burden of MUSIC
through the use of frequency estimator and ZOOM technique
was introduced in [100]. A model order estimation algorithm
to improve frequency estimator efficiency and a fault severity
criterion to estimate fault severity were proposed in [101].
The MUSIC technique was modified in [102] to detect incip-
ient BBF in inverter-fed motors through the adjustment of
three parameters based on load level and the power source.
That is presented as a major limitation of this technique.
The selection of the optimum values of these parameters is
considered the major limitation of this technique.

4) FUNDAMENTAL FREQUENCY SUPPRESSION-BASED
METHODS
In [103], the fundamental frequency component was removed
from the current signal using interference suppression tech-
niques. Then the maximum likelihood principle is utilized to
estimate the fault-related frequencies followed by the fault
severity estimation stage based on a generalized likelihood
ratio test. An alternative technique to estimate fault-related
components inmotor operates at low slip with low acquisition
time was presented in [104] based on frequency estimation
using two cascaded Taylor-Kalman (TK) filters with a sub-
sampling scheme. Later, an estimation technique called non-
linear least squares was applied to the current signal in [105]
to estimate and highly attenuate the fundamental current
component by suppressing only the frequency component
instead of a frequency band like the previousmethods. Hence,
a clear spectrum that shows fault-related obliviously could
be obtained. Moreover, a more simple technique that was
based on spectral subtraction, moving average algorithm, and
autocorrelation of the stray flux was introduced in [106].

The computational burden of a frequency-based method
mainly depends on acquisition time and sampling frequency.
So, the BBFs detection method that utilizes a lower sampling
frequency without degrading method efficiency is introduced
in [107]. This method showed that a low sampling frequency
integrated with a notch filter could be efficiently applied with
the discrete-time Fourier transform and autoregressive-based
spectrum methods to detect BBFs.

5) EMPIRICAL MODE DECOMPOSITION-BASED METHODS
Empirical mode decomposition (EMD) was used as another
tool to decompose the current signal into its intrinsic mode
functions (IMFs) in [108]. The standard deviation of the
samples and the time between successive zero crossings of
two current IMFs were presented in [108] as fault indicators.

As the EMD has many limitations such as mode mix-
ing problems, stopping criteria, and border effects, Com-
plete Ensemble Empirical Mode Decomposition (CEEMD),
a more advanced version of EMD, was presented in [109] to
decompose acoustic sound and vibration signals to its IMFs.
Then, the spectrum of some IMFs was estimated using the
marginal frequency of the Gabor representation and intro-
duced as a fault indicator.

6) COMPARISON OF FREQUENCY-DOMAIN-BASED
METHODS
A detailed comparison among different frequency-domain-
based fault detection methods introduced in the literature
from the year 2004 to 2022 is presented in Table. 7. The
comparison covers the number and type of required sen-
sors, tested state (either steady-state or transient), type of
IM supply (either line-fed mode. or inverter-fed mode), the
severity of tested BBFs, and loading conditions. It also shows
the sampling frequency and training required and finally
evaluates the achieved accuracy.

C. TIME-FREQUENCY DOMAIN-BASED METHODS FOR
BBF DETECTION AND DIAGNOSIS
The conceptual basis of these methods is to use multiple
signal processing techniques which are applied to monitor
fault-related conditions in the time-frequency domain. Such
techniques were introduced in the literature to identify the
fault-related components under the transient conditions in the
time-frequency (t − f ) plane.

1) LINEAR T-F TRANSFORMS-BASED METHODS
In [110], the fractional Fourier transform was applied to the
current signal after being filtered using wavelet transform
(WT) to extend the capabilities of Fourier transform to deal
with the whole range of the motor speed under transient con-
ditions. Then, linear transforms were widely applied to the
current, flux signals to evaluate themain side-band harmonics
in the (t − f ) plane. Such transformers include short-time
Fourier transform (STFT), WT, Stockwell transform (ST),
adaptive slope transform (AST), and chirplet Transform (CT).
The STFT utilizes a fixed time and frequency resolution
window dependent on the Heisenberg uncertainty principle.
i.e. the improvement of frequency resolution worsen time res-
olution and vice versa. The resolution of this window cannot
be changed from one point to another which represents the
major weakness of this transform. In the literature, the STFT
was used to detect BBFs in the (t− f ) domain in [111] during
start-up and counter-current braking respectively. In [112],
STFT supported by Otsu segmentation was utilized to early
detect and classify BRB faults in IMs under starting of line-
fed IMs is proposed. In addition, the STFT was applied to
stray flux to detect BBFs in [24], [28], [55], and [113].

In contrast, the window width in the WT is variable and
depends on the frequency of the analyzed signal. There-
fore, this window provides a high-frequency resolution with
a lower time resolution at low frequencies whereas; a
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TABLE 7. Comparison among different frequency-domain-based fault detection methods discussed in Section V-B.

low-frequency resolutionwith a higher time resolution at high
frequencies can be obtained. In the literature, the continuous
wavelet transform (CWT) was applied to the current signal
in the starting to detect BBFs pattern in [114] and [115].
In [116], the STFT, CWT, and a multilabel classification
framework were applied to detect BBFs in the starting of a
line-fed motor. In addition, the synchro-squeezing transform
that is based on CWT but with a higher t-f resolution is
used to detect the same fault in [117]. The DWT that is
discretized form of CWT was utilized in [27] to detect BBFs
using the current signal. The energy eigenvalues of these
frequency bands under steady-state condition were utilized
as a fault indicator in [118] whereas, a fault indicator related
to a certain frequency band under transient conditions were
proposed in [27]. An outstanding performance method was
applied in [119] to detect multiple motor faults online at early

stages regardless of motor characteristics. In this method,
a wavelet function and a multivariate control chart were
applied to the current signal in the steady-state to detect and
classify BBFs regardless of the supply mode. In contrast, the
energy of sub-bands extracted from the acoustic signals using
rational-dilation wavelet transform was presented as a useful
fault indicator in [61].

Later, DWT is combined with Local Binary Pattern to
extract features from the acoustic signal as presented in
[120]. Neighborhood Component Analysis, Support Vector
Machine, and KNearest Neighborhood were utilized to select
the most informative features and classify BBFs.

Furthermore, a multiple-windowed harmonic wavelet
packet transform (WPT) as a modified version of the DWT
was introduced in [121] to overcome the problem of con-
tinuous redefinition of the decomposition tree levels to deal
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with the variable frequency content in the case of inverter-
fed motors. In [11], WPT was applied to the vibration signal
to detect BBF. However, WT has many limitations such as
dependence on the mother wavelet and number decomposi-
tion levels [13].

Also, to automatically detect and diagnose early BBF
under the variable loading and inertia conditions without the
need for expert knowledge, a method that is based on ST was
applied in [13]. The ST that have a variable window width
with more control parameters for better resolution adjustment
thanWT. In such study, the window width control parameters
were selected using an active-set optimization technique and
the STwas applied to the current signal to detect and diagnose
BBFs in a directly fed motor.

As the previous linear transforms, AST is subjected to
trade-off between time and frequency resolution. Neverthe-
less, the AST has a major benefit over STFT and WT in
that the window can be adjusted at every point in t-f plane.
Consequently, the trajectory of the LSH and RSH can be
represented efficiently. Actually, the AST was utilized in [25]
and [122] to detect BBFs of a line-fed motor and inverter-fed
motor respectively.

The chriplet transform (CT) shares the same feature with
other linear transformers. On the other hand, CT does not
follow the t-f trade-off rule like other linear transformers [25].
While the window of STFT for example has a definite length
and width in the t-f plane, the window of CT provides only
thickness and direction [25]. Therefore, the CT represents one
of the most suitable linear transforms to monitor LSH and
RSH in the case of BBFs in inverter-fed motors. It is worth
mentioning that the CT is not suitable for analyzing signals
that change their directions in the t-f plane abruptly. In [124],
the CT was applied to the current signal of an inverter-fed IM
operating at low slip conditions where the fault component
frequencies are very close to the fundamental component in
the t-f plane.

Based on the previous discussion, it can be deduced that the
CT can efficiently monitor LSH and RSH in the case of the
inverter-fed motor during starting whereas, AST can monitor
these fault-related harmonics during steady-state. To over-
come the shortcoming of AST and CT, the dragon transform
(DT) was introduced in [38] and [125]. The DT employs a
more advanced window, so it can efficiently represent the
trajectories of the fault-related components during starting
and steady-state in both line-fed and inverter-fedmodes under
sophisticated control algorithms.

2) QUADRATIC T-F DISTRIBUTION-BASED METHODS
In the literature, another type of t-f representation called
quadratic t-f distribution is presented. In this type, a higher
time and frequency resolution can be provided simultane-
ously. However, this type suffers from cross terms drawbacks
when analyzing multicomponent signals. The Wigner-Ville
Distribution (WVD) represents this type of t-f distribution.
In [126] and [127], the WVD was applied to the starting
current of a direct-fed motor and the steady state current

of an inverter-fed motor in [128]. Also, another type of
quadratic distribution, called Zhao-Atlas-Marks (ZAM) dis-
tribution, was applied to vibration signals to detect BBFs
in [129]. To limit the cross terms that degrade the qual-
ity of WVD, a filtered current signal during starting of
a direct-fed motor was used instead of the original signal
as in [130].

3) HILBERT-HUANG TRANSFORM-BASED METHODS
Moreover, the Hilbert-Huang Transform (HHT) was intro-
duced in the literature to detect the BBFs in both modes
of supply. This transform is based on the decomposition of
the analyzed signal to a number of IMFs using EMD to
be more suitable to be processed using the HT [25]. The
HT can accurately define the instantaneous frequency of
each IMF and its amplitude. More advanced decomposition
algorithms like the Ensemble Empirical Mode Decomposi-
tion (EEMD) and Variational Mode Decomposition (VMD)
are introduced in the literature to overcome EMD problems
(discussed before in Section V. B-6). The HHTwas presented
in [131] and [132] to detect BBFs in line-fed and inverter-fed
modes under steady-state respectively, while, in [133] and
[134], the HHT was applied to detect BBFs in the line-fed
mode under transient conditions.

4) HIGH T-F RESOLUTION-BASED METHODS
In another attempt to improve the t-f resolution, the high-
resolution frequency method such as MUSIC was presented
in the literature to detect BBFs, especially in the case of
inverter-fed mode. In [135], the current signal was decom-
posed by CEEMD and the resulting IMFs were processed
using MUSIC algorithm to detect BBFs in both steady-state
and starting inverter-fed motors. In fact, this method and the
method based on DT have an outstanding performance com-
pared to other transforms, especially in inverter-fed mode.
Later, a method based on MUSIC and non-uniform demod-
ulation was applied in [136] on the current signal to detect
BBFs in the inverter-fed mode under starting conditions.
In [137], a non-uniform sampling technique andMUSICwere
used to change the trajectories of LSH and RSH in the t-f
plane in the case of starting an inverter-fed motor to be easily
monitored. In addition, the MUSIC algorithm was applied to
the zero-sequence current in [6] to detect such faults in line-
fed mode.

5) COMPARISON OF T-F DOMAIN-BASED METHODS
A detailed comparison among several reported time-
frequency domain-based fault detection methods (28 ref-
erences published from 2008 to 2021) in the literature is
presented in Table. 8.

Also to illustrate the difference in the resolution between
some t-f transforms, some t-f representations are presented in
Fig. 10, for the current signal of a real motor with one broken
bar has the following characteristics: 400 V, 1.5 kW, 2-poles,
3.25 A, and 2860 rpm at full load.
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TABLE 8. Comparison among different time-frequency domain-based fault detection methods discussed in Section V-C.

D. DISCUSSION ON SIGNAL PROCESSING-BASED
METHODS FOR BBF DETECTION AND DIAGNOSIS
As discussed before, the fault-related features are extracted in
signal processing-based methods from the time, frequency,
and time-frequency domains. Accordingly, some issues are
summarized regarding the implementation of these methods
as follows:

• Statistical features are generally extracted from the sig-
nal in the time domain. Therefore, the computational
burden of these features’ processing is low compared
to other signal processing–based methods. However,
an artificial or statistical classifier is required for
fault severity diagnosis and hence classifier training is
required.

• In contrast, when the fault-related features are extracted
from the frequency domain, the diagnosis of BBFs
is based on monitoring the magnitude of fault-related
frequency components mainly LSH and RSH. These
frequencies are strictly close to the fundamental com-
ponents, especially in case zero and low loading

conditions. In addition, in the inverter-fed mode, har-
monics of high levels are injected into the current that
may flood fault-related frequencies. Therefore, the main
contributions in this field can be concluded in:

– Suppressing fundament components and harmonics
for better monitoring of LSH and RSH,

– Applying high-resolution methods to clearly show
fault-related frequencies,

– Monitoring frequencies in the current envelop or
instantaneous power where the frequencies of inter-
est are from fundamental components and monitor-
ing frequency band rather than certain frequencies.

– Although, the frequency-based methods are the
common BBFs detection method, they require
more computational burden than time–based
methods. In addition, a threshold determina-
tion for fault detection or a classifier may be
required.

• In the time-frequency domain-based methods, the
fault-related features are extracted from the t-f plane
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FIGURE 10. Time-Frequency representation of real current signal of induction motor with one broken bar (developed by authors
and obtained based on real data) (a) STFT, (b) CWT, (c) Optimized Stockwell transform, and (d) Chirplet Transform (developed by
authors and obtained by simulation tests).

generally during starting conditions. The fault-related
features appear as a unique pattern in the t-f plane in the
case of line-fed mode and as two lines strictly close to
the fundamental components. Therefore, the detection
of BBFs in the case of inverter-fed modes is more
challenging. Although the detection of BBFs is eas-
ier than the previous two approaches, the transformers
used in these methods require more computational
burden. In addition, expert knowledge is required for
fault identification. The Persistence Spectrum may be
a potential solution that we suggest to overcome the
challenges associated with detecting fault-related com-
ponents in inverter-fed modes with a suitable cal-
culation burden [138], [139]. It is widely used to
detect the hidden weak signals in other powerful
signals.

VI. DATA-DRIVEN-BASED METHODS FOR BBF
DETECTION AND DIAGNOSIS
In this approach, the data-driven methods are applied directly
to the measured signals to detect and estimate the severity of
the fault with high accuracy [140]. These methods, in contrast
to the model-based methods and signal-processing-based
methods, expert experience to select and extract fault features
is not required. On the other hand, the data-driven-based
methods do not provide the physical interpretation for fault
detection and diagnosis [140]. In addition, a considerable
amount of training data is required to achieve reasonable
accuracy [22]. In an industrial environment, providing a large
amount of data for training may be unavailable and require a
high computational burden [22], [141]. The learning strategy
of the data-driven methods can be classified as supervised
and unsupervised [22]. In the unsupervised learning strategy,
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TABLE 9. Comparison among different Data-driven based methods discussed in Section VI.

the knowledge base is extracted from the historical unlabeled
data to simulate healthy system behavior, which is used to
judge the real-time system behavior [22]. So, the unsuper-
vised learning strategy depends on the AI to detect hidden
patterns in the provided data without human aid. Whereas,
in the supervised learning strategy the knowledge bases for
both healthy and faulty conditions are extracted from labeled
data that are used for system monitoring [22].

In the literature, an unsupervised learning technique was
used in [142] to detect and diagnose BBFs where a deep
neural network (DNN) was trained using features extracted
by sparse auto-encoder from unlabeled data, and a dropout
algorithm was utilized to avoid overfitting during the training
stages. The deep-SincNet method supported with a convo-
lutional neural network (CNN) represents another example
of an unsupervised learning technique implemented in [143]
to detect BBFs using the current signal with high accuracy
for single and mixed faults in noisy environments. Whereas a
supervised learning approach was utilized in [144], where an
adaptive gradient optimizer-based deep convolutional neural
network (ADG-dCNN) technique was introduced to auto-
matically detect BBFs using multi-vibration sensors with
minimum human intervention. Another data-driven approach
that was based on Interpolated Kernel Density Estimator
(IKDE) was utilized in [145] due to its superiority over other
Kernel Density Estimators in terms of speed improvement
and computational burden. Where the Naive Bayes Classifier
(NBC) supported with Interpolated Kernel Density Estimate
(IKDE) was presented to detect and classify BBFs using
multi-vibration sensors. Furthermore, auto-encoder networks
were used for BBF detection and diagnosis utilizing both
labeled and unlabeled data. In [146], stacked auto-encoder
networks were used to extract fault features from the cur-
rent signal in the frequency domain using labeled data.
This method could screen false alarms and detect inter-
turn, BBFs, and bearing faults while reducing expertise
demand. In [147], a Noisy Domain Adaptive marginal Stack-
ing Denoising Auto-encoder (NDAmSDA) technique was
employed to detect and classify BBFs based on an acoustic

signal using an unsupervised learning approach. On the other
hand, a method for early detection and classification of BBFs
was proposed in [148] based on using 2-D CNN to classify
t-f images obtained by applying STFT to starting current after
removing the fundamental current component using a notch
filter. A relatively similar approach was proposed in [149],
but images were obtained by applying STFT to stray flux
during starting. In [150], shallow and adaptive 1-D CNN
was proposed to automatically extract features from the raw
current signal and classify faults with high accuracy.

The main advantages of shallow CNN over deep CNN
are suitability for real-time application, limited data required
for training, and cost-effective implementation [150]. On the
other hand, deep CNN and DNN have more advanced feature
extraction and learning abilities [144]. However, DNN suffers
from some drawbacks such as overfitting, high computational
burden, and the selection of its parameters becomes challeng-
ing for complicated problems [144]. In contrast, deep CNN
requires less computational burden than DNN as it utilizes
fewer connections between layers than DNN resulting in less
probability of overfitting [144]. In general, the deep models
are more efficient in feature extraction and more suitable for
BBF than shallow ones.

A comparison among different data-driven-based fault
detection methods introduced in the literature is presented
in Table. 9.

However, the data-driven approach can independently
extract features from the row signals without the need for
signal processing tools. This advantage comes at a high cost
of computational burden and the amount of data required
for training that may not be available in the industrial
environment. Also, the data-driven-based methods do not
provide any physical interpretation for fault detection and
diagnosis [140]. On the other hand, the classical approach
including model-based methods and signal processing–based
methods provides a good physical interpretation and requires
a relatively low amount of data. But, expert knowledge is
required to build detailed models or manually extract fault
features. In our point of view, hybrid techniques which are
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a combination between data-driven and classical approaches
are themost promising techniques for BBF fault detection and
diagnosis. As these techniques provide the main advantages
of both approaches. Methods in [151], [152], and [153] are
examples of this approach.

VII. CONCLUSION AND IDEAS FOR FUTURE WORK
In this paper, a comprehensive review of the most recent
BBFs detection and diagnosis methods up-to-date are pro-
vided. The BBFs fault signatures on different motor variables
are discussed. In addition, the fault detection and diagnosis
methods are classified into: groups and sub-groups to be
deeply described and evaluated. A comparison between dif-
ferent methods in the same group and sub-group is presented
in a tabulated format for easy interpretation. Additionally,
a comprehensive discussion of such methods is offered.

Although the development achieved in the field of BBFs
detection and diagnosis, some issues that still require more
attention from researchers can be summarized and high-
lighted in:
• A complete and integrated system for different IM faults
identification including broken bar, stator inter-turn,
bearing, and eccentricity faults is still required.

• However, model-based methods are one of the most
promisingmethods, the investigation of the performance
of model-based methods in the case of the presence
of false diagnosis sources such as low-frequency load
oscillations and with a lesser number of sensors is still
needed.

• The digital twin approach represents a trending tech-
nology in the field of monitoring and fault detection,
however, a comprehensive application that can detect
and diagnose different motor faults is still missing.

• Another alternative to fulfill the requirements is the data-
driven-based methods but a relatively large amount of
data is required. To overcome this drawback, transfer
learning may be a promising solution.

• Regarding signal processing-based methods, the devel-
opment of methods that provide high accuracy and
require low sampling frequency, short acquisition time,
and a low computational burden is needed.

• In the time-frequency-based methods, a well-
experienced operator is required to identify fault patterns
from the t-f plane. So, a numerical indicator is required
for easy fault detection. Also, the performance of these
methods under short-start duration is needed to be more
investigated.

• On the other hand, the papers that discuss end ring faults
detection in the literature are still rare so; more research
is required on this point.
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